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Asymptotic expansions for large deviation probabilities are used to approximate
the cumulative distribution functions of noncentral generalized chi-square distribu-
tions, preferably in the far tails. The basic idea of how to deal with the tail
probabilities consists in first rewriting these probabilities as large parameter values
of the Laplace transform of a suitably defined function fk ; second making a series
expansion of this function, and third applying a certain modification of Watson's
lemma. The function fk is deduced by applying a geometric representation formula
for spherical measures to the multivariate domain of large deviations under con-
sideration. At the so-called dominating point, the largest main curvature of the
boundary of this domain tends to one as the large deviation parameter approaches
infinity. Therefore, the dominating point degenerates asymptotically. For this
reason the recent multivariate asymptotic expansion for large deviations in Breitung
and Richter (1996, J. Multivariate Anal. 58, 1�20) does not apply. Assuming a
suitably parametrized expansion for the inverse g~ &1 of the negative logarithm of the
density-generating function, we derive a series expansion for the function fk . Note
that low-order coefficients from the expansion of g~ &1 influence practically all coef-
ficients in the expansion of the tail probabilities. As an application, classification
probabilities when using the quadratic discriminant function are discussed. � 2000
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1. INTRODUCTION

A commonly made assumption in the theory of statistical models is the
uncorrelatedness of the error variables. If the considered population follows
a multivariate normal law then the uncorrelatedness of its components
coincides with their independence. Many statisticians have been trying to
allow sampling in cases of dependent but uncorrelated observations, just
like in the class of spherically symmetric distributions. In the present paper
we consider sampling from populations with distributions belonging to this
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class. Note that it includes both heavy and light tailed sampling distribu-
tions such as the Pearson-VII type and Kotz type distributions, respec-
tively.

The slightly more general class of elliptically contoured distributions was
initially studied by Schoenberg (1938) and Kelker (1970). Many authors
after them contributed to the now quite complex and even matrix variate
theory and gave numerous statistical applications which have been
reviewed recently by Gupta and Varga (1993). Anderson and Fang (1982)
considered quadratic forms for elliptically contoured distributions and
studied their central distributions. Cacoullous and Koutras (1984) as well
as Hsu (1990) discussed the corresponding noncentral distributions. In the
present paper we consider large deviation probabilities for these noncentral
distributions and derive asymptotic representations and expansions for
large deviation probabilities of noncentral generalized chi-square distribu-
tions.

Asymptotic representations as well as saddlepoint approximations for
large deviation probabilities are shown in several papers, e.g., Daniels
(1987), to be good explicit approximations for tail probabilities of statisti-
cal distributions. Asymptotic expansions for large deviations in the noncen-
tral generalized chi-square distribution are used in Ittrich et al. (2000) for
making statistical inferences concerning the mean in multivariate ellipti-
cally contoured distributions. For another application of large deviations in
the noncentral generalized chi-square distribution see the example at the
end of this section.

An asymptotic expansion for large deviation of the ordinary central chi-
square distribution with k degrees of freedom (d.f.), i.e., for 1&CQ(k)(x)
as x � �, can easily be obtained by dealing with the asymptotic behavior
of the one-dimensional Laplace integral

|
�

1
yk�2&1e&(x�2) y dy

using Laplace's method. General results in this direction can be found in
Bleistein and Handelsman (1975) as well as Fedorjuk (1977). As an
application it was shown in Richter and Schumacher (1990) that the
cumulative chi-square distribution function satisfies the asymptotic expan-
sion formula (in the notation of Bleistein and Handelsman)

1&CQ(k)(c2)t
ck&2e&c2�2

2k�2&11 \k
2+ _1+ :

�

l=1

2l1 \k
2+

1 \k
2+ c2l& , (1)
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as c � �, where for k=2m, m # N, we put

1 \k
2+

1 \k
2

&l+
=0 for l>

k
2

.

Recognize that if X=(X1 , ..., Xk)T follows the standard Gaussian distribu-
tion then

1&CQ(k)(c2)=P(X 2
1+ } } } +X 2

k>c2),

where X 2
1 , ..., X 2

k are i.i.d. random variables having a finite moment-
generating function. A relation similar to (1) also could therefore be proved
using a suitable saddlepoint technique as in, e.g., Daniels (1987). The
necessary standard assumptions for applying such techniques, however, are
far from being satisfied if X is distributed according to a non-Gaussian
spherically symmetric probability law.

