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a b s t r a c t

In this paper, we propose some least-squares finite element procedures for linear and
nonlinear parabolic equations based on first-order systems. By selecting the least-squares
functional properly each proposed procedure can be split into two independent symmetric
positive definite sub-procedures, one of which is for the primary unknown variable u and
the other is for the expanded flux unknown variable σ . Optimal order error estimates are
developed. Finally we give some numerical examples which are in good agreement with
the theoretical analysis.
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1. Introduction

The purpose of this paper is to consider the least-squares finite element procedures for linear and nonlinear parabolic
problems written as first-order systems. It is well known that, compared to mixed element methods, the least-squares
finite element method has two typical advantages as follows: it is not subject to the Ladyzhenkaya–Babuska–Brezzi [13,
1,4] consistency condition, so the choice of approximation spaces becomes flexible, and it results in a symmetric positive
definite system.

Least-squares finite element methods for elliptic problems, based on first-order systems, were introduced by [12] where
a least-squares residual minimization is introduced for the mixed system in primary unknown variable u and expanded
unknown flux σ . Then an elegant theory for least-squares finite element approximation for general elliptic boundary
value problems was established, see, for example, [12,10,11,16,5,6] and the references therein. Concerning the parabolic
problems, [14] and [15] introduced the least-squares finite element procedure with semi-discretization in time and fully
discrete scheme. They also established the a posterior error estimates and constructed adaptive algorithms.

In this paper we consider the least-squares finite element procedures for linear and nonlinear parabolic problems. Like
[14,15] we define the least-squares functionals using weight-factors. By selecting different weight-factors we get different
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procedures. We show that all the procedures presented in this paper can be divided into two independent sub-procedures,
one of which is for the primary unknown variable u and the other is for the expanded flux σ . The key point used to explain
the split of the procedure is Lemma 2.1 which was obtained by integration by parts. Similar results have been found and used
by [8] to prove the coercivity of least-squares bilinear formats and by [2,3] to establish connections between least-squares
and mixed methods. The last two papers also show that not only is the pressure the same as in the Galerkin method, but
also the flux is the same as in the mixed method under some conditions on the finite element spaces.

In this paper three procedures were presented for linear parabolic problems. In the first procedure the sub-procedure
for the primary unknown u is the same as the standard Galerkin finite element procedure. In the second procedure one of
the sub-procedures is for the expanded flux σ only. The third one is a procedure with second-order approximation in time
increment. We give one procedure to deal with the nonlinear problem. For these schemes we give the optimal order error
estimates. Finally we give some numerical examples.

The remainder of this paper is organized as follows. In Section 2 we introduce the split least-squares schemes for linear
problems. In Section 3, we establish the optimal order error estimates. In Section 4, we give a least-squares finite element
procedure for nonlinear problems. Finally in Section 5 we give some numerical examples.

Throughout this paper, the notations of standard Sobolev spaces L2(Ω), Hk(Ω) and associated norms ‖ · ‖ = ‖ · ‖L2(Ω),
‖ · ‖k = ‖ · ‖Hk(Ω) are adopted as those in [7]. For simplicity we use ‖ · ‖L∞(Hm+1) and ‖ · ‖L2(Hm+1) to represent ‖ · ‖L∞(J;(Hm+1(Ω))d)

and ‖ · ‖L2(J;(Hm+1(Ω))d) respectively for J = (0, T) and d ≤ 3. A constant C (with or without subscript) stands for a generic
positive constant independent of the mesh parameter hu, hσ and 1t, it may be different at different occurrence.

2. Least-squares procedure for linear problems

In this section we present three least-squares finite element procedures for linear problems. For simplicity we just
consider the homogeneous boundary condition. The same idea can be used to deal with problems with non-homogeneous
boundary condition.

Consider the following parabolic problem on a bounded domain Ω ⊂ Rd, d = 2, 3:
φut − div(A∇u) = f , in Ω × J,
u = 0, on ΓD × J,
A∇u · n = 0 on ΓN × J,

(2.1)

subject to the initial condition

u(x, 0) = u0(x) on Ω × J, (2.2)

where ∂Ω = ΓD ∩ ΓN , n is the outward unit normal vector, J = (0, T] is the time interval and φ is a continuous function
satisfying φ1 ≤ φ ≤ φ2 with two positive constants φ1 and φ2. We further assume that A = (aij(x))

d
i,j=1 is a bounded,

symmetric and positive definite matrix in Ω , i.e., there exist positive constants α and β such that,

α‖ξ‖2
≤ (Aξ , ξ) ≤ β‖ξ‖2, ∀ξ ∈ Rd. (2.3)

In some applications, the problem (2.1) appears as a first-order system for both u and σ = −A∇u, σ = (σ 1, . . . , σ d), as
follows:

φut + div σ − f = 0, in Ω × J,
σ +A∇u = 0, in Ω × J,
u = 0, on ΓD × J,
σ · n = 0 on ΓN × J.

(2.4)

For example, in the compressible miscible displacement problem [9], u represents the pressure and σ represents the Darcy
velocity or flux. In this case the approximations to both u and σ are necessary. We consider the least-squares mixed element
approximations for (2.4).

First we consider the first-order approximation in time increment. Let 1t be a time increment. With tn = n1t,
un
= u(tn, ·), put

δtu
n
:=

un
− un−1

1t
, ρn

1 := φ(δtu
n
− un

t ). (2.5)

It is clear that

ρn
1 = O

(∫ tn

tn−1
‖utt‖dt

)
= O

(4t ∫ tn

tn−1
‖utt‖

2dt
) 1

2
 . (2.6)

Define two function spaces

V = {v ∈ H1(Ω) : v = 0 on ΓD}, (2.7)

W = {τ ∈ (L2(Ω))d : div τ ∈ L2(Ω), τ · n = 0 on ΓN}. (2.8)
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From (2.4) we know that for n ≥ 1, (un, σ n) ∈ V×W satisfy that{
φ−

1
2 (φun

+1t div σ n
− Fn1) = 0, in Ω × J,

A−
1
2 (σ n
+A∇un) = 0, in Ω × J,

(2.9)

where Fn1 = φu
n−1
+1tf n +1tρn

1.
For (v, τ ) ∈ V×W, define the first kind of least-squares functional Jn1(v, τ ) as follows.

Jn1(v, τ ) = ‖φ−
1
2 (φv+1t div τ − Fn1)‖

2
+1t‖A−

1
2 (τ + A∇v)‖2. (2.10)

The least-squares minimization problem corresponding to (2.9) is: find (un, σ n) ∈ V× σ n
∈W such that

Jn1(u
n, σ n) = inf

(v,τ )∈V×W
Jn1(v, τ ). (2.11)

Define the bilinear form a(u, σ ; v, τ ) corresponding to the least-squares functional Jn1 as

a(u, σ ; v, τ ) = (φ−1(φu+1t div σ ),φv+1t div τ )+1t(A−1(σ +A∇u), τ +A∇v). (2.12)

The weak statement of the minimization problem (2.11) becomes: find (un, σ n) ∈ V×W such that

a(un, σ n
; v, τ ) = (φ−1Fn1,φv+1t div τ ), ∀(v, τ ) ∈ V×W. (2.13)

Noticing the definition of Fn1 , (2.13) becomes

a(un, σ n
; v, τ ) = (un−1

+1tφ−1(f n + ρn
1),φv+1t div τ ), ∀(v, τ ) ∈ V×W. (2.14)

Now we consider the second weak formulation different from (2.13). From (2.4) we have that for n ≥ 1, (un, σ n) ∈ V×W
satisfy that{

φ−
1
2 (φun

+1t div σ n
− Fn1) = 0, in Ω × J,

A−
1
2 (σ n
+A∇un

− Gn) = 0, in Ω × J,
(2.15)

where Gn
= σ n−1

+A∇un−1. For (v, τ ) ∈ V×W, define the second kind of least-squares functional Jn2(v, τ ) as follows.

