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This paper investigates the concept of randomness within a complexity theoretic framework. 
We consider an unpredictability approach for defining randomness in which the preditions are 
carried out by tinite-state automata. Our model of a finite-state predicting machine (FPM) 
reads a binary sequence from left to right and depending on the machine’s current state will 
generate, at each point, one of three possible values: 0, 1, or #. A response of 0 or 1 is to be 
taken as the FPMs prediction of the next input. A # means no prediction of the next input is 
made. We say that an infinite binary sequence appears random to an FPM if no more than 
half of the predictions made of the sequence’s terms by the FPM are correct. The main result 
of this paper is to establish the equivalence of the sequences which appear random to all 
FPMs and the co-distributed sequences, where a binary sequence is called co-distributed if 
every string of length k occurs in the sequence with frequency 2-“, for all positive integers k. 
We also explicitly construct machines that exhibit success in predicting the sequences which 
are not co-distributed. Finally, we show that for any given co-distributed sequence, all infinite 
subsequences which are constructible from FPMs are also co-distributed. c 1988 Academc 

Press, Inc 

1. INTRODUCTION 

The concept of randomness plays an important role in diverse fields. Some of the 
many applications of random processes include sampling, probabilistic algorithms, 
simulations, signal processing, cryptographic systems, and numerical methods. 
Most often, however, methods for generating pseudo-random numbers are based 
on ad hoc procedures and involve little theory. The development of a definition of 
randomness from a theoretical foundation remains a significant problem for current 
mathematical research. 

One approach to such a definition is to consider randomness with respect to 
various computational models (see [2,9, 14, 15, 19, 23, 34, 351). Suppose X is an 
arbitrary infinite binary sequence. One method of measuring the randomness of X is 
to assess the predictability of subsequent terms of X based on its earlier terms. With 
this method, the randomness of X depends on the type of prediction schemes 
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applied. This paper proposes a definition of randomness using an unpredictability 
approach in which the predictions are carried out by finite-state automata. 

We have chosen to focus on the finite automaton to provide a class of prediction 
schemes because of its simplicity as a minimal computational model. One conten- 
tion of this paper is that by considering such a restrictive computational model, the 
relationship between the notion of randomness and complexity theory can be 
investigated more thoroughly. We establish the equivalence of sequences which are 
not predictable by finite automata and those that are co-distributed, thereby 
highlighting distributivity as a basic feature of randomness. 

2. PREDICTING MACHINE MODEL 

Our model of a finite-state predicting machine is one which reads a binary 
sequence from left to right and, depending on the machine’s current state, will 
generate at each point one of three possible values: 0, 1, or #. A response of 0 to 1 
is to be taken as the FPMs prediction of the next input. A # means no prediction 
of the next input is made. More formally, a finite-state predicting machine (FPM) is 
an ordered 6-tuple (Z, R, S, sO, f, g), where 

Z is the input alphabet (0, 11; 
R is the response alphabet (0, 1, # }; 
S is a finite non-empty set called the set of states; 
s0 is the machine’s initial state; 
f is the transition function which maps S x Z into S; 
g is the response function which maps S into R. 

For convenience, we extend the domain of the transition function f such that the 
expressionf(s, W) signifies the state to which the machine goes if it is in state s and 
receives the string W as input. 

Given machine 44, its complement MC, is found by replacing each state’s predic- 
tion response having value 1 by 0, and vice versa. A prediction of # is left 
unchanged. 

A predicting machine can be represented by a state diagram. Each state, s, along 
with its response value, g(s), is represented by a labeled square. A double square 

FIG. 1. State diagram of an FPM. 
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SEQUENCES: 

INPUT: 0 1 0 1 I 1 0 1 1 0 

STATE: S S A D A 

RESPONCE: 0 

PREDICTIONS: 4 4 4 4 4 

FIG. 2. Results of an FPM processing an input. 

identifies the initial state. Each square has two outgoing arrows labeled 0 and 1 
whose destinations are the states specified by the transition function f, see Fig. 1 for 
an example. Accordingly, for the string W = 0101 110110 the scenario of Fig. 2 takes 
place. 