Let CQ(k; g)(x), x # R, denote the cumulative distribution function of
the g-generalized chi-square distribution, i.e., the distribution of &X&2,
where X follows a k-dimensional spherically symmetric distribution with
density

p(x; g)=C(k, g) g(&x&2), x # Rk,

0<
1

C(k, g)
=|k |

�

0
rk&1g(r2) dr<�,

where |k=2?k�2�1(k�2) denotes the content of the surface area of the unit
sphere in Rk.

It is known that the density of &X&2 admits the representation

�
�r

CQ(k; g)(r)=K(k, g) rk�2&1g(r), r>0,

where K(k, g) is a suitably chosen norming constant.
In the same way as was used in Richter and Schumacher (1990), one can

show therefore that if g is of Kotz type, i.e.,

g(r)=rN&1e&;r#
, r>0,
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for some constants #>0, ;>0, and 2N+k>2, then

1&CQ(k; g)(c2)t
;(k+2N&2)�(2#)&1

1 \k+2N&2
2# +

ck+2N&2&2#e&;c2#

__1+ :
�

l=1

dl c&2l#& (2)

as c � �, where

dl=
(k+2N&2&2#)(k+2N&2&4#) } } } (k+2N&2&2l#)

(2#;) l .

The noncentral g-generalized chi-square distribution function with k d.f.
and noncentrality parameter (n.c.p.) $2>0 can be defined by

CQ(k, $2; g)(x)=P(&X++&2<x), x # R, (3)

for arbitrary + # Rk satisfying &+&2=$2. This distribution was first studied
by Cacoullous and Koutras (1984) and later by Hsu (1990). We start our
considerations of large deviations for this distribution from the formula

1&CQ(k, $2; g)(c2)=8(cA$
c ; g), c>0, (4)

where 8( } ; g) denotes the probability measure corresponding to the den-
sity p( } ; g),

A$
c :={x # Rk : "x&\ $�c

ok&1+"�1= , c>0,

and

cA=[(cx1 , ..., cxk)T : (x1 , ..., xk)T # A].

We have thus reformulated the original one-dimensional problem of
evaluating the probabilities 1&CQ(k, $2; g)(c2) as the k-dimensional
problem to determine the probabilities that a spherically distributed ran-
dom vector X falls into the set cA$

c , c>0.
Large deviation probabilities for random vectors have been studied by

many authors. Asymptotic expansions for such probabilities can be
deduced formally from corresponding expansions for multiple Laplace
integrals for large parameters. The possibility of expansions of multiple
integrals with boundary maxima is discussed in Bleistein and Handelsman
(1975), Fedorjuk (1977), and Wong (1989), but no methods for obtaining
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higher-order expansion terms explicitly are outlined there. A geometric
approach to an asymptotic expansion for a certain class of large deviation
probabilities of Gaussian random vectors has been developed recently in
Breitung and Richter (1996). This approach is devoted to large deviation
domains with boundaries whose main curvatures near the so-called
dominating points do not change when the large deviation parameter
approaches infinity. The uniquely determined dominating point of the large
deviation domain cA$

c considered above is (c&$, ok&1)T. The largest main
curvature }(c)=1&$�c of the boundary of cA$

c approaches 1 when c
approaches infinity. At the same time, the leading term of the expansion in
Breitung and Richter (1996) tends to infinity. Hence, this expansion is not
applicable in the present case. We shall develop therefore a new type of
asymptotic expansion for large deviations which will be new even when the
underlying distribution is a Gaussian one.

Example 1 (Classification Probabilities). Let a random vector X follow
a k-dimensional elliptically contoured distribution such that for some
+ # Rk and _>0,

1
_

(X&+) t
d 8( } ; g)

holds. We assume that with +1 {+2 , _2
1 {_2

2 , the hypotheses

H1 : (+, _2)=(+1 , _2
1) and H2 : (+, _2)=(+2 , _2

2)

hold true with probabilities p and 1& p, respectively. In accordance with
Dorflo (1993), let us make the decision that X satisfies H1 if for its
observed value x, the critical point b=ln(_1(1& p)2�[_2 p2]) and the
quadratic discriminant function

Q0(x)=&x&+2&2�_2
2&&x&+1&2�_2

1

holds

Q0(x)>b.

