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Totally fissured media in which the cells are isolated by the fissure system are
effectively described by double porosity models with microstructure. These
models contain the geometry of the individual cells or pores in the medium and the
flux across their interface with the fissures which surrounds them. We extend
these models to include the case of partially fissured media in which a secondary
flux effect arises from cell-to-cell diffusion paths. These quasilinear problems are
formulated in appropriate spaces for which the cells respond to the local lineariza-
tion of the fissure pressure. It is shown that they are well-posed and that the
solutions depend continuously on parameters that determine the models. @ 1995

Academic Press. Inc.

1. INTRODUCTION

The objective here is to develop and investigate a system of partial
differential equations known as distributed microstructure models. These
arise as models of flow through fractured porous media. A fractured me-
dium consists of a large number of porous and permeable cells separated
by a highly developed system of fractures. The advantage of microstruc-
ture models over more classical porous media models is that they include
the additional information associated with the fine-scale structure of the
fracture system. In such a medium the fractures account for a very small
fraction of the total volume and most of the storage occurs in the porous
cells. However, the bulk of the flow occurs in the fractures due to their
very high relative permeability. An accurate model must describe the
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diffusion at two very different scales—the scale of the fissures and the
scale of the cells.

One approach to describing this situation is the use of double-porosity
models. For a region which consists of two finely interspersed materials,
the double-porosity approach is to consider averaged properties of both
materials existing everywhere in the region as if they were independent
parallel flows. At each point in the region, two sets of material properties
are defined. If we let u, represent the density of fluid in the first material
system and «; the density in the second, the classical parallel-flow double
porosity model would have the form

9 1

3 (au)) = V- (AVuy) + 3 (), — ) = fi (1.1.a)
2 (bup - V - (BVu) + =

az( 1) (BVu,) S(UE_UI)_fZ- (1.1.b)

Here a and A are functions representing the porosity and permeability
respectively of the first equation, and the functions b and B represent the
same quantities for the second material. The third term in each equation is
a crude representation of the exchange across the intricate interface that
separates the two media. See [8] for more information on such models.

One shortcoming of the classical double porosity approach is that it is
unable to take into account the geometry of the cells. Microstructure
models are a refinement of double porosity models in that they consider
the fracture system as existing throughout the entire region ) and con-
taining a given continuous distribution of cells. At each point x € () there
is specified a cell 1,. One partial differential equation is specified to
describe the global flow in the fracture system () and another is specified
in each cell ), for the flow internal to the cell ) ,. The global fluid flow is
described by a quasilinear equation of the form

Ea—t (a(ulx, 1)) = V- Alx, Vu) + g(x, 1) = f(x, 1), xeQ, (l.2.a)
and the local flow in each cell is described similarly by

2 (b, UG, y, 0) = Yy - Blr, v, VU) = Flx, 3,0,y € Q.
(1.2.b)

The subscript ¥ on the gradient indicates that the gradient is with respect
to the local variable y. A gradient operator without any subscript will
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mean that the gradient is taken with respect to the global variable x. For
simplicity, Dirichlet boundary conditions are assumed for the global prob-
lem, although other conditions could easily be considered. Similarly, we
shall set a(x) = 1, b(x, y) = 1, although any pair of non-negative functions
could be obtained by standard techniques [27].

The boundary values for each cell problem are taken from information
about the solution to the global equation in the vicinity of that point. The
tacit assumption of the microstructure models is that the cells are so small
that the global solution «# may be effectively approximated over the cell
boundary by an appropriate approximation to u. In the usual models with
distributed microstructure, the approximation used for this purpose is
merely the constant value of the global solution u«(x, r). The resulting
boundary conditions are either of the “*matched” or Dirichlet type in
which the concentrations inside and out are assumed equal, or they are of
the ‘“‘regularized’’ or Robin type in which the difference between inside
and outside concentrations drives the flux across the cell boundary. Our
objective here is to refine this model in order to more accurately describe
the flow through the cell system. If we consider the local coordinate
system centered at the middle of the cell {,, the best linear approxima-
tiontowonT,is u(x, 1) + Vaulx, 1) - y. This leads to boundary conditions
of the form

B(x,s,V,U) - v + % am(U — u — BVu-5)20, seTl,, (1.2.¢)

where 9m is a monotone function (or graph) and v is the unit outward
normal on I',. When 8 = 1, this means that the flux across I', is driven by
the difference between the concentration on the inside of the cell and the
best linear approximation to the concentration in the surrounding frac-
tures. The constant approximation corresponds to 8 = 0. The monotone
om is a generalized Fourier or Newton type relation between the bound-
ary flux and the concentration difference. It is usually a (single-valued)
function, but it is useful to allow a multi-valued relation in order to include
the case in which a given concentration difference permits a range of
values of flux.

