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ABSTRACT 

This survey presents an account of univariate and multivariate majorization orderings 
and their characterization by various classes of economic disparity indices. First, a con- 
cise treatment of classical univariate results is given, including majorization with different 
means and different population sizes, as well as Lorenz orderings of relative and abso- 
lute disparity. Second, alternatives to the Pigou-Dalton principle of transfers are discussed 
which are based on transfers about a given threshold. Third, disparity in several attributes 
and multivariate majorization are investigated, and a multivariate version of the Lorenz 
curve is introduced. 

1. INTRODUCTION 

Consider a population of n economic units, i = 1 , . . . ,  n, each of which is 
endowed with a quantity a~ of  affluence. We will speak of i as a household and 
of  ai as its annual income. ( a l , . . . ,  a~) is called an income vector or an income 
distribution. However, i may also denote another economic unit like an individual 
person or a country, and a~ another attribute of economic status like endowment 
with some commodity. When all a~ are equal, obviously, the disparity of  income 
is minimum, say 0, in the population. But when some a~ are different, the prob- 
lem arises of  measuring the degree of  disparity. There are two basic questions: 
First, find real-valued functions which are meaningful indices of  the disparity of  
( a l , . . . ,  an).  Second, given two income vectors ( a l , . . . ,  an)  and ( b l , . . . ,  bn), 
decide whether one of  them contains more disparity than the other. 
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Since the beginning of this century, economists have been interested in the 
quantitative description and statistical estimation of economic disparity. The ideas 
of Lorenz (1905), Gini (1912), Pigou (1912), and Dalton (1920) are closely con- 
nected with the concept of majorization introduced by Hardy, Littlewood, and 
Polya (1929, 1934). But it took until the late sixties for the results of Hardy, Little- 
wood, and Polya to enter the economic literature. Kolm (1969), Atkinson (1970), 
Das Gupta et al. (1973), and Fields and Fei (1978) introduced the mathematical 
notions of majorization and Lorenz order to economic theory; see also Kakwani 
(1977) and Blackorby and Donaldson (1984). 

Many other authors have contributed to these topics whom we cannot mention 
here. We refer the reader to several monographs which cover the developments on 
the mathematics and the economics side. First of all, there is Marshall and Olkin's 
famous book on majorization (Marshall and Olkin, 1979), which, besides many 
new results, includes a comprehensive treatment of the mathematical literature 
before 1979. It also contains a history of the field. Arnold (1987) provides a nice 
introduction to majorization and the Lorenz order. The economic theory of dis- 
parity indices and orderings is exhibited in the classical books by Sen (1973) and 
Cowell (1977) and, more recently, in Chakravarty (1990a). A history of economic- 
disparity measurement can also be found in Arnold (1983, Chapter 1). 

This survey presents an account of univariate and multivariate majorization as 
far as they are relevant to the analysis of economic disparity. First, a concise treat- 
ment of the classical univariate results is given. Second, some departures from the 
Pigou-Dalton principle of transfers are discussed. Third, multiattribute disparity 
is investigated, and a multivariate version of the Lorenz curve is introduced. 

Section 2 starts with the notions of Pigou-Dalton transfers and majorization 
and their characterization by various classes of disparity indices. Ordinary ma- 
jorization between vectors in IR 7~ implies that the vectors have equal means. This 
corresponds to a transfer of incomes in a fixed population. But in many economic 
applications, income vectors are compared which have different means and dif- 
ferent population sizes. In Section 2.3 we discuss growing and shrinking transfers 
and weak majorization. Section 3 is about relative and absolute disparity measure- 
ment. Two Lorenz orderings are given which compare arbitrary income distribu- 
tions with respect to their relative and absolute disparity. In Section 4 strict and 
semistrict notions of disparity indices are considered as well as a class of indices 
which is larger than the S-convex functions. The notions are based on transfers 
about a given threshold 0, so-called transfers about 0 and star-shaped transfers at 
0. 

Economic disparity does not arise from the distribution of income alone. There 
are attributes of affluence and well-being besides annual household income: hous- 
ing equity, financial assets, free time, education, and many others. In modern 
theories of social choice the specific distributional inequality of attributes like 
these is considered. In Section 5 we will investigate disparity in several attributes 
and its relation to multivariate majorization. An account of the mathematical and 
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economic literature on the multidimensioned case will be given there. Section 6 
surveys multivariate versions of the Lorenz curve, including a new notion which 
is based on an idea of Koshevoy (1992). Section 7 concludes the paper. 

Most of the material in this survey is known, and many proofs are already 
contained in Marshall and Olkin (1979). Other material, especially on the eco- 
nomics side, is found rather dispersed in the literature. New results mainly concern 
modified principles of transfer, multiattribute economic disparity, and multivariate 
Lorenz order. Some proofs of known results are provided for expository reasons. 

There are important aspects of our topic which we do not cover. Some of them 
have been the subject of recent publications. The preservation and, even more, the 
attenuation of majorization and Lorenz order has applications in social choice the- 
ory, especially in the design of taxing systems (Fellman, 1976; Jakobson, 1976; 
Eichhorn et al., 1984). They are surveyed in Moyes (1989) and Arnold (1991). 
Stochastic orders other than classical majorization and their applications to wel- 
fare economics are treated in Le Breton (1991) and Mosler (1993). Chakravarty 
(1990a) includes a comprehensive treatment of disparity and welfare indices and 
of their axiomatizations. For treatments of special indices such as those due to 
Gini, Theil, Atkinson, and others, we refer the reader to Piesch (1975), Cowell 
(1977), and Nyg~rd and Sandstr6m (1981). 

Some notation: ]R n denotes the n-space of column vectors, IR,~ that of row 
vectors, 1R~ and IRn+ the subsets of vectors having nonnegative components only. 
Sn is the unit simplex in IR '~, and IR mxn is the set of (m, n) matrices, x T denotes 
the transpose of z. A matrix A = (aik) C IR m×n is called column stochastic iff 
~-~im=l aik ~--- I holds for every k. It is called doubly stochastic iff, in addition, 

n ~ k = l  aik ----- 1 holds for all i. The set of column stochastic matrices is denoted by 
C . . . .  and the set of doubly stochastic matrices by D . . . .  P,~ is the set of (n, n) 
permutation matrices. Increasing means nondecreasing, and decreasing means 
nonincreasing. For a E IR n, let a(,) = (a(1), . . .  ,a(n)) T be the ordered vector 
where the components have been rearranged in increasing order. 

2. MAJORIZATION IN THE UNIVARIATE CASE 

In this section we give a short account of transfer principles and majoriza- 
tion, and of their economic interpretations. Classes of disparity indices are given 
which characterize the orderings of majorization and weak majorization. Most of 
the proofs can be already found in Marshall and Olkin (1979). We compare in- 
come vectors which have the same number of components. Majorization between 
vectors having different dimensions is investigated in Sections 3 and 5.3. 
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2.1. Transfers 

Consider To n = {(a,b) : a,b E lRn,a(.) ~ b(.), and Pa = a(.),Pb = 
b(.) for some P E 79,~}. To n contains all pairs of vectors which are not equal 
and have the same order of components. For (a, b) E To n define h E IR n, hi = 
b(~) - a(i). A pair (a, b) E To n is called a transfer from a to b iff a and b have the 
same total, i.e., iff ~ i ~ 1  hi = O. 