Recognize that if _2
1>_2

2 then Q0(x)>b can be rewritten as

&x&�&2>c(b),

where

�=(_2
1&_2

2)&1 (_2
1+2&_2

2+1)
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and

c(b)=(_2
1&_2

2)&1 (b_2
1_2

2+&+1&2 _2
2&&+2&2 _2

1

+(_2
1&_2

2)&2 &_2
1+2&_2

2+1&2).

Let P2(Q0(X)>b) denote the conditional misclassification probability of
deciding for H1 when H2 is actually true. Then

P2(Q0(X)>b)=P2 \"1
_

(X&+)+
1
_

(+&�)"
2

>
c(b)
_2 +

=8 \{z # Rk : &z+$2&2>
c(b)
_2

2 =; g+
with

$2=
1

_2

(+2&�).

It follows that P2(Q0(X)>b) can be written in terms of the noncentral
generalized chi-square distribution function as

P2(Q0(X)>b)=1&CQ(k, &$2&2; g) \c(b)
_2

2 +
=1&CQ(k, _2

2 &+1&+2&2�(_2
1&_2

2)2; g) \c(b)
_2

2 + .

Note that if p is ``small' then b and c(b) are ``large.'' For sufficiently
large c(b), Theorem 3.5 below applies in the sense that the right side
of relation (19) serves as a suitable approximation for P2(Q0(X)>b) if
the quantities c2 and $2 in (19) are substituted by c(b)�_2

2 and
_2

2 &+1&+2&2�(_2
1&_2

2)2, respectively.

2. ESTIMATES FOR THE LARGE DEVIATION PROBABILITIES

Before deriving the announced asymptotic expansion we will give lower
and upper bounds for the large deviation probabilities

1&CQ(k, $2; g)(c2).
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We shall restrict our attention to the case that the density-generating func-
tion g admits the representation

g(r)=e&g~ (r), r>0, (D1)

with g~ being first-order continuously differentiable and invertible for large
r (r�r2

0). In the main part of what follows we further assume that a
parameter *=*(g~ , c) can be chosen in such a way that g~ &1 allows a power
series expansion in the form

g~ &1(*z+ g~ ((c&$)2))
c2 = :

m

j=0

cj z j+O(zm+1), z � 0, (D2, m)

where m is a natural number, the coefficients cj=cj (*, c) approach certain
constants cj* as c tends to infinity,

cj=cj (*, c) � cj , c � �,

and

c1*>0.

From (D2, 0) it follows that

c0=\1&
$
c+

2

� 1=c0* as c � �.

Remark. The coefficients cj depend on the derivatives of g~ at the point
(c&$)2. A straightforward proof shows that for m�3,

v c1=*�[c2g~ $((c&$)2)]>0

v c2=&(*�2) c1 g~ "((c&$)2)�[ g~ $((c&$)2)]2

v c3=&(*2�12) c1[ g~ $$$((c&$)2)�[ g~ $((c&$)2)]3&3[ g~ "((c&$)2)]2�
[ g~ $((c&$)2)]4].

Example 2 (Kotz Type Density-Generating Function). Since the Kotz
type density-generating function has the form

g(r)=rN&1 exp[&;r#], #>0, ;>0, 2N+k>2,

it follows that

g~ (r)=;r#&(N&1) ln r
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and we have

c1 =
*

c2#

(1&$�c)2

\#; \1&
$
c+

2#

&
N&1

c2# +
,

c2=&
*2

2c4#

\1&
$
c+

2

\#(#&1) ; \1&
$
c+

2#

+
N&1

c2# +
\#; \1&

$
c+

2#

&
N&1

c2# +
3 ,

and

c3 =&
*3

12c6#

\1&
$
c+

2

\#(#&1)(#&2) ; \1&
$
c+

2#

&2
N&1

c2# +
\#; \1&

$
c+

2#

&
N&1

c2# +
4

+
*3

4c6#

\1&
$
c+

2

\#(#&1) ; \1&
$
c+

2#

+
N&1

c2# +
2

\#; \1&
$
c+

2#

&
N&1

c2# +
5 .

Thus g~ satisfies assumption (D2, m), m=1, 2..., with *=c2#.

Example 3 (Pearson VIII Type Density Generating Function). Since
the Pearson-VII type density-generating function has the form

g(r)=\1+
r
m+

&M

, r>0,

for certain constants M>k�2, m>0, it follows that

g~ (r)=M ln \1+
r
m+

and we have

c1 =
*
M \m

c2+\1&
$
c+

2

+ , c2=
*2

2M2 \m
c2+\1&

$
c+

2

+ ,

c3=
*3

6M3 \m
c2+\1&

$
c+

2

+ .
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Thus g~ satisfies assumption (D2, m), m=1, 2, ..., with an arbitrary positive
constant *.