One indication of how well this machine has predicted W is the ratio of the 
number of correct predictions to the number of predictions made. In this example a 
total of eight predictions were made, of these live were correct, thus yielding the 
ratio 2. 

3. PREDICTJON RATJOS 

We now consider predictability in the more general case that the input to a 
predicting machine is an infinite binary string X. The number of predictions made 
could be either finite or infinite. In the latter case, to assess the predictability of X 
we use the upper limit of the prediction ratio as the number of predictions goes to 
infinity. Assuming that machine A4 makes an infinite number of predictions on X, 
the prediction ratio CD is 

C(P) @(M, X) = lim sup -, 
p-00 P 

where c(p) is the number of correct predictions made among the first p predictions. 
If @(M, X) > $, then M will be designated as a Predictor of X, since M exhibits 

some success in making correct predictions on input X. Because we want the 
success to be a phenomenon in the long run, rather than on just some initial 
portion of X, a Predictor of X by definition must make infinitely many predictions 
when processing X. We say that X appears random to machine M iff it4 is not a 
Predictor of X. 

4. PREDICTORS FOR (k )-Distributed Sequences 

One type of infinite sequence relevant to our investigation of randomness is a 
k-distributed sequence. A binary sequence X is k-distributed if 

Pr(X,, X,, i, . . . . X,+,-i =x,, x2, . . . . xk) = 1/2k 
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for all binary strings x1, x2, . . . . xk. In the above defmition, we use the expression 
Pr(X,, x,+ 1, . . . . x,+,- 1 = Xl, X2, . . . . xk) to mean lim,, m (f(n)/n), where f(n) iS 

the number of occurrences of the string x1, x2, . . . . xk among the first n terms in X. 
A (k)-distributed sequence is one that is k-distributed but not (k + l)-distributed. 

THEOREM 1. Every (k )-distributed sequence has a (k + 1)-state Predictor. 

Proof Assume X is (k)-distributed. Since X is not (k + 1)-distributed, there 
exists at least one string of length (k + 1) for which its probability of occurring in X 
either does not exist, or exists but does not equal 2--(k+1). To account for the 
possibility that a probability is not well-defined, we introduce below the notation 
E(Xn+k= zlX,X,+, ...Xn+k--l= W). Let 

v(m) ~(xn+k=zlxnxn+l ‘..xn+kpl= W)=limsup-, 
m-cc m 

where v(m) equals the number of times that the term z E (0, 1 } has followed an 
occurrence of W, among the first m occurrences of W in X. 

For some W= w,wz ...wk, to be specified momentarily, let the prediction 
scheme of M in its entirety be that a prediction of a 1 is made after every 
occurrence of W. Note that 

and 

@(M”,X)=FT(X,+,=0lX, . ..Xn+k-.= W). 

Since X is (k)-distributed, there exists some W for which 

~(x,,+k=oIx, “‘xH+k-l= w)>$ or E(x,,+k=l(xn ‘..xn+k-l= w)>i. 

Let such a string W be the one given in the construction of M. Accordingly, either 
M or MC is a Predictor of X. Assume the states of A4 are labeled sr, s2 ...sk, Sk+ ,, 
with s1 as the initial state. Let g(sk+ r) = 1, and g(s,) = # for 1 <i< k. Let 
ftsj3 z, = sL.(j, ;)2 where L(j, z) = 1 + (the maximum length of a suffix of string 
twl, w2 .a'wj-l, z) which is a prefix of W). Machine M having k + 1 states has now 
been constructed. 1 

Although this theorem provides a (k + l)-state Predictor for any (k)-distributed 
sequence, it is possible that a Predictor with fewer states exists. For example, the 
infinite sequence having period 1111001011010000 is a (4)-distributed sequence 
which has a 2-state Predictor. 
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5. BLOCK STRUCTURE 

We now evaluate @(IV, X), where X is an cc-distributed sequence and M is an 
arbitrary FPM which makes an infinite number of predictions on X. An m-dis- 
tributed sequence is one that is k-distributed for all positive integers k. Henceforth, 
we assume that M is an n-state machine, in which the states are labeled s, , s2, . . . . s,. 