Given a set T C To n, we say that a function ¢ : IR n --~ IR satisfies the 7-- 
principle of transfers iff 

¢(a)  > ¢(b) whenever (a, b) E 7-. (2.1) 

A transfer (a, b) is called a Pigou-Dalton transfer (briefly, a PD transfer) iff 
the first k elements, 1 < k < n - 1, of h are nonnegative and the remaining n - k 
elements are nonpositive. Roughly speaking, a Pigou-Dalton transfer is a transfer 
from some households which are "relatively rich" to some which are "relatively 
poor" such that both the total income and the order among the household incomes 
remain unchanged. We denote the set of all PD transfers by Tp~. 

A real-valued function ¢ defined on IR ~ is a disparity index satisfying the 
Pigou-Oalton principle of transfers iff ¢(a)  k ¢(b) whenever (a, b) E Tp~. See 
Pigou (1912) and Dalton (1920). 

An elementary PD transfer is a transfer with h having just two nonzero ele- 
ments. The set of  elementary PD transfers is denoted by Te~t). It is obvious that 
the condition (2.1) with T = T ~  implies the same with T = T~ D. But the con- 
verse is also true, since every PD transfer can be decomposed into a finite number 
of elementary PD transfers. 

2.2. Majorization 

Let a, b E IR n. We say that a majorizes b, a ~- b, iff one of the following four 
equivalent conditions is fulfilled: 

(Pa, b) E T~D for some P E 7)n, (2.2) 

b = T a  for some T E 7 9  . . . .  (2.3) 

b E conv{Pa  : P E 79n}, (2.4) 

n n k k 

E a i = E b i  and E a ( i ) < _ E b ( i  ) for k = l , . . . , n - 1 .  (2.5) 
i = 1  i = 1  i = 1  i = 1  

According to (2.2), b is majorized by a iff it is the result of a PD transfer from a 
permutation of a; according to (2.3), iff it is the result of a doubly stochastic trans- 
formation of a. T in (2.3) is n o t  unique. Brualdi (1984) investigates the polytope 
of all such T and determines its dimension. (2.3) implies that b is an average of a, 
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i.e., b = Ta with a row-stochastic T. When we think of a transfer between house- 
holds leading from income distribution a to distribution b, tij represents the share 
of  j which goes to i. (2.4) says that b is a convex combination of permutations 
of  a. (Note that the permutations of a are equally ordered under majorization.) 
When a and b are nonnegative vectors, (2.5) means that the Lorenz curve of a lies 
below that of  b. 

A function ¢ : ]R n --* ]R is called S-convex iff a ~- b implies ¢(a)  _> ¢(b). In 
particular, an S-convex function is symmetric in its arguments. Obviously, 

PROPOSITION 2.1. ¢ : ]R n ---, ]R is S-convex if and only if ¢ is symmetric and 
satisfies the PD principle of transfers. 

Thus, the set of  S-convex functions is the natural class of disparity indices which 
respect anonymity, i.e., do not distinguish between the households, and satisfy the 
PD principle of transfers. Moreover, i f a  is more dispersed than b in terms of every 
S-convex index ¢, it follows that a 5- b. There are other classes of  indices which 
do the same: 

PROPOSITION 2.2. Let a, b E ]R '~. Then a ~- b is equivalent to each of the 
following conditions: 

(i) ¢(a)  _> ¢(b) for all ¢ which are S-convex, 
(ii) ¢(a)  _> ¢(b) for all ¢ which are symmetric and quasiconvex, 
(iii) ¢(a)  > ¢(b) for all ¢ which are symmetric and convex, 

n 7~ 

(iv) ~ i = 1  9(a~) >- ~i=1 9(bi) f °r  all 9 : IR ~ ]R which are convex. 

The proposition is well known. In Section 5, Proposition 5.1, it is extended to 
multivariate majorization. Further equivalent conditions in terms of index classes 
are obtained from Propositions 2.3 to 2.5 below. 

In Proposition 2.2, five classes of  disparity indices ¢ are given, each of which 
induces the preorder ~-. By definition, the set of S-convex functions is the biggest 
one, viz. the set of all functions which are ~--increasing. If  majorization is re- 
garded as the basic notion of being more unequal, every meaningful disparity in- 
dex ¢ has to be S-convex and, in particular, row symmetric. Usually, properties 
of  disparity indices are traced back to axioms. See, e.g., Fields and Fei (1978), 
Chakravarty (1990a). Symmetry of ¢ is based on the axiom of anonymity, which 
says that a permutation of households does not change inequality. Quasiconvexity 
of  ¢ means that, if a and b have the same disparity, Aa + (1 - ~)b has no more, 
0 < A < I .  

The additive decomposition of ¢, ¢(x)  = ~ ' ~ 1  9(xi), is based on anonymity 
and either a utilitarian axiom or an axiom of nonaltruism; see Mosler (1993). Con- 
vexity of  9 can be interpreted in a framework of decision making under risk: Social 
states are evaluated by a subject who considers himself to occupy each position in 
the given population with equal probability and who orders the states according to 
their expected value of individual disutility 9. Then, convexity of 9 is tantamount 
to risk aversion of the subject. 
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For further discussions of these classes of disparity indices, the reader is re- 
ferred to Das Gupta et al. (1973) and Rothschild and Stiglitz (1973). 

2.3. Growing and Shrinking Transfers 

When two income distributions are compared, their total incomes may be dif- 
ferent. For example, the comparison may involve a time interval during which the 
cake grows. Or pre-tax and after-tax distributions are compared, and the taxation 
causes the total cake to shrink. For the rest of the section we restrict ourselves to 
nonnegative vectors. All results besides (2.9) and (2.12) hold also for vectors of 
arbitrary signs. 

Assume a, b E IR~_, (a, b) E To N. We call (a, b) a growing transfer iff 

k 

E h i > 0  for k = l , . . . , n ,  (2.6) 
i = 1  

where again hi = b(i) - a(~). Similarly, (a, b) E To ~ is a shrinking transfer iff 

7/. 

E h i < 0  for k = l , . . . , n .  (2.7) 
i = k  

Let Tgrow and ~shoi denote the respective sets of transfers. We may think of a 
poverty line which separates the population into a "poorer" and a "richer" part. 
With a growing transfer, the poorer part always betters itself by a positive total 
amount, while with a shrinking transfer, the richer part always has to pay, wherever 
the poverty line is drawn. 

We say that a weakly supermajorizes b, a ~-~ b, iff one of the following three 
equivalent conditions is fulfilled: 

(Pa, b) E Tgrow for some P E P,~, (2.8) 

b = Ta for some doubly superstochastic T, (2.9) 

k k 

E a ( ~ )  < E b ( i )  for k =  1 , . . . , n .  (2.10) 
i = 1  i = 1  

We say that a weakly submajorizes b, a >-w b, iff any of the following three holds: 

(Pa, b) E ~shoi forsome P E ~o, (2.11) 

b -= Ta for some doubly substochastic T, (2.12) 
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n n 

E a ( ~ )  > E b ( 0  for k = l , . . . , n .  (2.13) 
i = k  i = k  

(2.8) [(2.11)] means that b is a growing [shrinking] transfer of a permutation of the 
ai's. Equation (2.9) [(2.12)] implies that b is an average of a using weights which 
add up to more [less] than unity. (2.12) says that the generalized Lorenz function 
(see Section 3.2) of a is bounded above by that of b, and (2.13) says the same for 
a dual notion of the generalized Lorenz function. Obviously, when total incomes 
are equal, both notions of weak majorization and that of majorization coincide: 

PROPOSITION 2.3. a >.-~ b and ~~  ai = ~ i  bi ¢¢" 
a ~-~ b and ~~i ai = ~ i  bi ¢:~ a ~ b. 