Jn2(v, τ ) = ‖φ−
1
2 (φv+1t div τ − Fn)‖2

+1t‖A−
1
2 (τ +A∇v− Gn)‖2. (2.16)

The least-squares minimization problem corresponding to (2.15) is: find (un, σ n) ∈ V×W such that

Jn2(u
n, σ n) = inf

(v,τ )∈V×W
Jn2(v, τ ). (2.17)

Similarly to (2.14), the weak statement of (2.17) is: find (un, σ n) ∈ V×W such that

a(un, σ n
; v, τ ) = (un−1

+1tφ−1(f n + ρn
1),φv+1t div τ ),+1t(A−1σ n−1

+∇un−1, τ +A∇v)

∀(v, τ ) ∈ V×W. (2.18)

In order to approximate the formulations (2.14) and (2.18), we need to construct the finite element spaces. Let Thu and Thσ

be two families of regular finite element partitions of the domain Ω , which are either identical or not. Let hu and hσ denote
the largest of the diameters of the element in Thu and Thσ respectively. Based on Thu and Thσ , respectively, we construct the
finite element spaces Vh ⊂ V and Wh ⊂W with the following approximation properties:

inf
vh∈Vh

{‖v− vh‖ + hu‖∇(v− vh)‖} ≤ Chm+1
u ‖v‖m+1, (2.19)

inf
τh∈Wh

‖τ − τ h‖ ≤ Chk+1
σ ‖τ‖k+1, (2.20)

inf
τh∈Wh

‖ div(τ − τ h)‖ ≤ Chk1
σ ‖τ‖k1+1, (2.21)

for v ∈ V∩Hm+1(Ω) and τ ∈W∩ (Hk1+1(Ω))d. It is clear that when assumption (2.20) holds we can deduce k1 = k, and when
Wh is selected as any of the Raviart–Thomas mixed element space [17] we can choose k1 = k + 1. In this paper we always
suppose k1 = k+ 1 when Wh is any of the Raviart–Thomas mixed element space [17] and k1 = k otherwise.

We select the initial approximation u0
h ∈ Vh, σ 0

h ∈Wh such that{
‖u0 − u0

h‖j ≤ Chm+1−j
u ‖u0‖m+1, j = 0, 1,

‖σ 0 − σ 0
h‖ ≤ Chk+1

σ ‖σ 0‖k+1,
(2.22)

where σ 0 = A∇u0. The first least-squares finite element procedure based on (2.14) reads as follows.
Scheme (I). For n ≥ 1 find (un

h, σ n
h) ∈ Vh ×Wh such that

a(un
h, σ n

h; vh, τ h) = (un−1
h +1tφ−1f n,φvh +1t div τ h), ∀ (vh, τ h) ∈ Vh ×Wh. (2.23)
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Based on (2.18) the second least-squares finite element procedure reads as follows.
Scheme (II). For n ≥ 1 find (un

h, σ n
h) ∈ Vh ×Wh such that

a(un
h, σ n

h; vh, τ h) = (un−1
h +1tφ−1f n,φvh +1t div τ h)

+1t(A−1σ n−1
h +∇un−1

h , τ h +A∇vh), ∀ (vh, τ h) ∈ Vh ×Wh. (2.24)

Now let us mention about the bilinear form a(·, ·; ·, ·) in the following lemma, which leads to decoupled systems.

Lemma 2.1. For any u, v ∈ V and σ , τ ∈W we have that,

a(u,σ ; v, τ ) = (φu, v)+1t(A∇u,∇v)+1t(A−1σ , τ )+1t2(φ−1 div σ , div τ ). (2.25)

Proof. A direct calculation shows that

a(u,σ ; v, τ ) = (φu, v)+1t(A∇u,∇v)+1t(A−1σ , τ )+1t2(φ−1 div σ , div τ )

+1t((u, div τ )+ (v, div σ )+ (∇u, τ )+ (∇v, σ )),

Integrating by parts shows that

(u, div τ )+ (v, div σ )+ (∇u, τ )+ (∇v, σ ) = 0, (2.26)

which completes the proof. �

Using Lemma 2.1, we have the decoupling equivalent form of each scheme (I) or (II) alternatively by putting τ h = 0 and
vh = 0 in (2.23) or (2.24).
Equivalent Form of Scheme (I). With the initial guess (u0

h, σ 0
h) ∈ Vh ×Wh, for n ≥ 1 find (un

h, σ n
h) ∈ Vh ×Wh such that for

all vh ∈ Vh and τ h ∈Wh

(φun
h, vh)+1t(A∇un

h,∇vh) = (φun−1
h +1tf n, vh), (2.27)

(A−1σ n
h, τ h)+1t(φ−1 div σ n

h, div τ h) = (un−1
h +1tφ−1f n, div τ h). (2.28)

Equivalent Form of Scheme (II). With the initial guess (u0
h, σ 0

h) ∈ Vh ×Wh, for n ≥ 1 find (un
h, σ n

h) ∈ Vh ×Wh such that for
all vh ∈ Vh and τ h ∈Wh

(φun
h, vh)+1t(A∇un

h,∇vh) = (φun−1
h +1tf n, vh)+1t(σ n−1

h +A∇un−1
h ,∇vh) (2.29)

(A−1σ n
h, τ h)+1t(φ−1 div σ n

h, div τ h) = (A−1σ n−1
h , τ h)+1t(φ−1f n, div τ h). (2.30)

Note that each Scheme (I) or (II) is split into two independent symmetric positive definite systems. Sub-procedure (2.27)
is the same as the standard Galerkin finite element procedure for parabolic problems. Sub-procedure (2.30) is a procedure
for the unknown flux σ n

h with first-order approximation in time increment.
It clear that both problems (2.23) and (2.24) have a unique solution.
Now we consider the second-order approximation in time increment. Let

ρn
2 := φ

(
δtu

n
− u

n− 1
2

t

)
+

1
2

div(σ n
+ σ n−1)− div σ n− 1

2 , (2.31)

which can be estimated as

ρn
2 = O

1t
3
2

(∫ tn

tn−1
(|uttt|

2
+ | div σ tt|

2)dt
) 1

2
 . (2.32)

From (2.4) we know that for n ≥ 1, (un, σ n) ∈ V×W satisfy thatφ
−

1
2

(
φun
+

1t

2
div σ n

− Fn2

)
= 0, in Ω × J,

A−
1
2 (σ n
+A∇un

− Gn) = 0, in Ω × J,
(2.33)

where Gn is the same as in (2.15),

Fn2 = φu
n−1
+1tf n−

1
2 −

1t

2
div σ n−1

+1tρn
2. (2.34)

For (v, τ ) ∈ V×W, define the least-squares functional Jn3(v, τ ) as follows.

Jn3(v, τ ) =

∥∥∥∥φ− 1
2

(
φv+

1t

2
div τ − Fn2

)∥∥∥∥2

+
1t

2
‖A−

1
2 (τ +A∇v− Gn)‖2. (2.35)



942 H. Rui et al. / Journal of Computational and Applied Mathematics 223 (2009) 938–952

The least-squares minimization problem corresponding to (2.33) is: find (un, σ n) ∈ V×W such that

Jn3(u
n, σ n) = inf

v∈V,τ∈W
Jn3(v, τ ). (2.36)

Define the bilinear form b(·, ·; ·, ·) as

b(u, σ ; v, τ ) =

(
u+

1t

2
φ−1 div σ ,φv+

1t

2
div τ

)
+

1t

2
(A−1σ +∇u, τ +A∇v). (2.37)

Noticing the definition of Fn2 in (2.34), the weak statement of the minimization problem (2.36) is: find (un, σ n) ∈ V×W such
that

b(un, σ n
; v, τ ) =

(
un−1
+1tφ−1

(
f n−

1
2 −

1
2

div σ n−1
+ ρn

2

)
,φv+

1t

2
div τ

)
,

+
1t

2
(A−1σ n−1

+∇un−1, τ +A∇v) ∀(v, τ ) ∈ V×W. (2.38)

Then the corresponding least-squares finite element procedure reads as follows.
Scheme (III). With the initial guess (u0

h, σ 0
h) ∈ Vh ×Wh, for n ≥ 1 find (un

h, σ n
h) ∈ Vh ×Wh such that

b(un
h, σ n

h; vh, τ h) =

(
un−1
h +1tφ−1

(
f n−

1
2 −

1
2

div σ n−1
h

)
,φvh +

1t

2
div τ h

)

+
1t

2
(A−1σ n−1

h +∇un−1
h , τ h +A∇vh), ∀ (vh, τ h) ∈ Vh ×Wh. (2.39)

Similarly to Lemma 2.1 we know that the following lemma holds.