One aspect of our approach for evaluating @(M, X) is to section X into blocks of 
some judiciously chosen size. The sectioning of X into blocks of length k can be 
viewed as setting up barriers between certain terms of X, starting at the beginning 
of X, and spaced a distance k apart. An important property of sectioning X into 
blocks is given below and is due to John Maxfield [24]. 

LEMMA 2. For any positive integer k, if an m-distributed sequence is sectioned 
into blocks of length k, then blocks containing any particular string of length k occur 
with a frequency of 2 -k. 

With respect to machine A4, the block structure of X for block size k is furthered 
developed by labeling each barrier with the state of A4 which occurs at that junction 
of processing X. We use the terminology “a block initialized with state s,” to signify 
a block whose left barrier is labeled sj. 

6. SPECIAL SUBCLASS OF FPMs 

Besides the use of a block structure, another basic aspect of our method for 
establishing that co-distributed sequences appear random to all FPMs is to single 
out for consideration just a certain subclass of FPMs. In this section, we define con- 
nected non-stop FPMs and show that if there exist Predictors for co-distributed 
sequences there would also exist some connected non-stop Predictors for co-dis- 
tributed sequences. 

For any given machine M and states si and sj, we say that state sj is reachable 
from state si if there exists a string P such that sj is the state that M goes to, if it is 
in state si and receives the input P. Machine A4 is said to be connected if any state is 
reachable from any other. 

LEMMA 3. Zf there exists a Predictor of an co-distributed sequence, then there 
exists a connected Predictor of a, not necessarily the same, co-distributed sequence. 

ProoJ Let X be an co-distributed sequence, and suppose M is a Predictor of it. 
Consider the following equivalence relation among the states of M: two states are 
in the same equivalence class iff each is reachable from the other. Let a component 
of the state diagram of M consist of the states in an equivalence class along with the 
outgoing arrows that remain in that class. Because of the finite number of com- 
ponents, and the fact that once M leaves a component it may never return to it, in 
the course of processing any infinite binary string, h4 will eventually remain in one 
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component. Let B refer to the component that M ultimately remains in when 
processing X. Since any outgoing arrow that leaves B will never be used when X is 
processed by M, we can w.1.o.g. assume that all outgoing arrows from states in B 
are assigned only to states in B. Let Ms denote the machine consisting of com- 
ponent B, with initial state being the first state in component B visited by M when 
processing X Because of the equivalence relation by which the components were 
induced, M, is a connected machine. Let X, be the remaining terms of X to be 
processed when M enters component B. Since eventually all subsequent predictions 
made by M while processing X will emanate from component B, then 
@(M, X) = @(M,, X,). Moreover, since @(M, X) > f, then M, is a connected 
Predictor of the co-distributed sequence X,. 1 

For any given machine M, state s, and input sequence X, let 

E(s) = lim sup -, 
m+m m 

where o(m) is the number of times that M is in state s when the first m terms of X 
are processed. Because of its positive value, the following bound is sufficient for our 
purposes. It should be noted, however, that a much stronger bound is provable. 

LEMMA 4. Let M be a connected n-state predicting machine, and X be oo-dis- 
tributed, For any state s, E(s) > 2-“(“- ‘). 

Proof. The principal technique of the proof is to derive a finite string, Q, with 
the property that regardless of the state which M is in when Q begins, in processing 
Q, there will be at least one visit to state s. W.1.o.g. assume that s1 is the given state. 
Define Q as P,P, P, .. . P,, where the Pis are determined inductively as follows. 
Let P2 be a string of length at most n such that M goes to state s1 if it is in state s2 
and receives the input Pz. For 3 < i < n, let Pi be a string of length at most n such 
that M goes to state s1 if it is in statef(si, P2P, . . . Pip ,) and receives the input Pi. 

Letting q denote the length of Q, then q< (n- l)(n), since Q consists of (n- 1) 
Pi-terms each of length at most n. Because X is co-distributed, we obtain 

Pr(Q occurring in X) = 2-y > 2-“(“- ‘). 