Classes of disparity indices which induce the relations ~-'~ and >-~ on IR~_, re- 
spectively, are given by the following two propositions. They largely parallel 
Proposition 2.2. 

PROPOSITION 2.4. Let a, b C IR~_. Then a ~w b is equivalent to each of the 
following conditions." 

(i) ¢(a) > ¢(b) for all ¢ which are decreasing and S-convex, 
(ii) ¢(a) _> ¢(b)for all ¢ which are decreasing, symmetric, and quasiconvex, 
(iii) ¢(a) > ¢(b)for all ¢ which are decreasing, symmetric, and convex, 

n n 
(iv) ~-'~=1 9(a~) >_ ~i=1 9(bi) for all 9 : IR --~ IR which are decreasing and 

convex, 
(v) ~"~,~n 1 min {a~, 7} < ~ 1  min {b~, 7} for  all 7 E ]Ft. 

Proof. If a ~w b, there exists c C ]Rn such that a >- c and c < b, which 
is easily seen by induction on n (Marshall and Olkin, 1979, p. 123). For every 
decreasing and S-convex ¢ it follows that ¢(a) _> ¢(c) > ¢(b); hence (i). Ob- 
serve that every symmetric and quasiconvex ¢ is S-convex, every convex ¢ is 
quasiconvex, and ¢(x) = ~ i  g(xi) is decreasing, symmetric, and convex when 
g is decreasing and convex. Therefore, (i) =~ (ii) =~ (iii) =~ (iv) holds. Further, 
since for every "7 E ]R, z ~ - min {x~, '7} is a decreasing convex function, (iv) 
implies (v). On the other hand, (v) says the same as (2.10); hence (v) is equivalent 
toa  ~_w b. • 

PROPOSITION 2.5. Let a, b E IR~_. Then a ~-w b is equivalent to each of the 
following conditions: 

(i) ¢(a) ___ ¢(b) for  all ¢ which are increasing and S-convex, 
(ii) ¢(a) :> ¢(b) for  all ¢ which are increasing, symmetric, and quasiconvex, 
(iii) ¢(a) > ¢(b) for  all ¢ which are increasing, symmetric, and convex, 
(iv) ~-'~n__ 1 y(a~) > ~-]~1 g(b~) for all g : ]R ~ ]R which are increasing and 

convex, 
(V) Ein 1 max {ai, '7} > Ein=l max {bi, '7} for all 7 E In. 



98 KARL MOSLER 

The proof is similar to that of Proposition 2.4. Observe that Propositions 2.4 and 
2.5 together with Proposition 2.3 yield another set of characterizations of a >~ b 
in terms of classes of disparity indices ~. 

3. DISPARITY INDICES AND LORENZ ORDERINGS 

So far, we have compared vectors having the same number n of components. 
However, in many economic applications, nonnegative income vectors are com- 
pared which have different population sizes. In this section, we seek for disparity 
orderings and disparity indices by which vectors of any dimension can be com- 
pared and which have meaningful properties when different n ' s  are involved. 

3.1. Relative and Absolute Disparity 
n 

Let Qn = {x E IR~ : ~ = 1  x~ > 0}, and Q = U,~eIN Qn. A disparity index 
on Q is a function q5 : Q ~ IR which follows some axioms. Axioms (A1) and 
(A2) seem rather natural. 

(A1) For every n E IN, the restriction 4~lo,, is symmetric and satisfies the 
PD principle of transfers. 
(A2) ¢(x (k)) = ¢(z)  holds i f x  C Q~ a n d n ,  k E IN, w h e r e x  (k) = 
(X T,3JT,. . . ,ZT) T E Qn.k. 

(A2) is called population invariance. It says that if the income vector is cloned k 
times, the disparity remains the same. We introduce 

if0 = { ¢ : Q ~ I R  : 4) sat isf ies(A1)and(A2)}.  

¢ C if0 is called an index of relative disparity iff 

(A3) 4(/3x) = 0(x)  holds if/~ > 0, x e Q~, n c IN. 

¢ is an index of absolute disparity iff 

(A4) ¢(x  + "7 • 1) = 0(x)  holds if "7 E 1R, x E Q~, n E IN, where 
1 = ( 1 , 1 , . . . , 1 )  r E IR '~. 

Let ~rel and qsabs denote the respective classes of indices. A nontrivial ~ cannot be 
in both q~rel and flabs. Dalton (1920) postulates that equal additions (3' > 0) should 
diminish economic inequality while equal subtractions (7 < 0) should increase 
it; thus, he argues against (A4). Kolm (1969) considers both kinds of indices and 
names them rightist and leftist indices, respectively. Bossert and Pfingsten (see 
Pfingsten, 1986) propose a continuum of axioms between (A3) and (A4): 

(A5 A) ¢(x  + 3`[Ax + (1 - A). 1]) = ~p(x) holds if3` E IR, x ~ Q~, n ~ IN. 

For every A E [0, 1], this yields a class of A-translation-scale invariant indices. 
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3.2. Lorenz Orderings 

Let F be a probability distribution function on IR+ having positive first mo- 
ment #F, and define 

f0 f0 GL(F, t )  = zdF(x ) ,  where t = dF(z),  t E [0,1], 

or equivalently, 

f0 t GL(F, t )  = F- l ( s )d s ,  t C [0,1], 

where F - l ( s )  = inf{z : F(x) >_ s}. Then L(F, .) = GL(F, ")/#F is the usual 
Lorenz function. GL(F, .) is called the generalized Lorenz function. Observe that 
GL(F, .) determines F in a unique way, while L(F, .) determines F up to a scale 
only. Consider Frel(z) = F(#F " z), the distribution scaled down by/zF, and 
Fabs(z) = F(z  + #F), the distribution shifted by #F. 

Given two probability distribution functions F and G on JR+, we say that F 
majorizes G, F ~ G, iff 

GL(F, t )  < G L ( G , t )  for all t e l 0 , 1 ]  

and GL(F, t) = GL(G, t) for t = 1. We define two Lorenz orderings for the 
comparison of relative and absolute disparity: the relative Lorenz ordering, where 
F ~-Le. G iff F tel ~ G rel, and the absolute Lorenz ordering, where F ~-LA G iff 
F abs ~._ Gabs. 

The relative Lorenz ordering is the usual Lorenz order; it corresponds to the 
(scale invariant) indices of relative disparity. The absolute Lorenz ordering corre- 
sponds to the (translation invariant) indices of absolute disparity. It follows readily 
from the definitions that in case #F = / z a  the three orderings coincide: 

PROPOSITION 3.1. Let F and G be probability distribution functions on ]R+ 
with #F = #G > O. Then F ~:"La G if and only if F ~:"LA G if and only if F ~- G. 

Majorization between nonnegative vectors of different dimensions can be de- 
fined as follows. Given vectors a E IR+ and b E ]R~, we define probability dis- 
tribution functions F~ and Fb which put weight 1/n on each ai and weight l / m  
on each hi, respectively. Then majorization is defined by a >- b iff F~ ~ Fb. In 
the same way, relative and absolute Lorenz ordering of vectors is defined: a ~LR b 
and a ~LA b. The latter notions have been used in disparity measurement by Das 
Gupta, Sen, and Starrett (1973), Shorrocks (1983), and Moyes (1987). 
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PROPOSITION 3.2. [Das Gupta, Sen, and Starrett, 1973] Let a E ]R~_ and b E 
~z~,~. Then 

(i) a ~- b if and only /f ¢(a) _> ¢(b) for all ¢ C ~o, 
(ii) a ~LR b if and only /f ¢(a) >__ ¢(b) for all ¢ C ~rel, 
(iii) a ~-LA b if and only ire(a) >__ ¢(b) for all ¢ E ~abs. 