Theorem 2.1. If assumptions (D1) and (D2, 1) are satisfied then there
exist positive constants k1 and K1 such that

k1 ck*&(k+1)�2 exp[& g~ ((c&$)2)]�1&CQ(k, $2; g)(c2)

�K1ck*&1 exp[& g~ ((c&$)2)]. (5)

Corollary 2.2. If *=c2# then

k1 ck&(k+1) #�
1&CQ(k, $2; g)(c2)

e&g~ ((c&$)2)
�K1 ck&2#. (6)

If g is the Kotz type density-generating function then

k1c2(N&1)+k&(k+1) #e&;(c&$)2#
�1&CQ(k, $2; g)(c2)

�K1c2(N&1)+k&2#e&;(c&$)2#
. (7)

If * is a positive constant there exist positive constants k2 and K2 such that

k2�
1&CQ(k, $2; g)(c2)

ckg((c&$)2)
�K2 ,

where, formally, k2=k1�*(k+2)�2 and K2=K1 �*. If g is the Pearson-VII type
density-generating function then

k3 mMck&2M�1&CQ(k, $2; g)(c2)�K3mMck&2M,

where

k3=k2 \m
c2+\1&

$
c+

2

+
M

� k2 , K3 � K2 as c � �.

This corollary follows from Theorem 2.1 by choosing * as c2# or as a
positive constant, respectively.

Remark. Inequalities (7) generalize well-known results from the
Gaussian case N=1, ;= 1

2 , #=1 to a much more complex situation. Note
further the dominating role of # (in comparison with the other parameters
N and ;) in choosing the ``artificial'' parameter *.
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The main tool for proving Theorem 2.1 as well as the asymptotic expan-
sion of Theorem 3.5 below is a geometric representation formula for the
probabilities under consideration. Let

Sk(r)=[x # Rk : &x&=r], r>0.

Denoting by | the uniform probability distribution on the unit sphere
Sk(1) we define the intersection-percentage function of a Borel set A�Rk

as

F(A, r)=|((r&1A) & Sk(1)), r>0. (8)

Further, let

Ik, g~ =|
�

0
rk&1e&g~ (r 2) dr. (9)

Lemma 2.3 (Geometric Measure Representation Formula). If the density-
generating function g satisfies assumption (D1) then for c�r0 �- c0 and all
*>0 it holds, that

8(cA$
c ; g)=

*
2Ik, g~

exp[& g~ ((c&$)2)]

_|
�

0
F \A$

c , �g~ &1(*z+ g~ ((c&$)2))
c2 +

_[ g~ &1(*z+ g~ ((c&$)2))](k&2)�2

_g~ &1$(*z+ g~ ((c&$)2)) e&*z dz. (10)

Remark. Note that the assumption (D2, m) is not necessary for the
geometric measure representation formula (10) to hold.

Remark. The representation formula (10) essentially relies on the fact
that the distance of the set A$

c from the origin is 1&$�c. Hence analogous
formulas can be derived for sets A sharing this property. This will be
exploited below.

Proof. Using the general representation formula for spherical distribu-
tions from Richter (1995) we get

8(cA$
c ; g)=

ck

Ik, g~
|

�

0
F(cA$

c , cv) vk&1e&g~ (c2v2) dv.
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Since

F(cA$
c , cv)#F(A$

c , v), \c>0,

by the definition of the intersection-percentage function F and because

F(A$
c , v)#0 for v # _0, 1&

$
c+

we have

8(cA$
c ; g)=

ck

Ik, g~
|

�

1&$�c
F(A$

c , v) vk&1e&g~ (c2v2) dv.

For v�1&$�c and c�r0 �- c0 , the relation

g~ (c2v2)=*y

is invertible and the substitution g~ (c2v2)=*y yields

8(cA$
c ; g)=

*
2Ik, g~

|
�

g~ ((c&$)2)�*
F \A$

c , �g~ (*y)
c2 +

_[ g~ &1(*y)] (k&2)�2 g~ &1$(*y) e&*y dy.