Lemma 2.2. For any u, v ∈ V and σ , τ ∈W we have that,

b(u,σ ; v, τ ) = (φu, v)+
1t

2
(A∇u,∇v)+

1t

2
(A−1σ , τ )+

(
1t

2

)2

(φ−1 div σ , div τ ). (2.40)

Using Lemma 2.2 we have a decoupling equivalent form of Scheme (III).
Equivalent Form of Scheme (III). With the initial guess (u0

h, σ 0
h) ∈ Vh ×Wh, for n ≥ 1 find (un

h, σ n
h) ∈ Vh ×Wh such that

(φun
h, vh)+

1t

2
(A∇un

h,∇vh) =
(
φun−1

h +1tf n−
1
2 −

1t

2
div σ n−1

h , vh

)
+

1t

2
(σ n−1

h +A∇un−1
h ,∇vh),

∀ vh ∈ Vh. (2.41)

(A−1σ n
h, τ h)+

1t

2
(φ−1 div σ n

h, div τ h) = (A−1σ n−1
h , τ h)+1t

(
φ−1

(
f n−

1
2 −

1
2

div σ n−1
h

)
, div τ h

)
,

∀ τ h ∈Wh. (2.42)

Then this scheme also can be split into two independent sub-procedures. Sub-procedure (2.42) is a procedure for the
unknown flux σ n

h with second-order approximation in time increment.

Remark 2.3. Results similar to Lemma 2.1 or Lemma 2.2 have been found and used by [8] to prove the coercivity of least-
squares bilinear formats and by [2,3] to establish connections between least-squares and mixed methods.

3. Error estimates

In this section we give the error estimates for the schemes described in Section 2.
We first discuss the error estimate for Scheme (I) in the following Theorem 3.1.

Theorem 3.1. Suppose (un
h, σ n

h) ∈ Vh × Wh is the solution of Scheme (I). Under the assumption ‖u0
h − u0

‖ =

O(hm+1−j
u ‖u0

‖Hm+1−j), j = 0, 1, there exists a positive constant C independent of hu, hσ and 1t such that

‖un
h − un

‖s ≤ Chm+1−s
u (‖u‖L∞(Hm+1) + ‖ut‖L2(Hm+1))+ C1t‖utt‖L2(L2), s = 0, 1, (3.1)

‖σ n
h − σ‖ +1t

1
2 ‖ div(σ n

h − σ n)‖ ≤ C(hk+1
σ ‖σ

n
‖k+1 +1t

1
2 hk1

σ ‖σ
n
‖k1+1 +1t‖utt‖L2(L2))

+ C min{hm
u ,1t−

1
2 hm+1

u }(‖u‖L∞(Hm+1) + ‖ut‖L2(Hm+1)). (3.2)
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Proof. Since Scheme (I) is equivalent to (2.27) and (2.28), from the error estimates of the finite element method for parabolic
problems (see [18] and [19] for example), we know that (3.1) holds.

We next consider σ i
h − σ i, 1 ≤ i ≤ n ≤ T

1t
. Subtracting (2.14) from (2.23) and setting vh = 0, using Lemma 2.1, we have

(A−1(σ i
h − σ i), τ h)+1t(φ−1 div(σ i

h − σ i), div τ h) = (ui−1
h − ui−1, div τ h)−1t(φ−1ρi

1, div τ h) ∀τ h ∈Wh

= −(∇(ui−1
h − ui−1), τ h)−1t(φ−1ρi

1, div τ h). (3.3)

Let σ i
I ∈Wh be an interpolant of σ i such that{
‖σ i

I − σ i
‖ ≤ Chk+1

σ ‖σ
i
‖k+1,

‖ div(σ i
I − σ i)‖ ≤ Chk1

σ ‖σ
i
‖k1+1.

(3.4)

Denote by

ξiσ = σ i
h − σ i

I. (3.5)

Setting τ h = ξ
i
σ = σ i

h − σ i
I in (3.3), and using the ε-inequality, (2.6), we have

‖A−
1
2 ξiσ‖

2
+1t‖φ−

1
2 div ξiσ‖

2

= (A−1(σ i
− σ i

I); ξ
i
σ )+1t(φ−1 div(σ i

− σ i
I); div ξiσ )− (∇(ui−1

h − ui−1), ξiσ )+1t(φ−1ρi
1, div ξiσ )

≤
1
2

(
‖A−

1
2 ξiσ‖

2
+1t‖φ−

1
2 div ξiσ‖

2
)
+ C

[
‖σ i
− σ i

I‖
2
+1t‖ div(σ i

− σ i
I)‖

2
+ ‖∇(ui−1

h − ui−1)‖2
+1t‖ρi

1‖
2
]

≤
1
2

(
‖A−

1
2 ξiσ‖

2
+1t‖φ−

1
2 div ξiσ‖

2
)
+ C1t2

‖utt‖
2
L2(L2)

+ C
(
h2(k+1)

σ ‖σ i
‖

2
k+1 +1th2k1

σ ‖σ
i
‖

2
k1+1 + ‖∇(ui−1

h − ui−1)‖2
)
. (3.6)

By using

−(∇(ui−1
h − ui−1), ξiσ ) = (ui−1

h − ui−1, div ξiσ )

≤ C1t−
1
2 ‖ui−1

h − ui−1
‖1t

1
2 ‖φ

1
2 div ξiσ‖,

we have the following estimate instead of (3.6),

‖A−
1
2 ξiσ‖

2
+1t‖φ−

1
2 div ξiσ‖

2
≤

1
2

(
‖A−

1
2 ξiσ‖

2
+1t‖φ−

1
2 div ξiσ‖

2
)
+ C1t2

‖utt‖
2
L2(L2)

+ C
(
h2(k+1)

σ ‖σ i
‖

2
k+1 +1th2k1

σ ‖σ
i
‖

2
k1+1 +1t−1

‖ui−1
h − ui−1

‖
2
)
. (3.7)

Then, using (3.1) and (3.7), and the positive definiteness of A, we have that

‖ξiσ‖ +1t
1
2 ‖ div ξiσ‖ ≤ C(hk+1

σ ‖σ
i
‖k+1 +1t

1
2 hk1

σ ‖σ
i
‖k1+1 +1t‖utt‖L2(L2))

+ C min{hm
u ,1t−

1
2 hm+1

u }(‖u‖L∞(Hm+1) + ‖ut‖L2(Hm+1)). (3.8)

Combining (3.8) with (3.4) completes the proof. �

For the error estimates for Scheme (II), for any i ≤ n ≤ T
1t

we define the auxiliary projection ũi
h ∈ Vh satisfying

(A∇(ũi
h − ui),∇vh) = 0, ∀vh ∈ Vh. (3.9)

From this definition we have that

(A∇δt(ũ
i
h − ui),∇vh) = 0, ∀vh ∈ Vh. (3.10)

From [7] it is easy to see that that
‖ũi

h − ui
‖j ≤ Chm+1−j

u ‖ui
‖m+1, j = 0, 1,

‖δt(ũ
i
h − ui)‖j ≤ Chm+1−j

u

(
1
1t

∫ ti

ti−1
‖ut‖

2
m+1dt

) 1
2

, j = 0, 1.
(3.11)

Theorem 3.2. Suppose (un
h, σ n

h) ∈ Vh ×Wh is the solution of Scheme (II). The initial guess satisfies ‖σ 0
h − σ 0

‖ = O(hk1
u ‖σ

0
‖Hk1 ).