Multivariate majorization with n ~: m is investigated below in Section 5. For 
extensions of the Lorenz curve to the multivariate case, see Section 6. 

4. OTHER PRINCIPLES OF TRANSFERS 

In this section we discuss several departures from the PD principle of transfers. 

4.1. Strict Principles 

Let T C To = U n ~  T0'L A function ¢ : Q ~ 1R satisfies the T-principle 
of transfers iff (2.1) holds, i.e., ¢(a)  >_ ¢(b) whenever (a, b) C T.  ¢ satisfies the 
strict T-principle of transfers iff 

(a, b) C T =¢~ ¢(a)  > ¢(b). (4.1) 

¢ is called strictly S-convex iff ¢ is symmetric and ¢(a)  > ¢(b) holds whenever 
a, b E 1R n, a ~ b, b not in {Pa : P C P~}, and n E IN. It can be shown that ¢ is 
strictly S-convex if and only if ¢ is symmetric and satisfies the strict PD principle 
of transfers, i.e. (4.1) with T -- TeD =--- U,~e~ 7-~ where 7"~ denotes the set 
of  PD transfers in IR n. There holds a proposition analogous to Proposition 2.2 
which relates the set of strictly S-convex functions to strict majorization and to 
other sets of strict disparity indices. We omit the details. Many common disparity 
indices are strictly S-convex, e.g., the variance, the coefficient of variation, and 
the indices of Gini, Theil, Atkinson, and others; see Piesch (1975) and Cowell 
(1977). An example of an index which is S-convex, but not in the strict sense, is 
the mean deviation about the mean. 

Indices which are strictly increasing at some PD transfers and just increasing 
at the remaining ones have been investigated recently by Castagnoli and Muliere 
(1990); see Section 4.2 below. 
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4.2. Transfers about 0 

Let 0 E IR be fixed, and define 

T o = { ( a , b )  E T p D : a ( i ) + h i < / 9  if h i > O , a ( i ) + h i > / 9  if h~ <0} .  

To consists of PD transfers which give some positive amount to individuals below 
/9 and take it from individuals above/9. Every such transfer is called a transfer 
about/9. 

The principle of transfers about/9 can be read in the following way./9 may be 
interpreted as a line which separates two social classes, and the transfer about/9 
as an action taken by the government. Every transfer from a household above the 
line to a household under the line is considered as decreasing inequality (in the 
weak or strict sense). Note that a transfer about/9 affects neither the relative order 
of households nor their positions above or below the line. That is, no household 
crosses the line: the poor remain in the lower class, and the rich in the upper class. 

Disparity indices which are symmetric and satisfy the principle of transfers 
about/9 are proposed by Mosler and Muliere (1993). These indices include the 
S-convex functions, but others as well. The idea is that transfers between rich 
people only and transfers between poor people only should not affect the index of 
disparity at all. 

It can be shown that a differentiable function ¢ satisfies the principle of trans- 
fers about 0 if and only if 

max ~x¢(X ) < min e-ff~-~ ¢(x) for all x. (4.2) 
x i < O  " x i >  a X  i 

Let ~ be the set of continuous functions g : JR+ ---, ]R which are differentiable 
everywhere besides a finite set of points where one-sided derivatives exist. Let g' 
denote the derivative when it exists. If 

¢(xl,. . . ,x,~) = ~ g ( x i )  with some g E G, (4.3) 
i = 1  

the condition (4.2) reads 

9'(s) < 9'(t) whenever s < 0 < t. (4.4) 

For (4.4) we say that ¢ has increasing disparity weight about O. 
Mosler and Muliere (1993) investigate a second set of transfers. With these 

transfers, certain households may cross the line from poor to rich or vice versa. 
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The crossings are restricted to the income interval of those households that before 
the transfer were situated next to the line: 

TnextO = {(a, b) C TpD : h i , . . . ,  hk > O, h k + l , . . . ,  h~ _< O, 

a ( k ) _ O _ < a ( k + l )  and a(k) <_a(i)+hi <<_a(k+a) if h i , O } ,  

G a r  0 = %~x~ 0 U TO. 

~next 0 is called the set of transfers next to 0, ~star 0 the set of  star-shaped trans- 
fers at O. The latter name stems from the fact that the 7~star 0-principle of transfers 
corresponds to the class of disparity indices which are additively separable (4.3) 
with 9 star-shaped above at 0; see below. 

Let I be an interval in IR+,0  E IR. A function f : I ~ IR is said to be 
star-shaped above at 0 and supported iff 

f ( s )  - f ( O )  
s - O  

is increasing at all e z -  {0}. 

Briefly, we say that such an f is star-shaped above at O. If f is differentiable, 
equivalently, 

f ( s ) - f ( O )  f >_if(s) when s < 0 ,  
s 0 ~ <_if(s) when s > 0 .  

The graph of a function which is star-shaped above at 0 is easily visualized: It lies 
above a straight line through the point (0, f(O)), and a spectator located at this 
point has a line of sight to all other points of the graph. Two obvious facts should 
be noted: If  a function f : I ~ IR is convex, it is star-shaped above at every 
0 E I ,  and if f is star-shaped above at 0, it has nondecreasing disparity weight 
about 0. 

PROPOSITION 4.1 (Mosler and Muliere, 1993). Let ¢ be additive (4.3) with g 
in ~. Then 0 satisfies the star-shaped principle of transfers at O for all n if and 
only if g is star-shaped above at O. 

Castagnoli and Muliere (1990) introduce a strengthened PD principle of trans- 
fers with respect to a given threshold 0. The principle says that an index should 
follow the PD principle of transfers and, in addition, the strict principle of trans- 
fers about O, Such an index is sensitive to a transfer from a rich household to a 
poor one, but possibly insensitive (though not decreasing) when income is trans- 
ferred either between two rich households or between two poor ones. Castagnoli 
and Muliere (1990) show that 

max ~ z  ¢ ( x ) <  rain ° ~ -0  0(x)  (4.5) 
z i < 0  • :ci> O'5Ci 
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is sufficient for ¢ to satisfy the strict principle of transfers about ¢. Therefore 

~ 1  = {q) : ¢ is Schur convex and (4.5) holds} 

is a class of disparity indices satisfying their strengthened PD principle of trans- 
fers. 

5. MULTIDIMENSIONAL ECONOMIC DISPARITY AND MAJORIZATION 

Economic disparity does not arise from the distribution of income alone. Other 
attributes of affluence and well-being appear to be of similar interest in economic 
analysis. Households vary in income and assets, individuals in earnings and edu- 
cation, countries in per capita income and mineral resources, etc. In modern the- 
ories of social choice the specific distributional inequality of attributes like these 
is considered; see Fisher (1956), Tobin (1970), Sen (1970, 1973). If inequality in 
two or more attributes is treated simultaneously, we face the problem of modeling 
and measuring multidimensional economic disparity. 

Consider a population of economic units i E { 1 , . . .  n} and a set of attributes 
k E {1 , . . .  d}. We will speak of households i and commodities k. Let aik _> 0 
be the endowment of household i with attribute k, A = (aik) E IR~_ xa. By ai 
we denote the ith row of A (the endowment vector of household i), by a k the kth 
column of A (the distribution of attribute k in the population). In what follows we 
assume that d _> 1. Hence, all results hold as well for the univariate case. 