The asserted representation now follows by substituting

z= y& g~ ((c&$)2)�*. K

Proof of Theorem 2.1. Let

AS :=[x # Rk : &x&�1&$�c]

be the complement of a sphere with radius 1&$�c and let

AH :=[x # Rk : x1�1&$�c]

be a halfspace with the same distance from the origin as AS and A $
c . Then

AH �A$
c �AS

and consequently

8(cAH ; g)�8(cA$
c ; g)�8(cAS ; g).
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As remarked after Lemma 2.3, geometric measure representation formulae

8(cA; g)=
*

2Ik, g~
exp[& g~ ((c&$)2)]

_|
�

0
F \A, �g~ &1(*z+ g~ ((c&$)2))

c2 +
_[ g~ &1(*z+ g~ ((c&$)2))](k&2)�2

_g~ &1$(*z+ g~ ((c&$)2)) e&*z dz, (11)

analogous to (10), hold true for the sets A=AH and A=AS as well. We
will exploit now these formulae to determine the asymptotic behavior of
the probabilities 8(cAH ; g) and 8(cAS ; g) as c � �.

We start with the derivation of the upper bound. Since

F \AS , �g~ &1(*z+ g~ ((c&$)2))
c2 +#1 for z # [0, �],

we have

8(cAS ; g)=
ck

2Ik, g~
exp[& g~ ((c&$)2)]

_|
�

0 _g~ &1(*z+ g~ ((c&$)2))
c2 &

(k&2)�2

_
�
�z _

g~ &1(*z+ g~ ((c&$)2))
c2 & e&*z dz.

Using assumptions (D1) and (D2, 1), an application of Laplace's method
to the last integral implies

8(cAS ; g)t
ck

2*Ik, g~
exp[& g~ ((c&$)2)] c(k&2)�2

0 c1 , * � �.

Hence

8(cAS ; g) ��
ck

*
exp[& g~ ((c&$)2)] as * � �. (12)

We now deal with AH . The intersection-percentage function for halfspaces
was determined in Richter (1992) and generalized in Richter (1995). For
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more details we refer the reader to Section 3, formula (15) in the latter. It
holds that

F \AH , �g~ &1(*z+ g~ ((c&$)2))
c2 +=

|k&1

|k
|

:*(z)

0
(sin :)k&2 d:

with

:*(z)=arc tan �g~ &1(*z+ g~ ((c&$)2))
(c&$)2 &1.

Using

arc tan xtx, x � 0,

we get

:*(z)t�g~ &1(*z+ g~ ((c&$)2))
(c&$)2 &1, z � 0.

From

|
=

0
(sin :)k&2 d:t

=k&1

k&1
, = � 0,

it now follows that

F \AH , �g~ &1(*z+ g~ ((c&$)2))
c2 +

t
|k&1

|k(k&1) \
g~ &1(*z+ g~ ((c&$)2))

(c&$)2 &1+
(k&1)�2

.

From assumptions (D1) and (D2, 1) we have

_g~ &1(*z+ g~ ((c&$)2))
(c&$)2 &1&

(k&1)�2

�� z(k&1)�2, z � 0

_g~ &1(*z+ g~ ((c&$)2))
c2 &

(k&2)�2

�� 1, z � 0,

g~ &1$(*z+ g~ ((c&$)2))
c2 * �� 1, z � 0.

196 RICHTER AND SCHUMACHER



These relations, together with an application of Laplace's method, lead to
the asymptotic equivalence

8(cAH ; g) �� ck*&(k+1)�2 exp[& g~ ((c&$)2)], c � �. (13)

This concludes the proof. K

3. MAIN RESULTS

The basic idea of how to deal with the large deviation probabilities of the
noncentral generalized chi-square distributions consists in first rewriting
these large deviation probabilities as large parameter values of the Laplace
transform of a certain parameter-dependent function

y � fk(c, k, y)

defined below, second expanding fk(c, *, y) into a series with respect to
powers of y1�2, and third applying a suitable modification of Watson's
lemma.

Lemma 3.1 (Laplace Integral Representation). If the density-generating
function g satisfies assumption (D1) then for c�r0�- c0 and all *>0 it
holds that

1&CQ(k, $2; g)(c2)

=
*

2cIk, g~
e&g~ ((c&$)2) |

�

0
fk(c, *, y) e&(*�c) y dy (14)

with

fk(c, *, y)=F \A$
c ,�g~ &1 \*

c
y+ g~ ((c&$)2)+

c2 +
__g~ &1 \*

c
y+ g~ ((c&$)2)+&

(k&2)�2

g~ &1$ \*
c

y+ g~ ((c&$)2)+ .