The term g in the global equation (1.2.a) is an exchange term to describe
fluid flow between the fractures and cells, a function whose value at each
point x is obtained from the solution to the boundary value problem in .
This exchange term g consists of two parts, the amount of fluid flowing
into the cell ), to be stored and the divergence of the secondary flux that
is seen from the global region () as a result of fluid flowing across the cell
Q. or, more generally, through the cell system. In the case of a symmetric
cell Q,, the fluid flow into the cell is determined by the history of the value
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of the concentration at that point, and the fluid flow across the cell (or
through the cell system due to bridging between cells) is driven by the
concentration gradient in the surrounding global medium. In general, the
combined effects of the value and the gradient of concentration on the cell
comprise the best linear approximation of the global concentration that is
used in the boundary condition (1.2.c). To be precise, the average amount
of fluid flowing into this cell is given by

ﬁj{, B(x, s, V,U) - v ds,

where [Q),| denotes the Lebesgue measure of (1, and this contributes to
the ceil storage. The additional contribution to the distributed source g,
called the cell flux or secondary flux, arises from the vector function

1?)17 f] B(x, s, V,U) - vs ds.

This is the apparent flux seen at a point of the global medium due to the
difference between the amounts of fluid entering and exiting at symmetric
opposite points of the cell boundary. The total exchange term is then
given by

1
glx, t) = m fl B(x,y, V,U) - vds

- BV - (ﬁ“;:"’ L B(x,y, V,U) - vs a's), (1.2.d)

The effect of this new term with 8 > 0 is the main objective of this study.
See {30] for the case with 8 = 0.

In summary, the microstructure model that we will consider consists of
Eqgs. (1.2.a) and (1.2.b) coupled by the interface boundary condition
(1.2.¢) and the distributed exchange (1.2.d). We shall refer to this as the
regularized microstructure model. The limiting case *‘6 — 0"’ corresponds
to the condition

U=u+ BVu-s, seT,. (1.2.¢")

on the interface, and we shall include this case, which we call the matched
microstructure model. We shall show that these nonlinear problems are
well posed and that the solutions depend continuously on the regulariza-
tion parameter 8 > 0 and on the secondary flux intensity g8 > 0.
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Finally we mention that in the case of completely symmetric cells one
can separate the effects of storage from those of the secondary flux. This
corresponds to a decomposition of the exchange into its even and odd
components, respectively. Furthermore, by means of a Green’s function
representation of the solution of the cell problem (1.2.b) and (1.2.¢), the
storage and secondary flux contributions in g can be independently ex-
pressed as convolutions in time of the values and gradients of concentra-
tion, respectively. This leads to a functional partial differential equation
of the form

2 (a@ulx, 1 + kix, ) * ulx, 1)

— V- (A(x) Vui(x, t) + ky(x, -) * Vu(x, 1))
=fx,n, x€Q,1>0.

which is known as Nunziato’s equation [23]. For the case of 8 = 0, see
[24] for a very thorough development of the model and its mathematical
and numerical analysis.

The system (1.2) with 8 = 0, that is, the case of approximation of the
global concentration by a function of time at each cell, is similar to those
developed in heat conduction [14, see Section 148; 22], physical chemis-
try [25, 26, 16], soil science [9, 20], and in reservoir modeling [17, 2, 4].
See [28] for bibliographical remarks and perspective. Theory of related
systems has been developed in [29, 30, 19]. For the derivation of such
systems by homogenization from highly singular ‘‘exact’” models see (31,
21, 5, 6, 1]. To our knowledge, the case 8 = 1 considered here appears for
the first time in [3], although in an essentially equivalent discrete form of
the linear case, and in [15] in the nonlinear case.

Our plan for the following is to regard (1.2) as an evolution equation in
Hilbert space, and we shall construct the operator by appropriately re-
stricting a monotone operator on Banach space. If Vis a Banach space we
denote its dual by V' and the action of f &€ V' on u € V by (f, u). The
function A : V— V' is called monotone if (A(u) — A(w), u — uX = 0 for u,
v € V. We also consider multi-valued operators which arise as general-
ized derivatives of convex functions. Thus if j: V— R. = R U {+x}is a
convex function, its subgradient is the operator dj, given by dj(u) = {f €
V' if(v — u) = j(w) — j(u), for all v € V}. This gives a special class of
maximal monotone operators. When V is Hilbert space and (-, -) is the
scalar product on V = V', we say the multi-valued A : V— 2V is monotone
if {fi — f2, uy — uz) = 0forf; € A(w;), i = 1, 2. A monotone operator A is
maximal monotone if, additionally, the range, Rg(/ + A), is all of V. See
{7, 10] for an exposition of these operators and their applications to partial
differential equations.
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2. THE ABSTRACT EvOLUTION EQUATION

In the physical description of the problem, a cell (1, and a boundary
value problem is specified at each point of the global region (2. In order to
state this rigorously, we shall use the notion of a continuous direct sum of
Banach spaces. Let  be any measurable subset of R” and let L({),
L4(R") be the space of (equivalence classes of) Bochner ¢ integrable
functions from Q into L4(R"). Consider any function U € L4() x R?), If
{(x, y) represents a pair in the product 0 x R” then the function of x given
by U(x, -)isin L9(£}, L9R™) by Fubini’s theorem. This shows that LIy(Q} x
R") is contained in L4(Q), L4(R")), and a simple argument with step func-
tions shows that equality holds.

Let (2 be a measurable subset of X R" and let 2, be the x-section
Q,={y € R:(x, y) € @} It will be necessary to place some technical
restrictions on Q. We shall assume that the function giving the Lebesgue
measure of (2, , x — |Q,], is in L*(2) and is uniformly bounded away from
0. Identify L4(Q) as a subspace of L4(} X R") = L4(), L4R")) and each
L4€Q,) as a subspace of L4R") by zero extension. Thus we can identify

LyQ) = {U € L4Q, LYRY)): U(x) € L4,), a.e. x € O}

Denote the right side by L4(Q, L(},)). This is a continuous direct sum of
Banach spaces in that at each point x € (1, a function in L%}, LI(f1,))
takes values in a different Banach space.