Since each occurrence of Q signifies at least one visit to s1 , then i%(s, ) > 
2-“(“-1) 

. I 

We now consider machines that have the property that no state is assigned the 
prediction response #. A machine with this property will be referred to as a non- 
stop predicting machine, since such a machine makes a prediction of every input bit. 
One sequence of interest resulting from processing a sequence by a nonstop FPM is 
a record of the correctness or incorrectness of the predictions. For a given nonstop 
machine M and input W, the assessment sequence is a binary sequence (of the same 
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length as W) whose ith term is 1 if wi was correctly predicted, and whose ith term is 
0 if bvi was incorrectly predicted. 

An important relationship exists between input sequences and assessment sequen- 
ces of the same length. 

LEMMA 5. For any given nonstop M and positive integer k, there is a l-l 
correspondence between the set of input sequences of length k and the set of 
assessment sequences obtained by processing these inputs on M. 

Proof: Since M is given, its initial state sO, transition function f, and response 
function g are known. Furthermore, the response function of MC, denoted here by 
g,, can be determined. Given any string A of length k, a sequence W is derived 
below which when processed by M yields A as the assessment sequence. The terms 
of W, determined sequentially are: 

For i = 1: if a, = 1 then wi = g(sO), else wi = g,(sO). 
For i> 1: ifa,= 1 then w;=g(f(s,, w, . ..w._,)), else wi=gC(f(s,, M”~ . ..wipl)). 

By showing that every string of length k is an assessment string for some input to 
machine M, we have established the l-l correspondence between input sequences 
and assessment sequences of the same length. 1 

Let (M, s,), for 1 < i < n, denote the machine that results by resetting the initial 
state of M to si. 

LEMMA 6. For a given nonstop M, consider a string of length k for which at least 
one (M, si) makes precisely c correct predictions given the string as input. There are 
at most n x (f) such strings. 

Proof The set of assessment sequences corresponding to inputs of length k for 
which any particular (M, si) makes precisely c correct predictions consists of the 
binary strings of length k which have precisely c terms equal to 1. By Lemma 5, 
each of these assessment sequences corresponds to a different input sequence. 
Therefore, there are (2) inputs of length k on which (M, si) make precisely c correct 
predictions, and there are n (M, si) machines to be considered. 1 

7. No PREDICTORS FOR co-Distributed Sequences 

In this section we establish that there are no Predictors for co-distributed 
sequences. 

LEMMA 7. If there esists a Predictor of an m-distributed sequence, then there 
exists a nonstop connected Predictor of an m-distributed sequence. 

Proof: Assume M is a Predictor of some co-distributed sequence X. By 
Lemma 3, we can assume w.1.o.g. that M is connected. Let S, be the set of states of 
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M with prediction responses of 0 or 1, and S2 the remaining states. If S2 is empty 
there is no need to continue. 

Let M’ be derived from M by resetting each prediction response of the states in 
S2 with 0. We proceed assuming that both @(M’, X) = $ and @(MC, X) = $, since if 
the contrary were true then either M’ or M’” would be an example of a connected 
nonstop Predictor of X. We note that @(M’, X) is not determined entirely by the 
predictions made by the states in SZ since, by Lemma 4, E>O, for each s in S,. 
Further note that with machine M’, the success of the states in S, in making correct 
predictions (as indicated by @(A4, X) > 4) is offset by incorrect predictions made by 
states in S2 (as indicated by @(M’, X) = 4). Therefore, a connected nonstop Predic- 
tor of X is obtained from M’ by changing the prediction responses of the states in 
S, to their opposite value, since the intervals of success for S, which were 
previously negated by incorrect predictions by S, will now be enhanced by correct 
predictions by SZ. 

In summary, by applying the result that each state of a connected machine con- 
tributes to the overall prediction ratio and by reassigning some of the prediction 
responses of M, we have shown that if there exists a Predictor of an co-distributed 
sequence, then there exists a nonstop connected Predictor of an co-distributed 
sequence. i 

THEOREM 8. Zf X is m-distributed, then it has no Predictor. 