Proof. The assertion of this lemma follows immediately from
Lemma 2.3 by substituting z= y�c. K
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The essential step in expanding fk is to derive a series representation for
the intersection-percentage function F.

In Ittrich et al. (2000) it is shown that the set A$
c belongs to the system

A(dir, dist) of Borel sets defined in Richter (1995) (Fig. 1). In Richter
(1995) it is shown that

F(A, r)=
|k&1

|k
|

:*(r)

0
(sin :)k&2 d: (15)

holds for arbitrary A from A(dir, dist), where

:*(r)=arc tan \\ r
RA(r)+

2

&1+
1�2

and the so-called distance-type function r � RA(r) describes a certain
geometric property of the set A. For the set A=A$

c the function RA has
been determined in Ittrich et al. (2000):

RA(r)=
c2&$2&c2r2

2$c
.

We are now in a position to expand F.

FIG. 1. The sets A$
c and A$

c & Sk(r).
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Lemma 3.2 (Expansion of the Intersection-Percentage Function). Under
the assumptions (D1) and (D2, m) the intersection-percentage function
admits the representation

F \A$
c , �g~ &1(*y�c+ g~ ((c&$)2))

c2 +
=

|k&1

|k
:

m&1

j=0

Bj

2 j+k&1
y (2 j+k&1)�2+O( y(k&1)�2+m), (16)

as y � 0, for some well-defined constants Bj given explicitly in formula (28)
below.

The proof of this lemma is quite technical, and we will therefore leave it
to Section 5.

Expansion (16) for the intersection-percentage function combined once
more with the assumed expansion (D2, m) for g~ &1 leads to an expansion
for the whole function fk .

Lemma 3.3. It holds that

fk(c, *, y)=
|k&1

|k

ck

*
:

m&1

j=0

bj+1 y(k&1)�2+ j

+O( y(k&1)�2+m), y � 0, (17)

with the first three coefficients bj given explicitly in the proof of (17) in
Section 5.

Remarks. Note that low-order coefficients from the expansion of g~ &1

influence all coefficients bj , j= j0 , ..., m, starting from some index j0 .
Although the aim of this paper is to derive an expansion in terms of c

we are still dealing here with an expansion in terms of y. Consequently, the
coefficients bj occurring in Lemma 3.3 are not yet ordered with respect to
the powers of c.

Lemma 3.4 (Modified Watson's Lemma). Let f: (0, �)_2 � R satisfy
the following assumptions:

(i) f (*, } ) is locally integrable for every *>0 and uniformly (with
respect to *) bounded on finite intervals;

(ii) f (*, y)=O(eay), y � � uniformly in *;
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(iii) for y � 0+ the function f allows the expansion

f (*, y)= :
m

j=0

cj yaj+O( yam+1)

uniformly with respected to *, where the sequence (aj) increases monotoni-
cally to +� as j � �, a0>&1, and

cj=cj (*)=O(1), * � �.

Then it holds that

|
�

0
f (*, t) e&*t dt= :

m

j=0

cj
1(aj+1)

*aj+1

+O(*&(am+1+1)), * � �. (18)

The proof repeats the arguments of the proof for the original lemma,
given for example in Bleistein and Handelsman (1975, pp. 103�104). One
only has to ensure that all estimates are uniformly valid with respect to *.

Theorem 3.5. If g and * satisfy the assumptions (D1) and (D2, m) and
*�c � � as c � �, then

1&CQ(k, $2; g)(c2)

=
1(k�2)

2 - ? Ik, g~

ck&1e&g~ ((c&$)2)

__b1

k&1
2 \c

*+
(k+1)�2

+b2

(k&1)(k+1)
4 \c

*+
(k+3)�2

+ } } }

+bm
(k&1) } } } (k+2m&1)

2m \c
*+

(k&1)�2+m

+O \\c
*+

(k+1)�2+m

+& (19)

as c � � with constants bj from Lemma 3.3.

Proof. Since we have the expansion (17) we can apply the modification
of Watson's Lemma to the Laplace integral representation (14) with
parameter *�c instead of *. This yields
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1&CQ(k, $2; g)(c2)

=
ck&1|k&1

2|k Ik, g~
e&g~ ((c&$)2) _ :

m&1

j=0

bj+1

1((k+1)�2+ j)
(*�c) (k+1)�2+ j

+O \\c
*+

(k+1)�2+m

+&
=

ck&1

2 - ? Ik, g~

e&g~ ((c&$)2) 1(k�2)
1((k&1)�2)

__b1 1 \k+1
2 +\c

*+
(k+1)�2

+b21 \k+3
2 +\c

*+
(k+3)�2

+b3 1 \k+5
2 +\c

*+
(k+5)�2

+ } } } +bm 1 \k&1
2

+m+\c
*+

(k&1)�2+m

+O \\c
*+

(k+1)�2+m

+& .