In order to define Sobolev spaces and trace maps on the spaces devel-
oped above, we need some smoothness requirements on €} and on the
Q1 .’s. Assume that ) and each of the {1,.’s are bounded domains in R” and
that the boundaries 4Q, = T, are C? manifolds of dimension n — 1.
Assume also that each Q, lies locally on one side of its boundary. Let
WLe(Ql) be the Sobolev space of functions in LP(Q)) whose first-order
(distributional) derivatives also lie in L7(Q)). Define W'4(Q},) similarly.
Let W{?(Q) be the closure of C§ in W!-7(€). For 1 < ¢ < * we also define

LK, Wha(Q ) = {U € Li(Q, L4€,)): Ulx) € Whi((,), ae. x € (}

and [ U, dx < =).

Let y,: Wh4(Q2,) — L4(T,) be the trace maps from each cell to its bound-
ary. Let y denote the distributed trace on L4(§}, W'4(Q,)), defined as

y(U)x, s) = y(U(x))s) VxeQ, VseT,.
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Assume that the family of maps {vy,} is uniformly bounded so that the
distributed trace belongs to L9(Q), L4(T',)). It will be convenient to weight
the norm in the space L4}, L4(I',)) to include a scaling factor. Define a
function w on (} by

wix) = 1/]€,].

For U € L¥(}, L«T,)), we define the norm of U as

U g = [, WUl w0 .

Since w is bounded away from zero and is also bounded above, the same
elements belong to L4}, L4(T",)) with this norm as with the more standard
norm (i.e., with w = 1).

It is occasionally necessary to extend a function # € L9(€)) as a function
in L4(Q, L4T',)). We define an embedding A between the two spaces given
by constant extension, i.e., (Au)(x, 5s) = u(x), x € Q, s € I',.

Assume that we are given a function A : Q x R*" — R" which is measur-
able in its first component and continuous in the second. Assume also that
there exist constants ¢, ¢o > 0, 1 < p < =, and functions g; € L? (Q), go €
L(Q) such that for almost every x € Q and all ¢, n € R”,

JA(x, &) < cl€]P ! + gi(0), (2.1.2)
(Alx, €) — Ax,m), € — ) =0, 2.1.b)
Alx, £) - £ = ¢olé]? — golx). 2.1.0)

Define the operator & : Wi P(Q}) — W~ 17" (Q) by

sAulp) = fﬂ A, Vu(x) Vo) dx,  u, ¢ € WP(Q).

Define Au to be the restriction of sdu to C5(Q) so that Au = —V - A(-, Vu)
in the sense of distributions for each « € W, ™(Q). It is well known that
(2.1) implies that « is continuous, bounded, and monotone {7].

Next, we develop the operator @ on L4(Q, W'4(£),)) in a similar man-
ner. Recall that Q is a subset of {} X R". Assume that we are given a
function B: Q0 x R"— R"anda | < g < p. Assume that B is measurable in
its first two components and continuous in the third. Finally, assume that
there exist functions &, € L9(Q) and hy € L(Q) such that B satisfies for
almost every (x, y) € Q and all £, n € R™
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B(x, y, &)] = cléle! + hix, y), (2.2.2)
(B(x,y, &) — B(x,y,m), £ —m) =0, (2.2.b)
B(x, y, &)+ £ = col€]4 — holx, ). (2.2.¢)

For each x € ) define the operator B,: W4(),) — WL4(),)" by

Boww) = [ Bl y, Vo) - V) dy,  w, v € Wha(@,).

Define B,w to be the restriction of B.w to Cy(Q,) so that
Bw = -V, B’(x, -, Vyw)

in the sense of distributions on Q, for each w € W'4(},). Define the
corresponding distributed operator B:L9Q, WL4(Q,)) — LY,
Wi )’) by

BUP) = f“ B (U (x))D(x) dx, U, ® € LUQ, Whir,)).

This operator is likewise continuous, bounded, and monotone.

Let W = WHP(Q) x L4}, Wh4(Q1,)). This will be the energy space for
our problem. An element of this product space will usually be denoted by
a letter overscored with a tilde. The first and second components of this
pair will be denoted by the corresponding lower and upper case letters.
For example, & denotes the pair [«, U]. We shall regard « as an operator
from W into W' by A[u, U] = [du, 0]. Similarly, we define % from W into
W' by Blu, U] = [0, BU]. Any reference to & or & as operators on W
will be understood in this manner.

Next we construct the exchange term coupling the global and local
equations. Let

Tp: W — Li(§), LUT,))
be given by
Tglu, Ullx, s) = v U(x, 5) — Au(x) — Bs - AVu(x), xe,seT,.

Note that the operator A equals y ° Ao, where Agu is the constant extension
of u(x) to all of ). The expression U — Aot — y - AV Is In WH4(Q))).