When hu, hσ and 1t are sufficiently small, there exists a positive constant C independent of hu, hσ and 1t such that

‖σ n
h − σ n

‖ +

(
n∑

i=1
1t‖ div(σ i

h − σ i)‖2

) 1
2

≤ C(hk1
σ ‖σ‖L∞(Hk1+1) + hk+1

σ ‖σ t‖L2(Hk+1) +1t‖utt‖L2(L2)). (3.12)
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Further, if u0
h = ũ0

h holds there, we have that

‖un
h − un

‖ ≤ Chm+1
u (‖u‖L∞(Hm+1) + ‖ut‖L2(Hm+1))+ Chk1

σ ‖σ‖L∞(Hk1+1) + Chk+1
σ ‖σ t‖L2(Hk+1) + C1t‖utt‖L2(L2). (3.13)

Proof. Subtracting (2.18) from (2.24) we have that

a(ui
h − ui, σ i

h − σ i
; vh, τ h) = (ui−1

h − ui−1,φvh +1t div τ h)+1t(A−1(σ i−1
h − σ i−1)+∇(ui−1

h − ui−1), τ h

+A∇vh),−1t(φ−1ρi
1,φvh +1tdiv τ h), ∀ (vh, τ h) ∈ Vh ×Wh. (3.14)

Setting vh = 0, using Lemma 2.1 and the divergence theorem, we have for τ h ∈Wh that

(A−1(σ i
h − σ i), τ h)+1t(φ−1 div(σ i

h − σ i), div τ h) = (A−1(σ i−1
h − σ i−1), τ h)−1t(φ−1ρi

1, div τ h), (3.15)

which can be written as

(A−1ξiσ , τ h)+1t(φ−1 div ξiσ , div τ h)

= (A−1ξi−1
σ , τ h)+1t

(
A−1δt(σ

i
− σ i

I), τ h

)
+1t

(
φ−1div(σ i

− σ i
I), div τ h

)
−1t(φ−1ρi

1, div τ h)

≤
1
2
‖A−

1
2 ξi−1

σ ‖
2
+

1
2
‖A−

1
2 τ h‖

2
+

1t

2
‖A−

1
2 δt(σ

i
− σ i

I)‖
2
+

1t

2
‖τ h‖

2
+1t‖φ−

1
2 div(σ i

− σ i
I)‖

2

+
1t

4
‖φ−

1
2 div τ h‖

2
+1t‖φ−

1
2 ρi

1‖
2
+

1t

4
‖φ−

1
2 div τ h‖

2, (3.16)

where the notation δt is defined in (2.5).
Note that φ is bounded below and above, 0 < φ1 ≤ φ ≤ φ2. Then putting τ h = ξ

i
σ in (3.16) and using the ε-inequality we

have

‖A−
1
2 ξiσ‖

2
+1t‖φ−

1
2 div ξiσ‖

2
≤

1+1t

2
‖A−

1
2 ξiσ‖

2
+

1t

2
‖φ−

1
2 div ξiσ‖

2
+

1
2
‖A−

1
2 ξi−1

σ ‖
2

+ C1t
[
‖δt(σ − σ I)

i
‖

2
+ ‖ div(σ − σ I)

i
‖

2
+ ‖ρi

1‖
2
]
. (3.17)

Since

‖δt(σ − σ I)
i
‖ =

∥∥∥∥∥ 1
1t

∫ ti

ti−1
(σ − σ I)t dt

∥∥∥∥∥ ≤ Chk+1
σ

(
1
1t

∫ ti

ti−1
‖σ t‖

2
k+1 dt

) 1
2

,

applying (3.4) and (2.6) to (3.17) we have

‖A−
1
2 ξiσ‖

2
+1t‖φ−

1
2 div ξiσ‖

2
≤ ‖A−

1
2 ξi−1

σ ‖
2
+1t‖A−

1
2 ξiσ‖

2
+ C1t2

∫ ti

ti−1
‖utt‖

2dt

+ C

[
h2(k+1)

σ

∫ ti

ti−1
‖σ t‖

2
k+1dt +1t h2k1

σ ‖σ‖
2
L∞(Hk1+1)

]
. (3.18)

Carrying out summation for i = 1, 2, . . . , n we have that

‖A−
1
2 ξnσ‖

2
+

n∑
i=1

1t‖φ−
1
2 div ξnσ‖

2
≤

n∑
i=1

1t‖A−
1
2 ξiσ‖

2
+ ‖A−

1
2 (σ 0

h − σ 0
I )‖

2
+ C1t2

∫ T

0
‖utt‖

2dt

+ C
[
h2(k+1)

σ

∫ T

0
‖σ t‖

2
k+1dt + h2k1

σ ‖σ‖
2
L∞(Hk1+1)

]
. (3.19)

Noticing σ 0
h − σ 0

I = (σ 0
h − σ 0)+ (σ 0

− σ 0
I ), using Gronwall’s inequality shows that

‖ξnσ‖
2
+

n∑
i=1

1t‖ div ξiσ‖
2
≤ C

[
h2k1

σ ‖σ‖
2
L∞(Hk1+1)

+ h2(k+1)
σ ‖σ t‖

2
L2(Hk+1)

+1t2
‖utt‖

2
L2(L2)

]
. (3.20)

Combining with (3.4) completes the proof of (3.12).
Now we consider the estimate of ui

h − ui, for i ≤ n ≤ T
1t

. Letting τ h = 0 in (3.14), using Lemma 2.1 and the divergence
theorem lead to

(φ(ui
h − ui), vh)+1t(A∇(ui

h − ui),∇vh) = (φ(ui−1
i − ui−1), vh)−1t(ρi

1, vh)+1t(σ i−1
h − σ i−1,∇vh)

+1t(A∇(ui−1
h − ui−1),∇vh), ∀ vh ∈ Vh. (3.21)
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With the use of the definition of ũi
h, we have

(φ(ui
h − ũi

h), vh)+1t(A∇(ui
h − ũi

h),∇vh)

= (φ(ui−1
h − ũi−1

h ), vh)+1t(φδt(u
i
− ũi

h), vh)−1t(div(σ i−1
h − σ i−1), vh)−1t(ρi

1, vh)

+1t(A∇(ui−1
h − ũi−1

h ),∇vh), ∀ vh ∈ Vh. (3.22)

Let

ξiu = ui
h − ũi

h, ηi
u = ui

− ũi
h. (3.23)

With the choice vh = ξiu = ui
h − ũi

h in (3.22), it follows that

‖φ
1
2 ξiu‖

2
+1t‖A

1
2∇ξiu‖

2
≤

1+1t

2
‖φ

1
2 ξiu‖

2
+

1t

2
‖A

1
2∇ξiu‖

2
+

1
2
‖φ

1
2 ξi−1

u ‖
2
+

1t

2
‖A

1
2∇ξi−1

u ‖
2

+ C1t
[
‖δt(u

i
− ũi

h)‖
2
+ ‖ div(σ i−1

h − σ i−1)‖2
+ ‖ρi

1‖
2
]
, (3.24)

which can be reduced to

‖φ
1
2 ξiu‖

2
+1t‖A

1
2∇ξiu‖

2
≤ ‖φ

1
2 ξi−1

u ‖
2
+1t‖φ

1
2 ξiu‖

2
+1t‖A

1
2∇ξi−1

u ‖
2

+ C1t
[
‖δt(u

i
− ũi

h)‖
2
+ ‖ div(σ i−1

h − σ i−1)‖2
+ ‖ρi

1‖
2
]
. (3.25)

Summing (3.25) from i = 1 to n and noticing (3.12) we have

‖φ
1
2 ξnu‖

2
+1t‖A

1
2∇ξnu‖

2
≤

n∑
i=1

1t‖φ
1
2 ξiu‖

2
+ ‖φ

1
2 ξ0

u‖
2
+1t‖A

1
2∇ξ0

u‖
2
+ C(h2(m+1)

u ‖ut‖
2
L2(Hm+1)

+1t2
‖utt‖

2
L2(L2)

)+ C
n∑

i=1
1t‖div (σ i−1

h − σ i−1)‖2

≤

n∑
i=1

1t‖φ
1
2 ξnu‖

2
+ C

[
h2(m+1)
u ‖ut‖

2
L2(Hm+1)

+1t2
‖utt‖

2
L2(L)

]
+ C

[
h2k1

σ ‖σ‖
2
L∞(Hk1+1)

+ h2(k+1)
σ ‖σ t‖

2
L2(Hk+1)

]
. (3.26)

Therefore we can apply Gronwall’s inequality to (3.26). Hence it follows that

‖ξnu‖ +1t
1
2 ‖∇ξnu‖ ≤ C

[
hm+1
u ‖ut‖L2(Hm+1) +1t‖utt‖L2(L2)

]
+ C

[
hk1

σ ‖σ‖L∞(Hk1+1) + hk+1
σ ‖σ t‖L2(Hk+1)

]
.