5.1. Multivariate Majorization 
Given A, B E ]R '~×d, we say that A majorizes B, A ~ B, if there exists a 

doubly stochastic matrix T E 73,~,n such that B = TA holds. This corresponds to 
"n,'~ n x d • (2.3). The relation ~- is a preorder on n-t+ , i.e., reflexive and transitive. A ~- B 

implies that 

a ,  = ( 5 . 1 )  
i=1 i=1 

and that 

bi = ~-~t~jaj where tij~O Vi,j  and ~-~tij = 1  Vi. (5.2) 
j=l  j=l  

Thus, when A :,- B, the total of each commodity stays the same with A and B, and 
B is obtained from A by averaging the endowment vectors of households (with 
weights t~j ). 
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Multivariate majorization has been investigated by Rinott (1973), Marshall 
and Olkin (1974, 1979), Karlin and Rinott (1981, 1983), Arnold (1987), Bigard 
(1987), Bhandari (1988), Das Gupta and Bhandari (1989), Tong (1989), and 
Strasser (1992). For majorization on general state spaces of C*- and W*-algebras, 
see Alberti and Uhlmann (1982). In the economic literature, the seminal paper on 
majorization and the comparison of multidimensioned disparity is Kolm (1977). 

A function ¢ : IR~xd ---. IR is called S-convex iff A ~- B implies ¢(A) _> 
¢(/3). ¢ is called row symmetric iff, for every permutation matrix P E P~, 
B = P A  implies ¢(A) = ¢(B) .  Every S-convex ¢ is row symmetric. ¢ is 
called quasiconvex iff, for every A1 , . . .  A,~ C IR '~xd and (A1,. , .  Am) E Sin, 
¢ - '  (~-~4=1 AfAr) < maxz ¢(At).  The notions are related by the following lemma, 
which is well known when d = 1; see Marshall and Olkin (1979, p. 69). 

LEMMA 1. Ire  is row symmetric and quasiconvex, then ¢ is S-convex. 

Proof. Let A :,- B. By Birkhoff's theorem there exist (A1,. • • A,~) C S,~ 
and P 1 , . . - P m  C 7)n such that B = Y-~=I AtPtA. As ¢ is quasiconvex, ¢ (B)  <_ 
max t ¢(PIA),  and as ¢ is row symmetric, ¢(PtA) = ~b(A) for all l; hence ¢(/3) _< 
¢(A).  Therefore, ¢ is S-convex. • 

PROPOSITION 5.1. Let A , B  E IRnXd,d ~ 1. Then A ~- B is equivalent to 
each of the following conditions: 

(i) B E conv{PA : P E Pn},  
(ii) ¢(A) _> ¢(B)  for all ¢ which are S-convex, 
(iii) ¢(A) >_ ¢(/3) for all ¢ which are row symmetric and quasiconvex, 
(iv) ¢(A) _> ¢(/3) for all (5 which are row symmetric and convex, 

n n 
(v) ~ = 1  g(ai) >_ ~-~i=1 g(bi) for all 9 : IRd --* IR which are convex, 

n n 
(vi) (5.1) and Y'~i=I g(ai) >_ ~-~i=1 g(hi) for all g : IRa ~ IR which are 

increasing and convex. 

Proof. A >- B <=~ (i) isanimmediateconsequenceofBirkhoff 's theorem. 
A ~ B =~ (ii) holds by definition. (ii) =~ (iii) =~ (iv) =~ (v) =~ (vi) is derived 
from inclusions of the respective sets of functions ¢. Finally, we have to show (vi) 
:=~ A ~- /3: Let PA be a probability measure in IRa giving mass n -1 to each ai. 
Then f g(x) dPA(x) = n -1 ~ 9(ai). Similarly, PB is considered. A well-known 
result on dilations (e.g. Mosler and Scarsini, 1991) says that PA is a dilation of PB 
if and only if f x dPA(x) = f x dPB(x) and f g(x) dPA(X) >_ f g(x) dPB(x) 
for all g which are increasing and convex, i.e., if (vi) holds. [Equivalently, PA is a 
dilation of PB if and only if f g(x) dPA(X) >_ f g(x) dPB(x) for all g which are 
convex, i.e., if (v) holds.] As A ~ B is equivalent to saying that PA is a dilation 
of PB, there follows A ~- B <=~ (v) ¢:1, (vi). • 

The economic interpretation of Proposition 5.1 is as follows. Given a permu- 
tation matrix P,  P A  is the matrix where all households have interchanged their 
endowments according to P .  In terms of majorization, P A  bears the same amount 



MAJORIZATION IN DISPARITY MEASURES 105 

of inequality as A. Proposition 5.1(i) says that B is a convex combination of 
such permuted endowments. There are five classes of disparity indices ¢, each 
of which induces the preorder ~-. They are interpreted and justified as in the uni- 
variate case. By the axiom of anonymity, a permutation of households should not 
affect inequality; hence ¢ should be row symmetric. The axiom of nonaltruism 
or a utilitarian axiom yields the additive decomposition of ¢. The S-convex func- 
tions ¢ : ]R n×d ----+ ]R build the largest class of disparity indices which respect 
multivariate majorization. Further, quasiconvexity of ¢ implies that the condi- 
tional evaluation of a household's endowment (the other endowments held fixed) 
is quasiconvex, which is a standard assumption in the consumption theory of the 
household. 

Special multivariate disparity indices have been proposed and applied to real 
data by Maasoumi (1986), Slottje (1987), Maasoumi and Nickelsburg (1988), 
Slesnick (1989), and others. 

5.2. Weakening Multivariate Majorization 

Majorization appears to be a rather strong notion of multivariate disparity. The 
reason is that for every attribute k averaging is done with the same weights t~j. 
Two notions weaker than :,- are of special interest. 

PROPOSITION 5.2. Let 
(i) Ap ~- Bp  for all p E IR d, 
(ii) a k ~- b k for all k. 
Then A ~- B ~ (i) :=¢- (ii). 

The reverse implications do not hold, in general. The proof of Proposition 5.2 is 
obvious. (i) is named directional majorization, (ii) marginal majorization. The 
latter means that every attribute k is more dispersed with A than with B in terms of 
ordinary majorization, i.e., averaging is done using different weights for different 
attributes. When the k's are commodities and p is a vector of prices for them, aip 
amounts to the expenditure of household i. Then, Ap ~- Bp  says that with A the 
expenditures of households are more dispersed than with B. For this reason, (i) is 
also called price majorization. 

Equivalent characterizations of directional and of marginal majorization are 
easily found along the lines of the univariate results. There exists another equiva- 
lent to directional majorization, which we will present in the next section on mul- 
tivariate Lorenz ordering. B handari (1988) provides geometric conditions under 
which directional majorization implies multivariate majorization. 

Foster et al. (1990) propose a ranking of social inequality which is related to 
price majorization. A stochastic version of price majorization - -  also with subsets 
of prices - -  is discussed in Muliere and Scarsini (1989). Rietveld (1990) assumes 
that individual welfare is the sum of welfare components arising from different 
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attributes of well-being. He concludes that individual welfare cannot be more 
unequal (in terms of the Lorenz curve) than any of its components. 

5.3. Different Population Sizes 

When population sizes differ, say A E lR nxd and B E IR T M ,  majorization 
is similarly defined: A majorizes t3, A >- 13, iff there exists a doubly stochastic 
matrix T E D,~,n such that ( 1 / m ) B  = (1 /n)TA.  For d = 1 and nonnegative 
vectors, it can be shown that the definition is the same as that given in Section 3.2. 
Then Equation (5.2) holds and 

- a i  = - -  b j .  (5.3) 
n m 

i = 1  j = l  

Obviously, with the generalized definition, Proposition 5.2 remains true. The fol- 
lowing analog of Proposition 5. l(v) and (vi) is obtained. 