LEMMA 1. Assume that 1 < q = p <. Then Ty is a continuous linear
function from W{P(Q) x L, W40 ,)) to LY, L4T,)).
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Proof. First we note that (pointwise a.e.)
| Tolue, UTle = kil Ul + (A + AV,

since |a + b + c|4 = 49(|al9 + |b|? + |c]9) and the diameters of the Q,’s are
uniformly bounded. Also there exists another constant &, such that

f ], 1y U1 ds wex) ds = ko 1Ulna d

because the distributed trace vy is a bounded linear operator. Finally, there
exists a constant k3 such that

In jr (INn + [N V|| ds wix) dx

= ks [, Quals + IVufy dx
= k3||“||%v*~~(n)’

since () is bounded and the W'< norm is dominated by the W' norm. |
The exchange term will ge given by a function m defined as follows. Let
m:R — R* be convex and satisfy the growth conditions

colx]4 = m(x) = Clx|9, x € R. (2.3)

For g € L4}, L4(T))), define

M(g) = fﬂ J’l m(g) ds w(x) dx.

LEMMA 2. M is a proper, convex, continuous function on the space
L2, L4(T))).

Also, f € aM(g) if and only if f € LY(Q, L9 (L)) and it satisfies f(x, s) €
am(g(x, 5)) for almost every x € Qand s € T',.

Proof. M is proper and convex because m is proper and convex. The
growth estimates (2.3) show that M is a bounded function. A lower semi-
continuous convex function is continuous on the interior of its domain.
Since the domain of M is all of L4(Q, L4(T',)), M is continuous. The
characterization of the subgradient is standard. |
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Finally we define

Mo = [ [ m(Tyax, ) ds wiw) dx.

Having established the continuity of 75, we may apply the chain rule for
subgradients (see [18]) to the composite map Mz = M o T, to obtain

BMﬁ = (TB)* ° M o TB

By using (-, -) to indicate duality pairing, the system (1.2) can be stated
as follows. Suppose we are given a function f: [0, T]— LP'(£}) X LY(Q). A
solution to the regularized model is a function @ : [0, T] — W such that

i@ [0, T1— LP () X LY (Q) and for every [p, ®] € W,

(L'(n), U'(D)], Lo, D) + d(u(n)e + BUND

+ 3 IMlu(0), Ullg. $) 3 (LW, F@), lp, ®D.

(2.4)

In order to characterize the matched problem with interface condition
(1.2.¢’) we shall use the space

Wp ={lu, Ul € W:Tylu, U] = 0},
the closed subspace of W obtained as the kernel of 7. Replacing W with
W, above gives the matched microstructure model with (1.2.¢"). In Sec-
tion 4 we show that the solutions to the regularized microstructure model
converge to the solution of the mached model as § — 0.
In order to show that the evolution equation (2.4) is an abstract version

of the system (1.2), we expand the abstract formulation in terms of inte-
grals:

0 J
J-“ {E u(x, e + fn‘ EY! Ux, v, H®(x, y) dy

+ A(x, Vu(x, 1) V‘p(x)} dx

+ J'n fn‘ B(x, v, VU, y, ) Vi®(x, y, 1) dy dx
1 1
+ s j&l T(T:] J'[ am(Tglu, UNTgle, P] ds dx

-, {f (x. 0g(0) + | Flx v, 00, ) dy} dx.
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Here dm denotes any (pointwise a.e.) selection in the sense of Lemma 2.
By setting ® = 0 we obtain

J —u(x, e + A(x, Vu(x, 1) Ve(x) dx

[ am(Tslu, UDOWL)

SJQ [N

+ Bs - AVe(x)) ds dx (2.5.2)
= f“ flx, Delx) dx.
Setting ¢ = 0 shows that for almost every x,
L Utx. y, 09x, ) dy
o, dt
+ fn, B(x, y, V,U(x, y, ) V,®(x, y, 1) dy
(2.5.b)

- T, yf am(Tglu, Uy ®(x, 5) ds

fﬂ Fx, y, )P(x, y) dy.

If B(x, -, U) is sufficiently smooth (i.e., contained in W' (Q,)") then the
classical Green's theorem shows that

| By, VUG v, 1) 9,0, v, 1) dy
= [ Bty VUG, v, ) - i@, y. 1) ds
~ | VB y, VUG, )L, 3, 1) dy.

Such an equality still holds in the absence of the regularity required above
if we denote the action of the abstract Green’s operator on test functions
by the above boundary integral. This convention will be used throughout
our presentation. See Lemmas 1 and 2 of [30] for details of constructing
the appropriate Green’s operator for this problem. Applying this to Eq.
(2.5.b) we obtain
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d .
le E U(xv y, t)d)(xi y) dy - jﬂ V.V : B(x* y’ V}'U(x’ Yy, t))(b(xy y, t) dy

+ é L {om(Tglu, UD) + B(x, y, V. U(x, y, 1) - v}y Plx, 5) ds

= [ Fex, v, 00, y) dy. (2.6)
This yields the partial differential equation
a R
EU—V}.-B(x,y, V,U)=F, y € Q,
and the boundary condition

B(x, s, V_VU)'v+éam(U—u—BVu-s)30, seTl,.

We use this in (2.5.a) to obtain
J;l Y u(x, e + A(x, Vu(x, 1)) Ve(x) dx
+ fn K;:T f] B(x, y, V,U) - v ds¢
{'Q {J’ B(x,y, V,U) - vs ds} Vo dx
a J(x, Helx) dx,
and this gives the partial differential equation
d

” 1 n
Eu—v.A(x,vu)+mfl,‘3(x,y,vyw-uds

—ﬁv-{lmf B(x, y, V,U) - Vsds}=f, x€ Q.