Finally, combining (3.27) with (3.11) completes the proof. �

Remark 3.3. Instead of u0
h = ũ0

h if we suppose ‖u0
h−u0

‖j = O(hm+1−j
u ), from the proof we know that replacing (3.13) we have

a estimate

‖un
h − un

‖ ≤ C(hm+1
u +1t

1
2 hm

u + hk1
σ +1t).

Now we give the error estimate for Scheme (III). For this purpose, define σ̃
i
h ∈Wh such that

(σ̃ i
h − σ i, τ h)+ (φ−1 div(σ̃ i

h − σ i), div τ h) = 0, ∀τ h ∈Wh. (3.27)

It is clear that σ̃
i
h exist uniquely. By splitting σ̃

i
h − σ i as σ̃

i
h − σ i

= (σ̃ i
h − σ i

I)+ (σ i
I − σ i) and using (3.27), we have

(σ̃ i
h − σ i

I, τ h)+ (φ−1 div(σ̃ i
h − σ i

I), div τ h) = (σ i
− σ i

I, τ h)+ (φ−1 div(σ i
− σ i

I), div τ h)

≤
1
2
‖σ i
− σ i

I‖
2
+

1
2
‖τ h‖

2
+

1
2
‖φ−

1
2 div(σ i

− σ i
I)‖ +

1
2
‖φ−

1
2 div τ h‖

2, ∀τ h ∈Wh. (3.28)

Let τ h = σ i
h − σ i

I . We have the following error estimate,

‖σ̃
i
h − σ i

‖ + ‖ div(σ̃ i
− σ i)‖ ≤ Chk1

σ ‖σ
i
‖k1+1. (3.29)

From (3.28) we also get that
(δt(σ̃

i
h − σ i

I), τ h)+ (φ−1 div δt(σ̃ i
h − σ i

I), div τ h) = (δt(σ
i
− σ i

I), τ h)+ (φ−1 div δt(σ i
− σ i

I), div τ h),

∀τ h ∈Wh. (3.30)
Let τ h = δt(σ

i
h − σ i

I). We have the following error estimate similarly,

‖δt(σ̃
i
− σ i)‖ + ‖div δt(σ̃ i

− σ i)‖ ≤ Chk1
σ

(
1
1t

∫ ti

ti−1
‖σ t‖k1+1dt

) 1
2

. (3.31)
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Theorem 3.4. Suppose (un
h, σ n

h) ∈ Vh ×Wh is the solution of Scheme (III). Under the assumption ‖σ 0
h − σ 0

‖ = O(hk+1
σ ‖σ

0
‖Hk+1),

then

‖σ n
h − σ‖ +

[
n∑

i=1
1t‖ div(σ i

h − σ i
+ σ i−1

h − σ i−1)‖2

] 1
2

≤ C
[
hk1

σ ‖σ‖L∞(Hk1+1) + hk+1
σ ‖σ t‖L∞(Hk+1)

]
+1t2

[
‖u(3)

t ‖L2(L2) + ‖σ tt‖L2(H1)

]
. (3.32)

Moreover, if ‖ div(σ 0
h − σ 0)‖ = O(hk1

σ ‖ div σ 0
‖Hk1 ) and u0

h = ũ0
h we have

‖un
h − un

‖ ≤ Chm+1
u

[
‖u‖L∞(Hm+1) + ‖ut‖L2(Hm+1)

]
+1t2

[
‖u(4)

t ‖L2(L2) + ‖σ
(3)
t ‖L2(H1) + ‖u

(3)
t ‖L∞(L2) + ‖σ tt‖L∞(H1)

]
+ hk1

σ ‖σ‖L∞(Hk1+1) + hk+1
σ ‖σ t‖L2(Hk1+1) + ‖σ‖L∞(Hk+1). (3.33)

Here C denotes a positive constant C independent of hu, hσ and 1t.

Proof. First note that subtracting (2.38) from (2.39) leads to

b(ui
h − ui, σ i

h − σ i
; vh, τ h) =

(
ui−1
h − ui−1

−
1t

2
φ−1(div(σ i−1

h − σ i−1)),φvh +
1t

2
div τ h

)
+

1t

2

(
A−1(σ i−1

h − σ i−1)+∇(ui−1
h − ui−1), τ h +A∇vh

)
,

−1t
(
φ−1ρi

2,φvh +
1t

2
div τ h

)
, ∀ (vh, τ h) ∈ Vh ×Wh. (3.34)

Using Lemma 2.2 and (3.34) with a chosen vh = 0, it follows that

1t

2
(A−1(σ i

h − σ i), τ h)+

(
1t

2

)2

(φ−1 div(σ i
h − σ i), div τ h)

=
1t

2
(ui−1

h − ui−1, div τ h)−

(
1t

2

)2

(φ−1div(σ i−1
h − σ i−1), div τ h)

+
1t

2
(A−1(σ i−1

h − σ i−1), τ h)+
1t

2
(∇(ui−1

h − ui−1), τ h),

−
(1t)2

2
(φ−1ρi

2, div τ h), ∀ (vh, τ h) ∈ Vh ×Wh. (3.35)

Let us split into σ i
h − σ i

= ξiσ − η
i
σ where

ξiσ = σ i
h − σ̃

i
h ∈Wh, ηi

σ = σ i
− σ̃

i
h. (3.36)

By the definition of σ̃
i
h in (3.27), we have

(φ−1 div(ηi
σ + η

i−1
σ ), div τ h) = −(ηi

σ + η
i−1
σ , τ h).

It is clear that

(ui−1
h − ui−1, div τ h)+ (∇(ui−1

h − ui−1), τ h) = 0.

Hence (3.35) reduces to: for all τ h ∈Wh

(A−1(ξiσ − ξ
i−1
σ ), τ h)+

1t

2
(φ−1 div(ξiσ + ξ

i−1
σ ), div τ h)

= 1t(A−1 δtη
i
σ , τ h)−

1t

2
(ηi

σ + η
i−1
σ , τ h)−1t(φ−1ρi

2, div τ h). (3.37)

Letting τ h = ξ
i
σ + ξ

i−1
σ ∈Wh in (3.37) and using the Cauchy inequality, we have

‖A−
1
2 ξiσ‖

2
− ‖A−

1
2 ξi−1

σ ‖
2
+

1t

2
‖φ−

1
2 div(ξiσ + ξ

i−1
σ )‖2

≤ 1t‖ξiσ + ξ
i−1
σ ‖

2
+

1t

4
‖φ−

1
2 div (ξiσ + ξ

i−1
σ )‖2

+1t
[1

2
‖A−1 δtη

i
σ‖

2
+

1
8
‖ηi

σ + η
i−1
σ ‖

2
+ ‖φ−

1
2 ρi

2‖
2
]
. (3.38)
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Summing (3.38) for i = 1, 2, . . . , n we can deduce that

‖A−
1
2 ξnσ‖

2
+

1
2

n∑
i=1

1t‖φ−
1
2 div(ξiσ + ξ

i−1
σ )‖2

≤ C
n∑

i=1
1t‖ξiσ‖

2
+ C‖ξ0

σ‖
2
+ C

n∑
i=1

1t[‖δtη
i
σ‖

2
+ ‖ηi

σ‖
2
+ ‖ρi

2‖
2
] + C1t‖η0

σ‖
2. (3.39)