PROPOSITION 5.3. Let A E IR "~xd and B E ]i~ m×d.  Then A ~ B is equivalent 
to each of the following conditions." 

n 
(i) ~-]~=1 g(ai) > ~ ' ~  _ j = l g ( b j ) f o r a l l g : I R d  --+ ]Rwhichareconvex, 

n m 
(ii) (5.3), and ~ = 1  g(a~) >_ ~ j = l  g(bj) for all 9 : ~ d  --+ ]R which are 

increasing and convex. 

Proof. PA is a dilation of PB- The proposition then follows from the well 
known result on dilations as in the proof of Proposition 5.1. • 

In case m <_ n, related results are found in Fischer and Holbrook (1980) and 
Karlin and Rinott (1983). 

Another notion which is weaker than multivariate majorization has been intro- 
duced and investigated recently by Strasser (1992). He compares concentration 
tables, i.e. column stochastic matrices having d+ 1 columns. We present Strasser's 
results in our setting, which is slightly different. 

]R~×a B EV~m ×awith DEFINITION 5.1 (Strasser, 1992). Let A E + , ~ +  
n m ( l / n )  ~ = 1  a~k = ( l / m )  ~-]~j=l bjk > 0 for all k = 1, 2 , . . . ,  d. A is called less 

concentrated than B iff for every column stochastic S E Cd+I,,~ there is some 
column stochastic R E Ca+I,,~ such that 

7~ 

__1 E rkjbj k _> 
m 

j ~ l  

1 m 1~-~ 
- -  E r d + l , j  ~ -- Sd+l , i .  
?YL ?t i = 1  j = l  

- sk~a~k for k = l , . . . , d  
n 

i = 1  
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The concentration function KA of A is defined by 
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KA(Z) = Zkg~ik -- max zkgik , Z E Sd-t-1, 
l < k < d + l  

i = 1  \ k = l  

where aik = a i k / ~ i  a~k i fk  = 1 , . . .  ,d, and g~i,d+l = 1/n. 

PROPOSITION5.4 (Strasser, 1992). Let A E ]R nxa and B E ]R T M  with 
m 

( l / n )  ~ i ~ 1  alk = ( l / m )  ~--]j=l bjk > O for all k = 1, 2 , . . . ,  d. 
Then A ~ 13 ~ KA(Z) > K B ( z ) f o r a l l  z E Sa+I ¢¢, A is less concentrated 
than 13. 

When d = 1, the two conditions are also sufficient for A ~ B. For proof of 
Proposition 5.4, see Strasser (1992). Strasser's result reduces the comparison of  
multivariate disparity (in the sense of  being less concentrated) to the comparison 
of  real-valued functions. In the univariate case, with A = a E IR '~, K~ is closely 
connected to the Lorenz function L~: 

Here L~* denotes the conjugate function of  La, L*~(t) = sup r(rt  - La(r)). 
The idea behind the notion of  being less concentrated is the following. Let 

m = n and d = 1, and assume that a is less concentrated than b. Restricted 
to 0-1 matrices S and R E C2,,~, the definition says that for every subset M s  of 
households there is another subset MR having as many or more members such 
that the total endowment of  the MR-households under b is not larger than the total 
endowment of  the Ms-households under a. This means that under b a smaller 
number of  households (those not in MR) obtains a larger share. The definition, 
more generally, uses weighted partitions and compares properly weighted sums. 
Here, given S = (sk~) E C2,n, a household i is considered to be in M s  with weight 
s2# and to be not in M s  with the remaining weight Sl,i = 1 -s2,i .  However, when 
d > 2, the remaining weight is split between the attributes, and interpretation 
becomes difficult. 

The relation between Strasser's notion and directional majorization has still to 
be explored. 
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6. LORENZ ORDER IN THE MULTIVARIATE CASE 

KARL MOSLER 

Extending the Lorenz curve to several attributes is not obvious. A natural 
postulate is that the multiattribute notion of the Lorenz curve should be symmetric 
in the attributes. For d = 2 attributes, Taguchi (1972a, b) and Arnold (1983) have 
introduced Lorenz surfaces in three-space. While Taguchi's definition is neither 
symmetric in the attributes nor easy to handle, Arnold's is both. His definition can 
be written as follows. 

DEFINITION 6.1 (Arnold, 1983). Let F be a probability distribution function 
on IR2+ having finite second and positive first moments. The Lorenz surface of 
F is the graph of the function 

f :  Jo 7 xy dF(x, y) 
L(F, s, t) = f o  f o x y  dF(x,  y)'  

where 

/0 /0 s =  dFl(X), t =  dF,2 (y), 

F1 and F2 being the marginals of F .  

O<_s, t<_l ,  

If  F is a product distribution function, F(x,  y) = F1 (x)F2 (y), then L(F, s, t) 
is just the product of  the marginal Lorenz functions. Let Fc denote the one-point 
distribution at c C lRd+ \ {0}. Fc is called the egalitarian distribution at c. It fol- 
lows that an egalitarian distribution has Lorenz function L(Fc, s, t) = st when 
d = 2. The two-attribute Gini-Arnold index G A ( F )  is defined as four times 
the volume between the Lorenz surface of F and the Lorenz surface of an egal- 
itarian distribution. In case of a product distribution function, 1 - G A ( F )  = 
[ 1  - G(F1 )] [1 - G(F2)] holds, where G(F~) is the ordinary univariate Gini index. 
Arnold's definitions can be used as well for d > 2. But even when d = 2, to our 
knowledge there are no other simple relations to majorization or economic inter- 
pretations of the above. Instead, we present another notion in IRa+l,  the Lorenz 
zonoid. 

DEFINITION 6.2. Let F be a probability distribution function on lRd+, and 
f~,, xj dF(x) > 0 for all j .  Define Ycj = xj / f~d xj dF(x) for j = 1 , . . . ,  d, and 

T(x)  = ( X l , . . . , x a ) .  Then 

d d 

g : IRd -* [0, 1] continuous} 
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is called the Lorenz zonoid. Then for the egalitarian distribution _Pc we get T(c) = 
( 1 , . . . ,  1), and 

L Z ( F c ) = { z E I R d + I  : z = 3 , ( 1 , . . . , 1 ) ,  0 < 7  < 1}, 

which is the main diagonal of the unit cube in ]Rd+ 1 . 

LEMMA 2. Assume d = 1. Let L (F)  be the ordinary Lorenz curve, and L(F)  
the dual Lorenz curve given by L(F, t) = 1 - L(F, 1 - t). Then LZ(F)  is the 
area between L (F)  and L(F).  

Proof. L (F)  is given by L(F, t) = f :  T(x)  dF(x)  with t = f :  dF(x) .  On 
the other hand, at zl = t the lower border of the Lorenz zonoid is the infimum of 
z2 = f o  g(x)T(x)  dF(x)  subject to f o  g(x) dF(x)  = t and g : ]Rd ~ [0, 1] 
continuous. Since T : x H 37 is nonnegative and increasing, the infimum is 
reached in the limit when g approaches the indicator function of the interval [0, ~]; 
hence inf z2 = L(F, t). Similarly, it is shown that sup z2 = 1 - L(F, 1 - t) at 
Zl = t .  • 

Thus the ordinary Gini index G(F)  equals the area of LZ(F).  We define the d- 
variate Gini zonoid index GZ(F)  as the (d + 1)-dimensional volume of the Lorenz 
zonoid. 