The boundary condition

u=20 on all
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follows since u € W§?(Q). Conversely, a solution of (1.2) satisfies (2.4)
and the above equivalence holds likewise for the matched problem.

3. RESOLUTION OF THE CAUCHY PROBLEM

The initial-boundary problem for (1.2) will be resolved as an application
of classical results on the Cauchy problem in Hilbert space. We shall
show successively that the stationary problem is well-posed, that the
operator obtained by restricting the stationary problem to L? is maximal
monotone, and that this operator is a subgradient. The last result gives
regularizing effects which show the evolution is of parabolic type. For
reference we list hypotheses that are used below:

H,. The measurable @ C Q0 x R" is given with sections }, = {y €
R7:(x, y) € Q} with smooth boundary T', as in Section 2, measures |(2,]
bounded and uniformly bounded above zero, and uniformly bounded
traces y,: W(Q,) — L4T,).

H,. The sections Q, are uniformly bounded in some direction, e.g.,
sup {|ya:y € Q,, x € Q} < =,

H;. The functions A, B, m satisfy (2.1), (2.2), 2.3) with1 < g=p <

m-

A consequence of H- is the Poincaré-type estimate

CO““D“I(’:«QJ = HY‘I)HZw(n,L"(I“)) + ”vy(DHZ“(QJ

in which the positive ¢y depends on the constant in H,.
The following result from [11] will be used for the proof of our first two
theorems.

THEOREM O (Brézis). Let V be a separable, reflexive Banach space
and let A:V — V' be a bounded, continuous, and monotone operator.
Let j: V — R. be proper, convex, and lower semicontinuous. If there
exists a vg in the domain of j such that

lim {Av(v - vp) +J(U)} = 4o,
o ol

then the range of A + dj is V'.

The Stationary Problem

THEOREM 1. Assume H;, H,, and Hy. The operator sl + B + (1/8§)
oMy maps W onto its dual.
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Proof. The following is a generalization of a similar proof from [30].
Since o + B is continuous, bounded, monotone, and My is a subgra-
dient, according to Theorem 0 it suffices to show that 4 + B + (1/8)Mj
satisfies an appropriate coercivity condition.

Let [u, U] be a pair in W = W{P(Q2) x LiQ, W'4(Q,)). It suffices to
show that

A + BUO)YU + (1/8)My(lu, U]) -
“u”W(‘,”(Q) + ”UHmn,w'-wn,n

+

as [lulwyry + 1Ulrowiany = +%

The a priori estimates on « and R show that there exists a constant
¢p > 0 such that

Aun) + BUWU)Y + (1/8)Mglu, UY)
= co| Vullznq) — gl + COHV}‘U“Z"(Q) - ”h()“L'(Q) 3.n
+ (U8)collyU — hu = Bs - AVullfuqy pur -

Suppose that the above ratio were bounded by a constant K. This would
imply that the right side of the above inequality is bounded by

K(lullwgeqy + 1U o wiamy)

which is in turn bounded by

K(“””wé»"(n) + ”V.\‘U”L‘J(QJ + “YU”U(Q.LM‘,);)
= K(ullwgry + 195Ul (3.2)
+ U = Mt = BAVUllpyq pary + Nt + BAVUl g )

Since ||V, is equivalent to the standard norm on W;7(Q)), every
term in (3.1) is bounded by a corresponding term in (3.2) raised to a power
larger than one, which implies that each is bounded. 1

Remark. Theorem 1 is also true with W replaced by W, the kernel of
Tg; since the coercivity estimate holds for every [u, U] € W, it trivially
holds for every [u, U] € Wz C W. Therefore Theorem | gives us the
existence for the matched microstructure model, as well as the regular-
ized model.
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The Maximal Monotone Case

Let H = L¥Q, LAQ,)) = LX(Q) and ¥ = LX) x H. The inner product
on H is given by

(U, Viy = Jn g Ul ) Vix, y) dy dx

and the inner product on # is given by

(. U o, VI = [ o) dx + (U, V).

We will identify ¥ with its dual through this inner product. Let N = o +
%B + (1/8)0Mz; we define a relation N on LY(Q) x LXQ) by [f, F] € Nlu,
ULiff [u, U] € (LX) X LA@) N W and [f, F] € N[u, U] N (LY Q) x
L(Q)). Each of the operators &, %, and dM; is monotone from W to W'
and thus N is #-monotone on D(N). We shall show that N is maximal
monotone, and this will give the following [12].

THEOREM 2. Assume H,, H., and Hs. For each uy € D(N) and f €
WIN0, T; ¥) there exists a unique u €& W0, T; ) such that u(r) €
D(N) forall0 =t < T, u(0) = ug, and

(dldtyu(t) + N(u(t)) D f(1)

Jor almost every in (0, T). Furthermore, if d/dt is replaced by the right-
derivative D*, the above equation holds for every t in {0, T).