Using Gronwall’s Lemma we can get that,

‖ξnσ‖
2
+

n∑
i=1

1t‖ div(ξiσ + ξ
i−1
σ )‖2

≤ Ch2(k+1)
σ (‖σ‖2

L∞(Hk+1)
+ ‖σ t‖

2
L2(Hk+1)

)+ C1t4(‖u(3)
t ‖

2
L2(L2)
+ ‖div σ tt‖

2
L2(L2)

). (3.40)

Combining with (3.4) completes the proof of (3.32).
Choosing τ h =

1
1t

(ξiσ − ξ
i−1
σ ) = δtξ

i
σ in (3.37) we have that

1t‖A−
1
2 δtξ

i
σ‖

2
+

1
2
‖φ−

1
2 div ξiσ‖

2
−

1
2
‖φ−

1
2 div ξi−1

σ ‖
2

= 1t(A−1δtη
i
σ , δtξ

i
σ )−

1t

2
(ηi

σ + η
i−1
σ , δtξ

i
σ )−1t(φ−1ρi

2, div δtξiσ ),

≤ C1t‖A−
1
2 δtξ

i
σ‖(‖δtη

i
σ‖ + ‖η

i
σ + η

i−1
σ ‖)− (φ−1ρi

2, div ξiσ )+ (φ−1ρi−1
2 , div ξi−1

σ )−1t(φ−1δtρ
i
2, div ξi−1

σ ), (3.41)

where we have used the equivalence

1t(φ−1ρi
2, div δtξiσ ) = (φ−1ρi

2, div ξiσ )− (φ−1ρi−1
2 , div ξi−1

σ )−1t(φ−1δtρ
i
2, div ξi−1

σ ).

For convenience we introduce a notation ρ0
2 and δtρ1

2 =
ρ1

2−ρ
0
2

1t
. Making summation over i = 1, 2, . . . , n and using the

Cauchy inequality result in
n∑

i=1
1t‖A−

1
2 δtξ

i
σ‖

2
+

1
2
‖φ−

1
2 div ξnσ‖

2
≤ C

n∑
i=1

1t‖A−
1
2 δtξ

i
σ‖

2(‖δtη
i
σ‖ + ‖η

i
σ + η

i−1
σ ‖)+

1
2
‖φ−

1
2 div ξ0

σ‖
2

− (φ−1ρn
2, div ξnσ )+ (φ−1ρ0

2, div ξ0
σ )+

n∑
i=2

1t(φ−1δtρ
i
2, div ξi−1

σ )+1t(φ−1δtρ
1
2, div ξ0

σ ). (3.42)

Since

(φ−1ρ0
2, div ξ0

σ )+1t(φ−1δtρ
1
2, div ξ0

σ ) = (φ−1ρ1
2, div ξ0

σ ),

using the ε-inequality we have that
n∑

i=1
1t‖A−

1
2 δtξ

i
σ‖

2
+

1
2
‖φ−

1
2 div ξnσ‖

2
≤

1
2

n∑
i=1

1t‖A−
1
2 δtξ

i
σ‖

2
+

1
4
‖φ−

1
2 div ξnσ‖

2
+ C‖div ξ0

σ‖
2

+ C
n∑

i=1
1t(‖δtη

i
σ‖

2
+ ‖ηi

σ‖
2)+ C(‖η0

σ‖
2
+ ‖ρn

2‖
2
+ ‖ρ1

2‖
2)+ C

n∑
i=2

1t‖δtρ
i
2‖

2
+ C

n∑
i=1

1t‖φ−
1
2 div ξiσ‖

2. (3.43)

Moving the first two terms of the right-hand side to the left side, then Gronwall’s inequality results in

‖ div ξnσ‖
2
+

n∑
i=1

1t‖δtξ
i
σ‖

2
≤ Ch2(k+1)

σ (‖σ‖2
L∞(Hk+1)

+ ‖σ t‖
2
L2(Hk+1)

)+ Ch2k1
σ ‖ div σ 0

‖
2
Hk1

+ C1t4(‖u(4)
t ‖

2
L2(L2)
+ ‖σ

(3)
t ‖

2
L2(L2)
+ ‖u(3)

t ‖
2
L∞(L2)

+ ‖σ tt‖
2
L∞(L2)

). (3.44)

Now we consider the estimate of un
h − un. Choosing τ h = 0 in (3.34) we have that,

(φ(ui
h − ui), vh)+

1t

2
(A∇(ui

h − ui),∇vh) = (φ(ui−1
h − ui−1), v)−1t(ρi

2, vh)−1t(div(σ i−1
h − σ i−1), vh)

+
1t

2
(A∇(ui−1

h − ui−1),∇vh), ∀ vh ∈ Vh. (3.45)

Denote by

ξnu = un
h − ũn

h, ηn
u = un

− ũn
h. (3.46)
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From (3.45) we have that

(φξiu, vh)+
1t

2
(A∇ξiu,∇vh) = (φξi−1

u , vh)+1t(φδtη
i
u, vh)−1t(div(σ i−1

h − σ i−1), vh)

−1t(ρi
2, vh)+

1t

2
(A∇ξi−1

u ,∇vh), ∀ vh ∈ Vh. (3.47)

Setting vh = ξiu and using the Cauchy inequality we have that

‖φ
1
2 ξiu‖

2
+

1t

2
‖A

1
2∇ξiu‖

2
≤

1
2
‖φ

1
2 ξiu‖

2
+

1
2
‖φ

1
2 ξi−1

u ‖
2
+

1t

6
‖φ

1
2 ξiu‖

2
+ C1t‖δtη

i
u‖

2

+
1t

6
‖φ

1
2 ξiu‖

2
+ C1t‖ div(σ i−1

h − σ i−1)‖2

+
1t

6
‖φ

1
2 ξiu‖

2
+ C1t‖ρi

2‖
2
+

1t

4
‖A

1
2∇ξiu‖

2
+

1t

4
‖A

1
2∇ξi−1

u ‖
2

=
1+1t

2
‖φ

1
2 ξiu‖

2
+

1t

4
‖A

1
2∇ξiu‖

2
+

1
2
‖φ

1
2 ξi−1

u ‖
2
+

1t

4
‖A

1
2∇ξi−1

u ‖
2

+ C1t[‖δtη
i
u‖

2
+ ‖div (σ i−1

h − σ i−1)‖2
+ ‖ρi

2‖
2
], (3.48)

then

‖φ
1
2 ξiu‖

2
+

1t

2
‖A

1
2∇ξiu‖

2
≤ ‖φ

1
2 ξi−1

u ‖
2
+1t‖φ

1
2 ξiu‖

2
+

1t

2
‖A

1
2∇ξi−1

u ‖
2

+ C1t[‖δtη
i
u‖

2
+ ‖div (σ i−1

h − σ i−1)‖2
+ ‖ρi

2‖
2
]. (3.49)

Summing (3.49) over i = 1, 2, . . . , n, we have that

‖φ
1
2 ξnu‖

2
+

1t

2
‖A

1
2∇ξnu‖

2
≤

n∑
i=1

1t‖φ
1
2 ξnu‖

2
+ ‖φ

1
2 ξ0

u‖
2
+

1t

2
‖A

1
2∇ξ0

u‖
2

+ Ch2(m+1)
u ‖ut‖

2
L2(Hm+1)

+1t2(‖u(3)
t ‖

2
L2(L2)
+ ‖ div σ tt‖

2
L2(L2)

)+ C
n∑

i=1
1t‖ div(σ i−1

h − σ i−1)‖2. (3.50)

Since

div(σ i−1
h − σ i−1) = div(ξi−1

σ )+ div(σ̃ i−1
h − σ i−1),

noticing (3.44) and (3.31), by Gronwall’s inequality shows that

‖un
h − ũn

h‖ +1t
1
2 ‖∇ξnu‖ ≤ Chm+1

u ‖ut‖L2(Hm+1) + C1t2(‖u(4)
t ‖L2(L2) + ‖σ

(3)
t ‖L2(H1))

+ C1t2(‖u(3)
t ‖L∞(L2) + ‖σ tt‖L∞(H1))+ Chk1

σ ‖σ‖L∞(Hk1+1) + Chk+1
σ (‖σ t‖L2(Hk+1) + ‖σ‖L∞(Hk+1)).