Proof: Our proof is by contradiction. Suppose that M is a Predictor of some 
co-distributed sequence X. By Lemma 7, we may assume that M is a connected 
nonstop machine. Since M is a Predictor of X, then there is some positive valued E, 
say E~,~, so that @(M, X) = f + E~,~. 

We construct a sequence Y, based on the block structure of X induced by M and 
appropriate block size k, to obtain an upper bound of @(M, X). Although k is yet 
unspecified, assume that k 2 log, n. In deriving Y, we define below functions /I and 
CC For each string W of length k, let 

/I w = ~,a: (proportion of correct predictions made by (M, si) on input W}, 

where S is the set of states of M. Rank the strings of length k from 1 to 2k, such 
that for any two strings (of length k) U and V, the rank of U is less than the rank of 
V iff /IU 2 fly. Assign an a value to each W as follows: 

l If the rank of W is in the range [ 1, n], then set c(~= 1. 
l Otherwise, determine the value of j for which the rank of W falls in the 

range 

Let Y be the sequence of CI values formed by mapping each block of X to its a value. 

571/37/3-s 
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By applying Lemma 6, we have that fiW d clW, for any W. Hence, regardless of 
which state of M initializes a block consisting of string W, the proportion of correct 
prediction made within the block does not exceed CI~. Accordingly, the average 
value of the terms of Y is an upper bound of @(M, X). Let D, be the set of all 
strings of length k with ranks in the range [l, n x L2k/n_l]. Let D, be the set of 
remaining strings of length k. 

Let hk be the average proportion of heads among the l/nth most successful out- 
comes of tossing a fair coin k times. Since it is possible to associate uniquely with 
each such outcome n strings of length k from D, each of whose tl value equals the 
probability of the outcome, the average CI value of the strings in D, equals hk. Since 
the average a value of the strings in D, does not exceed that of the strings in D,, 
the strings in D, have an average CI value no more than hk. Accordingly, since all 
k-length strings are equally likely among the blocks of X, then hk is an upper bound 
for the average value of the terms of Y. Hence, @(M, X) < hk. 

By the well-known properties of the binomial distribution, the upper l/&h area 
of the distribution curve of the proportion of heads among k tosses of a fair coin 
becomes arbitrarily close to f, as k increases. Hence there exists a k such 
that h, < f + E~,~. Accordingly, for such a k, @(M,X) d hk < i+ a,,,. But this 
contradicts our original assumption that @(M, X) = f + E~,~. 1 

8. CHARACTERIZATION OF FINITE-STATE RANDOMNESS 

Using some of the results derived above, we now prove the following: 

THEOREM 9. The sequences that appear random to the class of finite-state 
predicting machines are precisely the co-distributed ones. 

Prooj Since a sequence which is not co-distributed is (k)-distributed for some 
k, then by Theorem 1, any sequence which is not co-distributed has a Predictor. By 
Theorem 8, any sequence which is a-distributed has no Predictor. i 

To apply this theorem in an interesting setting, imagine that the prediction 
schemes provided by FPMs are those adhered to by gamblers. The game is to 
occasionally make predictions of the terms of an infinite sequence supplied by the 
house. The rules are simple, the gambler must pay $ 1.00 for every prediction he 
makes and will receive $2.00 for a correct prediction. If the sequence supplied by 
the house is co-distributed, then in the long run, assuming the gambler makes an 
infinite number of predictions, no matter what finite-state prediction scheme he 
chooses, he will not beat the system. Perhaps the only good news for the gambler 
who is doing poorly is that by continuing to gamble, in the long run he will break 
even. In contrast, if the sequence made available by the house is not co-distributed, 
then there is a finite-state predicting scheme the gambler can follow to beat the 
system. 
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9. SUBSEQUENCES CONSTRUCTIBLE FROM FPMs 

For a given machine M and sequence X, define subsequence C,. x as the terms of 
X taken in sequential order for which machine M has tried to predict. A sub- 
sequence of X is said to be constructible by an FPM if the subsequence equals C,,, 
for some M. We now prove that if X appears random to all FPMs, then all infinite 
subsequences of X constructible from FPMs also appear random. This is an 
appealing property since one criterion used in critiquing the merits of a definition of 
randomness is if the infinite subsequences of a random sequence are also random. 