Proof. Since N is the restriction of the monotone operator N : W —
W', N is monotone in L3(Q}) x L*Q). It remains to be shown that I + N
maps D(N) onto L} x L¥Q). We follow the proof of Theorem 1
to show that / + N maps (LX(Q) X LA(Q)) N W onto its dual (L¥() x
L¥Q) @ W', which contains L*(Q) x LX(Q). We apply Theorem 0 with
the convex function j defined by

. 1 )
Jlu, U]l = 5 Mglu, U] + %”“”iﬁ(m + %“U“lz(g)-

It is clear from the proof of Theorem 1 that

Al + BUYU + jlu, U]
”“”wé,-ﬂm + ”U

— +x

2y T NUlo.wraan + 10l

as the denominator goes to infinity. |
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As is the case with Theorem 1, Theorem 2 applies to the matched model
as well as to the regularized model; the proof consists of simply replacing
W with W in the above arguments.

The Subgradient Case

In the preceding, one could add certain first-order terms and obtain the
same results. Thus Theorem 1 and Theorem 2 can be extended and ap-
plied to various problems with convection. In the case of a subgradient
flow the parabolic regularizing effects are known and one can extend
these to apply to certain multi-valued operators and make use of the
calculus of subgradients. We consider this direction now.

Suppose that we are given a function ¢4 : §) X R” — R* which satisfies
the following:

For each x, the function ¢ — ¢,(x, £) is continuous and convex.

(3.3.a)
For each ¢, the function x > p4(x, £) is measurable. (3.3.b)
ealx, &) = 0 and walx, 0) = 0. 3.3.¢)

There exists go € LP (), g; € L'(£)), and constants ¢q and ¢, such that
Colél? — go(x) = @alx, &) = c||€]P + gi(x). (3.3.d)

Define &, : LP(Q)" — R by ®au) = [q @alx, u(x)) dx. Let 3,04 denote the
subgradient of ¢, with respect to its second component.

LEMMA 3. D, is a proper, continuous convex function of LP(Q)" and
P (v = Ll drpalx, ulx))v(x) dx.

Proof. ©,4(0) = 0 and so &, is proper. For each u € LP(Q})" the func-
tion x —> @4(x, u(x)) is measurable. (To verify this, let u, be a sequence of
step functions converging pointwise to u. For each n, ¢al(x, u,(x)) is mea-
surable. Therefore the pointwise limit is measurable.) The a priori esti-
mates on ¢, ensure that &, is bounded and, thus (by convexity), continu-
ous on the interior of its domain. But (3.3.d) shows that the domain of ®,
is all of L7({})". Thus, ®, is continuous.

Let h(x, £¢) be a selection out of 9,¢4(x, €). For any pair &, n € R", the
definition of subgradient states that

h(x’ §)(7’ - g) = (pA(X’ 7)) - @A(X, f)
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By integrating this over {} with £ = u(x) and n = v(x) we see that the
function x — d¢4(x, u(x)) is contained in d®4(x). To show that all ele-
ments of d®, are obtained this way, suppose that 4 € d®,(w) C L (Q)".
Thus,

| B = @) de < [ {oate, v@) = eatx, uC} dx, v € LAQY.

Let E be any measureable subset of 2 and define w(x) as v(x), if x € E, and
u(x), otherwise. Now substitute w for v in the above inequality. This
shows that

[ B0 - 1) ~ (eaw) = ealu@N} dx =< 0
for every measurable E C Q and, thus, the integrand is non-positive
almost everywhere and so h(x) € d.pa(x, u(x)) for almost every x. |

COROLLARY. If/i = dpa, then 4 = (P, > V).

Proof. For any continuous linear operator A and any proper convex
function ¢ continuous at some point in the range of A, the following chain
rule holds:

HpoA) = A*¥cdpo A.
(See [18].) Apply this with @, and V. |

The above development shows that with analogous assumptions on
¢p: Q X R" — R we can construct an operator ®z whose subgradient
equals 3. That is, we assume the following:

For each (x, y) € Q, the function ¢p(x, y, -} is continuous and convex.

(3.4.a)
For each ¢, the function ¢g(-, -, £) is measurable on Q. (3.4.b)
eplx, vy, &) =0 and ¢p(x, y,0) = 0. (3.4.¢)

There exists a g, € L1(Q) and positive constants ¢, and ¢; such that

Colé]? — gax, ¥) < @plx, y, €) < |7 + gilx, y). (3.4.d)
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Then we can define ®g: L4(Q)" — R by &, (1) = fQ ep(x, y, Ulx, y)) dy dx
and the chain rule gives 3(dz° V,) = =V, - ddgo V, in LYQ, W!4(Q,))" as
before. That is, F € (P o V,)(U) means there is an H € L9(Q)" with

FV) = [ Hey) - WV, dydx,  VE LUQ, WH(Q),

and H(x, y) € deglx, y, V,U(x, y)), a.e. (x, ¥} € Q. Since the sum rule for
subgradients holds in our situation, this says that the operator N of Sec-
tion 3.2 is a subgradient if s{ and & are constructed as above because N =
(P4 + ®p + (1/8)My). This allows us to obtain much stronger results
about the regularity of the solution to the Cauchy problem «'(f) + Nu(t) >
f.

Let ® = &, + dg + (1/8)Mz. O can be extended to a convex function
@4 from 7 to R.. by defining it to be infinite outside of W N .

LEMMA 4. @y is a proper, lower semi-continuous convex function on
€ and the restriction of 9P 1o ¥ agrees with oby on W N #.