Now, let A E C,~,a, and F be a discrete distribution function on ]Rd+ giving 
equal mass to the rows of A. Then 

L Z ( A ) - - L Z ( F ) =  z e I R d + l  : z =  g(i), g(i) .a~ , 
i=1 i=l  

O<_g(i)_<l for all i } ,  

and GZ(A) is as above. Koshevoy (1992) has introduced the definitions of Lorenz 
zonoid and Gini zonotope index for this case. He calls LZ(A) the Lorenz zonotope 
of A. 

Let F and G be probability distribution functions on ]Rd+, d _> 1. The multi- 
variate Lorenz order ~-L between F and G is defined as follows: 

F ~>L G iff LZ(F)  D LZ(G). 

Similarly, when A and B are in Cn,d, 

A >-L B iff LZ(A) D LZ(B). 
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For every F and c E lRd, obviously, LZ(Fc) C L Z ( F )  holds; hence F ~-L b~. 
The egalitarian distribution at some c is dominated by every other distribution. 
Similarly, if we define E = ( e i k ) ,  eik = 1In for all i and k, we get L Z ( E )  = 
{z C lRa+l : z = 3'(1 . . . .  1), 0 <_ 3' < 1}. For every A E Cn,a we have 
L Z ( E )  C LZ(A);  hence A ~-L E.  

For d = 1, the definition is equivalent to that of ordinary Lorenz order; see 
Lemma 2. 

PROPOSITION 6.1 (Koshevoy, 1992). Let A, t3 E Cn,d. Then A ~-i~ B if and 
only if Ap ~- Bp for all p E IR d. 

For proof, see Koshevoy (1992). By the proposition, multivariate Lorenz order 
of  matrices in C,~,,~ is the same as price majorization and is therefore a necessary 
(but in general not sufficient) condition for multivariate majorization. Moreover, it 
follows that the Gini zonoid index is not only consistent with multivariate Lorenz 
order but also with multivariate majorization. 

7. CONCLUSIONS 

We have presented various disparity orderings for distributions of single at- 
tribute and multiattribute well-being, and we have given classes of disparity in- 
dices which are compatible with the orderings and induce them. The orderings 
have been based on majorization or variants thereof, and the index classes usually 
have been subsets of  S-convex functions. 

In principle, every set ~5 of symmetric functions 4~ : IR '~ ~ IR induces a 
majorization ordering ~ on IR'~: a ;,--,~ b iff ¢(a)  >_ ¢(b) for all ¢ E 9.  If 
is a singleton the distributions become completely comparable. If  q' is the set of 
symmetric and S-convex functions, ~-,~ is ordinary majorization. 

Ordinary majorization and the related orderings introduced above are pre- 
orderings only. They are rather coarse orderings under which (in the univariate 
case) distributions are only comparable if two Lorenz curves do not intersect. 
For theoretical and practical reasons there is some need for disparity comparisons 
when Lorenz curves intersect, i.e., for orderings finer than majorization. 

Majorization between distributions having equal means is equivalent to con- 
vex stochastic ordering. There exist many other stochastic orderings in the lit- 
erature, (see Mosler and Scarsini 1991) some of which have a meaning in terms 
of economic disparity. Shorrocks and Foster (1987) discuss a subset of strictly 
S-convex functions which induces an ordering of third-degree stochastic domi- 
nance (being finer than majorization, which corresponds to second-degree stochas- 
tic dominance). For further stochastic orderings in the measurement of economic 
disparity and welfare, see Alzaid (1990), Le Breton (1991), and - -  with multiple 
attributes - -  Atkinson and Bourguignon (1982, 1989) and Mosler (1993). 
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Economic disparity is one aspect of economic welfare, and every disparity 
index can be seen as (the negative of) an index of welfare. Authors stressing 
this view are Sen (1973), Cowell (1977), and Chakravarty (1990a). Recent new 
approaches include Chakravarty (1990b) and Bossert (1990). 

A final remark on multivariate disparity measurement. In a certain sense, 
the notion of majorization is clarified when we consider the multiattribute case. 
Strictly speaking, majorization has nothing to do with the existence of"rich" peo- 
ple and "poor" people, but rather with the existence of people who are "differ- 
ent." When looking at endowments in just one attribute, the tails of their distri- 
butions are the most striking feature. This effect disappears when we have more 
than one attribute. Also, it is known that PD transfers in the multivariate yield a 
coarser ordering than multivariate majorization. Thus, the core of majorization 
does not consist in PD transfers but rather in the averaging of endowments (by 
doubly stochastic matrices) or the mixing of permuted endowments. 

Future research may concentrate on the following topics: disparity orderings 
finer than majorization (especially in the multivariate), multivariate Lorenz orders, 
transfer principles other than the Pigou-Dalton, and decomposition of disparity. 

Above all, Marshall and Olkin's book is a treasury of further variants of ma- 
jorization, some of which still have to be exploited for economic-disparity mea- 
surement. 

REFERENCES 

Alberti, E M. and Uhlmann, A. 1982. Stochasticity and Partial Order, Reidel, 
Boston. 

Alzaid, A. A. 1990. Lorenz ranking of income distributions, Statist. Papers 
31:209-224. 

Arnold, B. C. 1983. Pareto Distributions, International Co-op. Publishing House, 
Fairland, Md. 

Arnold, B. C. 1987. Majorization and the Lorenz Order." A Brief Introduction. 
Springer-Verlag, Berlin. 

Arnold, B. C. 1991. Preservation and attenuation of inequality as measured by 
the Lorenz order, in Stochastic Orders and Decision under Risk (K. Mosler 
and M. Scarsini, Eds.), Inst. of Mathematical Statistics, Hayward, Calif., pp. 
25-37. 

Atkinson, A. B. 1970. On the measurement of inequality, J. Econom. Theory 
2:244-263. 

Atkinson, A. B. and Bourguignon, E 1982. The comparison of multidimensioned 
distributions of economic status, Rev. Eeonom. Stud. 49:183-201. 

Atkinson, A. B. and Bourguignon, E 1989. The design of direct taxation and 
family benefits, J. Public Econom. 41:3-29. 

Bhandari, S. K. 1988. Multivariate majorization and directional majorization; 
positive results, Sankhyd Ser. A 50:199-204. 



112 KARL MOSLER 

Bigard, A. 1987. Analyse de l'inegalit6 multicrit~re, Math. Sci. Hum. 97:47-55. 
Blackorby, C. and Donaldson, D. 1984. Social criteria for evaluating population 

change, J. Public Econom. 25:13-33. 
Bossert, W. 1990. Maximin welfare orderings with variable population size, Soc. 

Choice Well 7:39--45. 
Brualdi, R. A. 1984. The doubly stochastic matrices of a vector majorization, 

Linear Algebra Appl. 61:141-154. 
Castagnoli, E. and Muliere, P. 1990. A note on inequality measures and the Pigou- 

Dalton principle of transfers, in Income and Wealth Distribution, Inequality 
and Poverty C. Dagum and M. Zenga, Eds.), Springer-Verlag, Berlin, pp. 
171-182. 

Chakravarty, S. R. 1990a. Ethical Social Index Numbers, Springer-Verlag, Berlin. 
Chakravarty, S. R. 1990b. On quasi-orderings of income profiles, Methods Oper. 

Res. 60:455-473. 
Cowell, E A. 1977. Measuring Inequality, Philip Allan, Oxford. 
Dalton, H. 1920. The measurement of the inequality of incomes, Econom. J. 