Combining with (3.11) completes the proof. �

4. Least-squares procedure for nonlinear problems

In this section we give a least-squares finite element procedure for nonlinear parabolic problems. We consider the
following problem on a bounded domain Ω ⊂ Rd:

φ(u)ut − div(A(u)∇u) = f (u), in Ω × J,
u = 0, on ΓD × J,
A(u)∇u · n = 0 on ΓN × J,

(4.1)

subject to the initial condition

u(x, 0) = u0(x) on Ω × J. (4.2)

The coefficient φ(u) is a strictly positive function and the coefficient matrix A(u) = (aij(u))
d
i,j=1 is a bounded, symmetric and

positive definite matrix, i.e., there exist two positive constants φ1 and φ2 and two positive constants α and β such that, for
u ∈ R1

φ1 ≤ φ(u) ≤ φ2, α‖ξ‖2
≤ (A(u)ξ , ξ) ≤ β‖ξ‖2, ∀ξ ∈ Rd. (4.3)

In general the coefficients φ(u), A(u) and f (u) are also dependent on time variable t and space variable x. Since our main
purpose is to consider the nonlinearity, for convenience we just consider the dependence of the coefficients on u.
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Introducing σ = −A(u)∇u, σ = (σ 1, . . . , σ d), the nonlinear problem (4.1) appears as a first-order system for both u and
as follows:

φ(u)ut + div σ − f = 0, in Ω × J,
σ +A(u)∇u = 0, in Ω × J,
u = 0, on ΓD × J,
σ · n = 0 on ΓN × J.

(4.4)

We approximate the above equation by
φ(un−1)δtu

n
+ div σ n

− f (un−1)− ρn
3 = 0, in Ω × J,

σ n
+A(un−1)∇un

− ρn
4 = 0, in Ω × J,

u = 0, on ΓD × J,
σ · n = 0 on ΓN × J,

(4.5)

where the truncation errors ρn
3 and ρn

4 are defined as follows

ρn
3 = φ(u

n−1)δtu
n
− φ(un)un

t , ρn
4 = (A(un−1)−A(un))∇un.

When the solution and the coefficients are sufficiently smooth we have that

ρn
3 = O(1t), ρn

4 = O(1t). (4.6)

From (4.4) we know that for n ≥ 1, (un, σ n) ∈ V×W satisfy that{
φ(un−1)−

1
2 (φ(un−1)un

+1t div σ n
− Fn3) = 0, in Ω × J,

A(un−1)−
1
2 (σ n
+A(un−1)∇un

− ρn
4) = 0, in Ω × J,

(4.7)

where

Fn3 = φ(u
n−1)un−1

+1tf (un−1)+1tρn
3.

For (v, τ ) ∈ V×W, define the least-squares functional Jn4(v, τ ) as follows.

Jn4(v, τ ) = ‖φ(un−1)−
1
2 (φ(un−1)v+1t div τ − Fn3)‖

2
+1t‖Ã(un−1)

1
2 (τ +A(un−1)∇v− ρn

4)‖
2. (4.8)

The least-squares minimization problem corresponding to (4.7) is: find (un, σ n) ∈ V×W such that

Jn4(u
n, σ n) = inf

v∈V,τ∈W
Jn4(v, τ ). (4.9)

Define the bilinear form a(w; u, σ ; v, τ ) as

a(w; u, σ ; v, τ ) =

( 1
φ(w)

(φ(w)u+1tdiv σ ),φ(w)v+1t div τ

)
+1t

(
A(w)−1(σ +A(w)∇u), τ +A(w)∇v

)
=

(
u+

1t

φ(w)
div σ ,φ(w)v+1t div τ

)
+1t

(
A(w)−1σ +∇u, τ +A(w)∇v

)
. (4.10)

Noticing the definition of Fn3 , the weak statement of the minimization problem (4.9) becomes: find (un, σ n) ∈ V×W such
that

a(un−1
; un, σ n

; v, τ ) =

(
φ(un−1)un−1

+1t(f (un−1)+ ρn
3), v+

1t

φ(un−1)
div τ

)
+1t

(
ρn

4,A(un−1)−1τ +∇v
)
,∀(v, τ ) ∈ V×W. (4.11)

Selecting the initial approximation u0
h ∈ Vh, σ 0

h ∈Wh similarly as before, the least-squares mixed finite element procedure
based on (4.11) reads as follows, which was obtained by diminishing the truncation error terms from (4.11).
Scheme (IV). For n ≥ 1 find (un

h, σ n
h) ∈ Vh ×Wh such that

a(un−1
h ; u

n
h, σ n

h; v, τ ) =

(
φ(un−1

h )un−1
h +1tf (un−1

h ), vh +
1t

φ(un−1
h )

div τ h

)
, ∀ (vh, τ h) ∈ Vh ×Wh. (4.12)

Similarly to Lemma 2.1 we can prove the following lemma.

Lemma 4.1. For any u, v ∈ V and σ , τ ∈W we have that,

a(w; u, σ ; v, τ ) = (φ(w)u, v)+1t(A(w)∇u,∇v)+1t(A(w)−1σ , τ )+1t2
( 1
φ(w)

div σ , div τ

)
. (4.13)
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Using Lemma 4.1, we have the decoupling equivalent form of Scheme (IV).
Equivalent Form of Scheme (IV). With the initial guess (u0

h, σ 0
h) ∈ Vh ×Wh, for n ≥ 1 find (un

h, σ n
h) ∈ Vh ×Wh such that for

all vh ∈ Vh and τ h ∈Wh

(φun
h, vh)+1t(A(un−1

h )∇un
h,∇vh) = (φ(un−1

h )un−1
h +1tf (un−1

h ), vh), (4.14)

(Ã(un−1
h )σ n

h, τ h)+1t

(
1

φ(un−1
h )

div σ n
h, div τ h

)
= (un−1

h , div τ h)+1t

(
1

φ(un−1
h )

f (un−1
h ), div τ h

)
. (4.15)

Now we discuss the error estimate for Scheme (IV).

Theorem 4.2. Suppose the analytical solution (u, σ ) is sufficiently smooth. Suppose also that the coefficients φ, A and f are
Lipschitz continuous bounded functions and satisfy (4.3). (un

h, σ n
h) ∈ Vh ×Wh is the solution of Scheme (I). Under the assumption

‖u0
h − u0

‖ = O(hm+1−j
u ‖u0

‖Hm+1−j), j = 0, 1, there exists a positive constant C independent of hu, hσ and 1t such that

‖un
h − un

‖s ≤ C(hm+1−s
u + C1t), s = 0, 1, (4.16)

‖σ n
h − σ‖ +1t

1
2 ‖ div(σ n

h − σ n)‖ ≤ C(hk+1
σ +1t

1
2 hk1

σ +1t +min{hm
u , hm+1

u 1t−
1
2 }). (4.17)

Proof. Since Scheme (IV) is equivalent to (4.14) and (4.15), we use the equivalent form of Scheme (IV) in error estimates.
Setting τ = 0 in (4.11) and noticing Lemma 4.1 we have that

(φ(un−1)un, v)+1t(A(un−1)∇un,∇v) =
(
φ(un−1)un−1

+1t(f (un−1)+ ρn
3), v

)
+1t

(
ρn

4,∇v
)
, ∀v ∈ V. (4.18)

Comparing (4.14) and (4.18), from the error estimates of the finite element method for nonlinear parabolic problems
(see [18] or [19], for example), we know that (4.16) holds.