Proof. &y is proper because @ is. Also, extending @ to be infinite off
of a convex set does not change its convexity. We will show that & is
weakly lower semi-continuous. Suppose that i, — iz in #. Assume that
{®y(a,)} is bounded; otherwise there is nothing to prove. Since weakly
convergent subsequences are bounded, we know that

{Hl]n”%( + (Dll( lzn)}

is also bounded. The coercivity estimate in Theorem 2 shows that {z,} is
bounded in ‘W N #. Therefore {i,} has a subsequence {it,} which con-
verges weakly in W N #. The weak limit must be # since &, — & in #. In
fact, the original sequence {#,} must converge to i; otherwise, some
subsequence stays outside of some weak neighborhood of /7 and we would
not be able to extract a further subsequence converging to #. Thus

& (i) = lim g)nf byla,)

from the weak lower semi-continuity of ® on W N #.
Next, we must establish that for any 4 € W N %,

ab@E) N H = aPya).

Assume that w € o®(z) N 7. Forevery 0 € W N *,
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w, 0 — i) = Oy(0) — Pyi). (3.5)

Ifo € ¥but o & W, dy() = . and thus Eq. (3.5) holds for all v € #.

Now pick 4 € ¥ and assume that w € d®y(i) N ¥ so that (3.5) holds for
all o € ¥. Since &y is proper, there exists § € ¥ such that (D) is finite
and thus ®x(d) is finite, i.e., s €W N ¥%. |

From Lemma 4 we know that the operator N is the subgradient of a
proper, lower semi-continuous convex function on ¥ and thus that the
following result holds [12].

THEOREM 3. Foreach f€ LX0, T, ¥) and ity € dom(®d,,), there exists a
unique i € C(0, T, ¥) for which ia(t) € D(N) for almost every t € (0, T),
= LX0, T; %), yla(:)) € LY0, T), a(0) = iy, and

%’f (1) + NG@®) 3 f0)

for almost every t € (0, T). If, in addition, i, € dom(®y), then i € W0,
T: W).

The additional hypothesis that our differential operator is a subgradient
allows us to start with less regular data and yet achieve smoother solu-
tions. We drop the assumption of Theorem 2 that our forcing function fbe
absolutely continuous and only require that it be square integrable. Initial
conditions iy may be chosen from % rather than from the more restricted
D(N) C W. Solutions that start outside of the domain of the operator N
are drawn into its domain for almost every future time . If f were as
smooth as required for Theorem 2, the solution would be in the domain of
N for all ¢ > 0.

4. DEPENDENCE ON PARAMETERS

Dependence on &

THEOREM 4. As 8— 0, the solutions to the regularized microstructure
model converge strongly in C(0, T; ¥) to the solution to the matched
model.

By the convergence results of [13], it suffices to show that the solutions
to the resolvent equation for the regularized model converge strongly to
the solution of the resolvent equation for the matched model. This will be
established in the following sequence of lemmas.
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Let ¥V = W N ¥ and let ¥ N #. For every f € ¥ and for every
8 > 0, there exist unique s = [us, Us] €V, ity = [ug, Uyl € Vg, and ps €
(1/8) aMgiis such that

H~5+.9qﬂ5+%ﬁ5+ﬂa=f in V' (41)
g + Aig + Big = f in Vj. 4.2)

LEMMA 5. The set {ii3} is bounded in V.

Proof. From the subgradient inequality, we know that for any & € W,
Sus(C — ds) = Mg(D) — Mp(iis).

Choosing ¢ = 0 shows that

watls = (1/8)Mg(its). (4.3)

Therefore,
(f, us) = (s + Aity + Bids + ps, is) (4.4)
= ||laglle + Alus)us + B(Us)Us + (1/8)M(ids). 4.5)

As long as 43 # 0, we have

(f, ds) - laslfie + sAushus + BUHUs + psiis
ls]l gl ’

(4.6)

The left side of the above expression is bounded independent of 8. From
the prcof of Theorem 4, we know that the right side cannot be bounded
unless the denominator is bounded. |

Since @5 is a bounded sequence in a reflexive space, there exists a
weakly convergent sequence i; with lim_. 8§ = 0. We will denote the
above sequence simply as ;. Let i@ denote the weak limit.

LEMMA 6. aMgii 3 0.

Proof. It suffices to show that Mgzu = 0, since the subgradient of a
function at its minimum contains zero. Mg is weakly lower semicontinu-
ous, since m is lower semicontinuous. Thus

Mg < lim inf Mgiis.
B n BUs

From Eq. (4.3),
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Mﬁ(ﬂ,s) = 8[1,5!25.

Since & and % are bounded operators, {diis} and {%Bi;} are bounded in
V', Thus {us} is bounded. Equation (4.3) shows that

lg_rg Mgiis = 0
and so Mg = 0. But Mg is always non-negative, and so Mg = 0. |

LEMMA 7. (A + B)iis converges weakly to (A + RB)ii as 6 — 0.

Proof. Since A + % is a bounded operator, the sequence {(4 + Bz}
is bounded in V"’'. By passing to a subsequence if necessary, we may
assume that it is weakly convergent. We must show that the weak limit is
(A + B)a.

Since & + % is pseudomonotone, and thus type-M, we need only verify
that

lim sup ((&Q + Bas, 1y — L;) = 0,
5—0

or, equivalently,
lim&_’soup (f— 5 — ps, iy — 1) = 0.