30:348-361. 
Das Gupta, P., Sen, A., and Starrett, D. 1973. Notes on the measurement of in- 

equality, J. of  Econom. Theory 6:180--187. 
Das Gupta, S. and Bhandari, S. K. 1989. Multivariate majorization, in Contribu- 

tions to Probability and Statistics (L. J. Gleser et al., Eds.), Springer-Verlag, 
New York, pp. 63-74. 

Eichhorn, W., Funke, H., and Richter, W. F. 1984. Tax progression and inequality 
of income distribution, J. Math. Econom. 13:127-131. 

Fellman, J. 1976. The effect of transformation on Lorenz curves, Econometrica 
44:823-824. 

Fields, G.S. and Fei, J. C. H. 1978. On inequality comparisons, Econometrica 
46:303-316. 

Fischer, P. and Holbrook, J. A. R. 1980. Balayage defined by the nonnegative 
convex functions, Proc. Amer. Math. Soc. 79:445-448. 

Fisher, F. M. 1956. Income distribution, value judgements and welfare, Quart. J. 
Econom. 70:380--424. 

Foster, J. E., Majumdar, M. K., and Mitra, T. 1990. Inequality and welfare in 
market economics, J. Public Econom. 41:351-367. 

' Gini, C. 1912. Variabilitd e Mutabilitd: Contributo allo Studio delle Distribuzioni 
e delle Relazioni Statistiche (Variability and Changeability: Contribution to 
the Study of Distributions and Statistical Relations), Cuppini, Bologna. 

Hardy, G. H., Littlewood, J. E., and Polya, G. 1929. Some simple inequalities 
satisfied by convex functions, Messenger Math. 58:145-152. 

Hardy, G. H., Littlewood, J. E., and Polya, G. 1934. Inequalities, Cambridge U. 
P., London. 

Jakobson, U. 1976. On the measurement of degree of progression, J. Public 
Econom. 5:161-168. 



MAJORIZATION IN DISPARITY MEASURES 113 

Kakwani, N. C. 1977. Applications of Lorenz curve in economic analysis, Econo- 
metrica 45:719-727. 

Karlin, S. and Rinott, ¥. 1981. Entropy inequalities for classes of probability 
distributions II. The multivariate case, Adv. Appl. Probab. 13:325-351. 

Karlin, S. and Rinott, Y. 1983. Comparison of measures, multivariate majoriza- 
tion, and application to statistics, in Studies in Econometrics, Time Series, and 
Multivariate Statistics (S. Karlin, T. Amemiya, and L. A. Goodman, Eds.), 
Academic, New York, pp. 465-489. 

Kolm, S. C. 1969. The optimal production of social justice, in Public Economics 
(J. Marjolis and H. Guitton, Eds.), Macmillan, New York, pp. 145-200. 

Kolm, S. C. 1977. Multidimensional egalitarianisms, Quart. J. Econom. 91:1-13. 
Koshevoy, G. 1992. An Equivalence Theorem and Multidimensional Inequality, 

Mimeo, Russian Academy of Science, Moscow. 
Le Breton, M. 1991. Stochastic orders in welfare economics, in Stochastic Orders 

and Decision under Risk (K. Mosler and M. Scarsini, Eds.), Inst. of Mathe- 
matical Statistics, Hayward, Calif., pp. 190-206. 

Lorenz, M. O. 1905. Methods of measuring the concentration of wealth, Publ. 
Amer. Statist. Assoc. 9:209-219. 

Maasoumi, E. 1986. The measurement and decomposition of multi-dimensional 
inequality, Econometrica 54:991-997. 

Maasoumi, E. and Nickelsburg, G. 1988. Multivariate measures of well-being 
and an analysis of inequality in the Michigan data, J. Business and Econom. 
Statist. 6:327-334. 

Marshall, A. W. and Olkin, I. 1974. Majorization in multivariate distributions, 
Ann. Statist. 2:1189-1200. 

Marshall, A. W. and Olkin, I. 1979. Inequalities: Theory of Majorization and Its 
Applications, Academic, New York. 

Mosler, K. 1993. Multidimensional welfarisms, in Models and Measurement of 
Inequality and Welfare (W. Eichhorn, Ed.), Springer-Verlag, Berlin. 

-Mosler, K. and Muliere, P. 1993. Robin Hood operations, absolutely speaking, in 
Statistics and Quantitative Economoics No. 60, Hamburg. 

Mosler, K. and Scarsini, M. 1991. Some theory of stochastic dominance, in Sto- 
chastic Orders and Decision under Risk (K. Mosler and M. Scarsini, Eds.), 
Inst. of Mathematical Statistics, Hayward, Calif., pp. 261-284. 

Moyes, P. 1987. A new concept of Lorenz domination, Econom. Lett. 23:203- 
207. 

Moyes, P. 1989. Some classes of functions that preserve the inequality and welfare 
orderings of income distributions, J. Econom. Theory 49:347-359. 

Muliere, P. and Scarsini, M. 1989. Multivariate decisions with unknown price 
vector, Econom. Lett. 29:13-19. 

Nyghrd, F. and Sandstr/3m, A. 1981. Measuring Income Inequality, Almqvist and 
Wiksell International, Stockholm. 

Pfingsten, A. 1986. Distributionally neutral tax changes for different inequality 



114 KARL MOSLER 

concepts, J. Public Econom. 30:385-393. 
Piesch, W. 1975. Statistische Konzentrationsmafle, J. C. B. Mohr, TiJbingen. 
Pigou, A. C. 1912. Wealth and Welfare, Macmillan, New York. 
Rietveld, P. 1990. Multidimensional inequality comparisons, Econom. Lett. 

32:187-192. 
Rinott, Y. 1973. Multivariate majorization and rearrangement inequalities with 

some applications to probability and statistics, Israel J. Math. 15:60-77. 
Rothschild, M. and Stiglite, J. E. 1973. Some further results on the measurement 

of inequality, J. Econom. Theory 6:188-204. 
Sen, A. K. 1970. Collective Choice and Social Welfare, Norton, New York. 
Sen, A. K. 1973. On Economic Inequality, Oxford U.P., Oxford. 
Shorrocks, A. F. 1983. Ranking income distributions, Economica 50:3-17. 
Shorrocks, A. E and Foster, J. E. 1987. Transfer sensitive inequality measures, 

Rev. Econom. Stud. 54:485-497. 
Slesnick, D. T. 1989. Specific egalitarianism and total welfare inequality: A de- 

compositional analysis, Rev. Econom. and Statist. 71:116-127. 
Slottje, D. J. 1987. Relative price changes and inequality in the size distribution 

of various components of income: A multidimensional approach, J. Business 
and Econom. Statist. 5:19-26. 

Strasser, H. 1992. Concentration of multivariate statistical tables, Statist. Papers 
33:95-117. 

Taguchi, T. 1972a. On the two-dimensional concentration surface and extensions 
of concentration coefficient and Pareto distribution to the two dimensional 
case--l,  Ann. Inst. Statist. Math. 24:355-382. 

Taguchi, T. 1972b. On the two-dimensional concentration surface and extensions 
of concentration coefficient and Pareto distribution to the two dimensional 
case--II, Ann. Inst. Statist. Math. 24:599-619. 

Tobin, J. 1970. On limiting the domain of inequality, J. Law and Econom. 13:263- 
277. 

Tong, Y. L. 1989. Probability inequalities for n-dimensional rectangles via multi- 
variate majorization, in Contributions to Probability and Statistics (L. J. Gleser 
et al., Eds.), Springer-Verlag, New York, pp. 146-159. 