THEOREM 10. If X is an co-distributed sequence and M makes an infinite number 
of predictions on X, then C,,, is also an w-distributed sequence. 

Proof If C,,, were not co-distributed, then it would be (k)-distributed for 
some k. Suppose this is the case. We show how to construct machine T based on 
k + 1 copies of M for which either T or T” is a Predictor of X. This will contradict 
Theorem 8 and prove our result. 

Since C,, x = C,!, x, where M’ is obtained from M by replacing each state’s 
prediction response having value 0 to 1, we can assume w.1.o.g. that all states of M 
which make predictions are assigned the response 1. For notational convenience, let 
C represent CM,x, and let s1 be the initial state. Since C is (k)-distributed, there 
exists a string W for which 

~(Cn+k=OICn...Cn+k-l= W)>$ or ~(Cn+k=lICn...Cn+k-l= W)>t. 

Based on such a W and machine M, the prediction scheme of T is as follows: 
whenever the preceding k terms that M has tried to predict equal W, T will predict 
a 1 of the bit that M next tries to predict. 

We now construct machine T. Machine T has n x (k + 1) states which are indexed 
by a double subscript. Let z E (0, 1 }, and L(j, z) be as defined in proof of 
Theorem 1. Furthermore let f,,,, and fT be the transition functions of M and T, 
respectively, and g, and g, be their respective response functions. 

Construction of T: 

l Set of states: { s~,~ 1 1 < i < n and 1 < j < k + 1 } with initial state: sr, , . 
l Response function 

gAsi, j) = 
# if j#k+l 

gdsi) if j=k+l. 

l Transition function: fT(si, jr z) = s,, b, where a = f,,,(si, z) and 

b= j 
i 

if g,+f(si)= # 
WY z) otherwise. 1 

This theorem extends a previously known collection of subsequences of an 
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cc-distributed sequence which are also co-distributed. Let X be an x-distributed 
sequence sectioned into blocks of size k, for any k. Ivan Niven and H. S. Zucker- 
man [26] proved that the subsequence of X formed by the first m terms in each 
block is co-distributed. Moreover, John Maxwell [24] showed that given integers 
o<c, <c2< ‘.. cc,< m, the subsequence of X obtained upon deletion of all 
blocks except those in positions congruent to c, or c2 or .. or c, (mod m) is 
co-distributed. 

It should be evident that there are finite automata to construct subsequences like 
those specified in [24 or 261, but note that the indices of the terms selected to form 
such a subsequence are the same regardless of the input sequence. Hence, our result 
is more general since the infinite subsequences constructible from finite automata 
also include those in which the indices of the terms selected to form a subsequence 
depend on the input sequence. 

10. CONCLUSION 

Using an unpredictability approach for defining randomness, we established the 
equivalence between the cc-distributed sequences and the sequences which appear 
random to finite automata. We also provided an upper bound on the minimal num- 
ber of state for which a Predictor exists for any (k)-distributed sequence. Another 
important result showed that for any given co-distributed sequence, all infinite 
subsequences which are constructible from FPMs are also co-distributed. 

To underscore the premise that the computational resources used to measure the 
randomness of binary sequences influence which sequences appear random, we con- 
clude by pointing out that when using other computational models to construct 
prediction schemes, the random sequences are not necessarily the co-distributed 
sequences. One reason is that it is possible to replace an infinite number of terms of 
an co-distributed sequence with the value 1 in a particularly prescribed manner and 
still maintain an co-distributed sequence. For example, let X be co-distributed, and 
for all integers n, replace each (n2)th term of X with a 1 to obtain x”. As shown in 
Knuth [20], x” is co-distributed. Consider now a computational model which 
predicts a 1 of every (n2)th term of an input sequence. This prediction scheme 
applied to x” yields all correct predictions, and hence x” would not be considered 
random within the given computational environment using an unpredictability 
approach. Of course, a finite automaton cannot carry out this prediction scheme, 
but models such as Turing machines can. 
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