Since s — i, (f, #s — ) — 0. Using this, we reduce the problem to
showing that

lll’gl.*(l)nf ((l]a, Us — IZ} + ([1.5 -0, ds — ﬂ)) = Q.

The first term is non-negative by the weak lower semicontinuity of the
norm and the second, by the monotonicity of aMs. |

LEMMA 8. @ = .

Proof. Let v € Vg be given. Since V5 C V,
(ds + Aiis + Bits + ps, 0) = (f, ls).
In fact,
(s + Ais + Bis, 0) = (f, 0,

since U € ker Tg.
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By letting 8 — 0 we see that
(i + Aa + RBda, v) = (f, 0).
Since 5 was arbitrary,
a+dia+ Ba=f inV.

By uniqueness of solutions to Eq. (4.2), 7 = 4. |
LEMMA 9. As 8 — 0, a5 converges strongly to iy in ¥.

Proof. From Eqs. (4.1) and (4.2) we have

<115 + &Ql;,s + %115 + Mg s 125 - 120) = <f: 1]5 - l?o) (47)
<u~(‘ + &QIZ() + %ﬂo, da - l20> = <l?() + .ﬂl,;() + %120, l75> - <f‘, l?()). (48)

Subtracting equations yields

<l15 . 12() + &glk - \QQIZ() + %Lig - %l?(), 175 - l?()) + <,U,§ - 0, 125 - lZ(])
4.9)
= (f_ 110 - -ﬂu"o - %IZQ, L?g;).

Using the monotonicity of of + B + (1/8)dMp and the fact that aMzi, S 0,
we have

<f— 120 e ‘ﬂl]o - %L?(), I],s) = <l;5 - l?(), 175 - l?()). (4]0)

The left side of Eq. (4.10) goes to zero as ii; — i, and the right side is |jis —
I [ |

By the uniqueness of the weak limit, the original sequence {as} con-
verges to fg.

Dependence on 8

For rhis section, we assume that the monotone graph am arising from
the cell boundary condition is a Lipschitz function. For this reason we
will denote om by m'.

THEOREM 5.  As 3— 0. the solutions to the regularized microstructure
model with 8 positive converge strongly in C(0, T; 3) to the solution with
B=0.

Proof. As before, we will show that the solutions to the corresponding
resolvent equations converge strongly in the pivot space # and apply [13].
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For every f € ¥ and for every 8 > 0, there exist iz = [ug, Ugl and 4o =
[ug, Upl in V" such that

g + slig + Big + (1/8)dMgiig = f  in ¥V’ (4.11)
do + ity + By + (1/8)dMytty = f  in V", (4.12)

Subtract equations and apply the test function dg — i#,. We have

lig — dolfe + {(Aiig — ity + Biig — Bity, iz — ity)
+ (1/8) (OMgitg — IMgily, g — i) 4.13)
+ (1/6) <6Mﬁ12() - aM()IZ(). IZB - ﬁo) = 0.

By the monotonicity of sd + & and the fact that M is a subgradient,
the middle two terms are non-negative. Thus

s — dolfe = — (1/8) (9Mpiio — IMytty, dg — fo).

The following lemmas will allow us to conclude that the right side goes to
0Oasg— 0. |

LEMMA 10. The set {ig} is bounded in V.

Proof. This will be essentially the same proof used for Lemma 5. For
each B,

<IZB + -ﬂl]ﬁ + %ﬁﬁ + Mg.81 dﬁ) = (f; L?ﬁ). (4.]4)
Following the same reasoning as [.emma 5, we may conclude that

ezl gl

(4.15)

As before, the coercivity estimate in the proof of Theorem 4 aliows us to
conclude that {g} must be bounded in V. 1

We must establish that

lim (dMpiiy — dMoti, g — ig) = 0.
B0

We know that

(aMﬁlio, dﬁ - do) = aM(Tﬁlio)TB(IJB - LZ(])



754 COOK AND SHOWALTER
and
(OMoilo, g — uo) = M (Toiig) To(iig — o).

To show that the difference between the above expressions vanishes as
B — 0. we add and subtract oM (Toi0)Ts(sis — i) are thus break the task
into the following two lemmas.

Lemma 11, lim (2M(Tpito) — SM(Toit) Tyttt — iio) = 0.

Proof. The difference (oM (Tgilg) — oM (Toito))Tp(iiz — #y) may be ex-
panded in terms of integals as

[, ] o' @i = m (TN Tty = ) ds wio) dx. (4.16)

The absolute value of the expression (4.16) above is bounded by
N} KBls - Vi |Tglip — i)lds wix) di, @.17)

where k is the Lipschitz constant of m’. Since we are only concerned with
small £’s, we may assume that 8 is contained in [0, 1] so that the operators
Tg are uniformly bounded in the operator norm. We may conclude that the
expression (4.17) is bounded by 8K, where K is independent of 8 because
the dg's are bounded in V. |

LEMMA 2. LILT(} aM(T()ﬁ[))(Tﬁ - T(])(l?ﬁ — dy) = 0.

Proof. We expand aM(Toido)(Tg — To)iig — itp) as

~B fn fl m'(Tolip)s - Viug — o) ds wix) dx.

Since /m’ is Lipschitz and the ug’s are bounded in H)Q), the above inte-
gral is bounded independently of 8. |
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