Now we consider the error estimates for σ n
h. Subtracting (4.11) from (4.12) and letting vh = 0 we have that,

a(un−1
h ; u

n
h, σ h

n
; 0, τ h)− a(un−1

; un, σ n
; 0, τ h)

=

(
un−1
h − un−1

+
1t

φ(un−1
h )

f (un−1
h )−

1t

φ(un−1)
f (un−1)−

1t

φ(un−1)
ρn

3,1t div τ h

)
, ∀ τ h ∈Wh. (4.19)

Using Lemma 2.1, we have

(Ã(un−1
h )σ n

h −A(un−1)−σ n, τ h)+1t

(
1

φ(un−1
h )

div σ n
h −

1
φ(un−1)

div σ n, div τ h

)

= (un−1
h − un−1, div τ h)−1t

(
1

φ(un−1
h )

f (un−1
h )−

1
φ(un−1)

f (un−1)−
1

φ(un−1)
ρn

3, div τ h

)

= −(∇(un−1
h − un−1), τ h)−1t

(
f (un−1

h )

φ(un−1
h )
−

f (un−1)

φ(un−1)
−

1
φ(un−1)

ρn
3, div τ h

)
, ∀τ h ∈Wh, (4.20)

or equivalently,

(Ã(un−1
h )(σ n

h − σ n), τ h)+1t

(
1

φ(un−1
h )

div(σ n
h − σ n), div τ h

)

= ((Ã(un−1
h )−A(un−1)−)σ n, τ h)+1t

((
1

φ(un−1
h )
−

1
φ(un−1)

)
div σ n, div τ h

)

− (∇(un−1
h − un−1), τ h)−1t

(
f (un−1

h )

φ(un−1
h )
−

f (un−1)

φ(un−1)
−

1
φ(un−1)

ρn
3, div τ h

)
, ∀τ h ∈Wh. (4.21)

Let σ n
I ∈Wh be the same interpolant of σ n satisfying (3.4). With a chosen τ h = σ n

h − σ n
I in (4.21), and using the notation

ξiσ defined in (3.5) we have that

C0(‖ξ
n
σ‖

2
+1t‖ div ξnσ‖

2) ≤ (Ã(un−1
h )ξnσ , ξnσ )+1t

(
1

φ(un−1
h )

div ξnσ , div ξnσ

)

=

(
(Ã(un−1

h )−A(un−1)−)σ n, ξnσ

)
+1t

((
1

φ(un−1
h )
−

1
φ(un−1)

)
div σ n, div ξnσ

)

− (∇(un−1
h − un−1), ξnσ )−1t

(
f (un−1

h )

φ(un−1
h )
−

f (un−1)

φ(un−1)
−

1
φ(un−1)

ρn
3, div ξnσ

)

− (Ã(un−1
h )(σ n

I − σ n), ξnσ )−1t

(
1

φ(un−1
h )

div(σ n
I − σ n), div ξnσ

)
. (4.22)
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Table 4.1
Result of the first example

N,Nt D = 10 D = 1 D = 0.1
eσ ,l∞ e

σ ,l2 eσ ,l∞ e
σ ,l2 eσ ,l∞ e

σ ,l2

5 0.319 0.267 3.33E−2 2.79E−2 2.36E−3 1.97E−3
10 7.93E−2 6.22E−2 9.47E−3 7.42E−3 1.50E−3 1.17E−3
20 2.06E−2 1.53E−2 3.02E−3 2.25E−3 8.46E−4 6.29E−4
40 5.45E−3 3.95E−3 1.07E−3 7.79E−4 4.47E−4 3.24E−4

Since φ, 1
φ
,A and f are uniformly bounded and Lipschitz continuous, using the ε-inequality, (4.6) and (4.22), we have

C0(‖ξ
n
σ‖

2
+1t‖ div ξnσ‖

2) ≤ C‖un−1
h − un−1

‖‖ξnσ‖ + C1t‖un−1
h − un−1

‖‖ div ξnσ‖

+ C‖∇(un−1
h − un−1)‖‖ξnσ‖ + C1t(‖un−1

h − un−1
‖ + ‖ρn

3‖)‖ div ξnσ‖
+ C‖σ n

I − σ n
‖‖ξnσ‖ + C1t‖ div(σ n

I − σ n)‖‖ div ξnσ‖.

≤
C0

2
(‖σ n

h − σ n
I ‖

2
+1t‖ div(σ n

h − σ n
I )‖

2)

+ C(1+1t)‖un−1
h − un−1

‖
2
+ C‖∇(un−1

h − un−1)‖2
+ C1t‖ρn

3‖
2

+ C‖σ n
I − σ n

‖
2
+ C1t‖ div(σ n

I − σ n)‖2. (4.23)

Then, using (4.16) with s = 0 and s = 1, we have

‖ξσ
n
‖ +1t

1
2 ‖ div ξnσ‖

≤ C(hk+1
σ ‖σ

n
‖k+1 +1t

1
2 hk1

σ ‖σ
n
‖k1+1 +1t‖utt‖L2(L2))+ Chm

u (‖u‖L∞(Hm+1) + ‖ut‖L2(Hm+1)). (4.24)

Finally, combining (4.24) with (3.4) completes the proof. �

5. Numerical examples

In real implementation we can select the sub-procedure (2.27) to solve uh and the sub-procedure (2.30) to solve σ h.
(2.27) is the usual Galerkin finite element procedure, so it is sufficient to give some numerical examples to examine the
sub-procedure (2.30) for σ h.

We consider the following problem
ut − div(D∇u) = f , in Ω × J,

with proper Dirichlet boundary condition and initial condition. For simplicity we let D be a constant, Ω be an unit square,
Ω = (a, b)× (a, b), and the time interval be (0, T) = (0, 0.5). The boundary and initial conditions are selected according to
the analytical solution.

We divide (0, T) into Nt equal time intervals, 1t = T
Nt

, and divide Ω into N×N uniform square elements, h = 1
N

. Based on
this triangulation we select the lowest order Raviart–Thomas mixed element as the test function space. For σh = (σh,1,σh,2),
a finite element approximation to σ = (σ1,σ2), the set of nodal points for σh,1 is denoted by V1 and the set of nodal points
for σh,2 is denoted by V2.

In the first example, the analytical solution is
u = sin(πx) sin(πy) exp(−t), σ = −D∇u.

For a set of simulations, different mesh sizes and different values of the diffusion coefficient D are taken and their
corresponding errors are listed in Table 4.1. Here eσ ,l∞ and eσ ,l2 are defined as

eσ ,l∞ = max{max
p∈V1
|(σ 1 − σ h,1)(p, T)|, max

p∈V2
|(σ 2 − σ h,2)(p, T)|},

eσ ,l2 =

(∑
p∈V1

|(σ 1 − σ h,1)(p, T)|
2h2
+
∑
p∈V2

|(σ 2 − σ h,2)(p, T)|
2h2

) 1
2

.

In the second example, the analytical solution is
u = x(1− x)y(1− y) exp(x− y− t), σ = −D∇u.

For different mesh sizes and different values of the diffusion coefficient D the errors are listed in Table 4.2.
In the third example, the analytical solution is

u = x(1− x)y(1− y) exp(x+ y+ t), σ = −D∇u.

For different mesh sizes and different values of the diffusion coefficient D the errors are listed in Table 4.3.
The numerical examples given above are in good agreement with the theoretical analysis, which shows that the scheme

is stable and convergent.
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Table 4.2
Result of the second example

N,Nt D = 10 D = 1 D = 0.1
eσ ,l∞ e

σ ,l2 eσ ,l∞ e
σ ,l2 eσ ,l∞ e

σ ,l2

5 3.40E−2 3.06E−2 3.11E−3 2.96E−3 4.43E−4 3.02E−4
10 9.62E−3 7.25E−3 9.86E−4 6.88E−4 1.46E−4 9.81E−5
20 3.05E−3 1.75E−3 3.12E−4 1.65E−4 7.51E−5 4.68E−5
40 8.90E−4 4.28E−4 9.10E−5 4.37E−5 3.87E−5 2.32E−5

Table 4.3
Result of the third example

N,Nt D = 10 D = 1 D = 0.1
eσ ,l∞ e

σ ,l2 eσ ,l∞ e
σ ,l2 eσ ,l∞ e

σ ,l2

5 0.222 0.157 2.05E−2 1.44E−2 1.49E−3 1.43E−3
10 5.73E−2 3.64E−2 5.37E−3 3.22E−3 7.10E−4 5.06E−4
20 1.56E−2 8.65E−3 1.48E−3 7.43E−4 3.89E−4 2.29E−4
40 4.23E−3 2.07E−3 4.06E−4 2.10E−4 2.03E−4 1.13E−4
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