The assertion follows from using properties of the 1-function. K

Note again that low-order coefficients from the expansion of g~ &1

influence practically all coefficients in the expansion of the tail probabilities
1&CQ(k, $2; g)(c2) starting from some index.

Corollary 3.6. If g is the Kotz type density-generating function with
#>1�2 then it holds that

1&CQ(k, $2; g)(c2)

=
;k�2#+(N&1)�#&(k+1)�21 \k

2+
2 - ? #(k&1)�2$(k&1)�21 \ k

2#
+

N&1
# +

_c(3k&1)�2&#(k+1)+2N&2e&;(c&$)2#

_[1+D1&2#c1&2#+D&2#c&2#+D&1&2#c&1&2#+D2&4#c2&4#

+D1&4#c1&4#+D&4#c&4#+D&1&4#c&1&4#+D&2&4#c&2&4#

+O(c3&6#)], c � �, (20)

with coefficients Dj given explicitly in the proof of (20) in Section 5.

Remarks. In accordance with the remarks after Lemma 3.3 and
Theorem 3.5 the coefficients occurring in the expansions of Theorem 3.5
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and Corollary 3.6 are not ordered with respect to the powers of c&1.
Actually, the value of the parameter # influences the ordering of the expan-
sion terms with respect to their rate of convergence to zero as c approaches
infinity. Moreover, the orders of two or more expansion terms can coincide
for special choices of #. Therefore, there is formally no uniqueness in the
notation of the coefficients D� .

If, e.g., #=1 then

1&2#>&2#=2&4#,

max[&1&2#, 1&4#, &4#, &1&4#, &2&4#]=3&6#,

and D&2# and D2&4# are both coefficients of c&2. If in this case we put
D*&2=D&2#+D2&4# then the result of Corollary 3.6 can be reformulated as

1&CQ(k, $2; g)(c2)

=
;N&3�21 \k

2+
2 - ? $(k&1)�21 \k

2
+N&1+

c(k&3)�2+2N&2e&;(c&$)2

_[1+D&1c&1+D*&2c&2+O(c&3)].

If #=0.9 then 1&2#>2&4#> &2# and the result from Corollary 3.6 can
be reformulated as

1&CQ(k, $2; g)(c2)

=
;k�2#+(N&1)�#&(k+1)�21 \k

2+
2 - ? #(k&1)�2$(k&1)�21 \ k

2#
+

N&1
# +

_c(3k&1)�2&#(k+1)+2N&2e&;(c&$)2#

_[1+D&0.8c&0.8+D&1.6 c&1.6+D&1.8 c&1.8+O(c&2.4)].

In the case (N, ;, #)=(1, 1
2 , 1) of a Gaussian density generator the leading

term in (20) is

1

2 - 2? $(k&1)�2
c(k&3)�2e&(c&$)2�2,
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which is in accordance with Theorem 2.1 of order between those of the
k-dimensional standard Gaussian measure of the half space AH an the
complement of the sphere AS .

4. NUMERICAL EXPERIENCES

Because of the available computing techniques, today many statistical
distributions can be sufficiently precisely estimated or numerically deter-
mined by simulating a suitable sample or by evaluating possibly com-
plicated multiple integrals, respectively. Nevertheless, mathematicians and
statisticians will continue to be interested in explicit exact or approximative
analytical representations of these distributions for different reasons.
Explicit formulae facilitate both quantitative and qualitative discussions on
how different parameters of a distribution affect on a probability under this
distribution. Explicit representation or approximation formulae for statisti-
cal distributions make possible discussions on monotonicity and about

TABLE I

$2=1.00, N=1.00, #=1.00, ;=0.50
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TABLE II

$2=1.00, N=2.00, #=0.90, ;=1.00

FIG. 2. Relative approximation error ($2=1.00, n=1.00, #=1.00, ;=0.50)
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least-favorable parameter situations. Explicit approximation formulae are
sometimes used in exact numerical methods for generating certain initial
values. The explicit asymptotic approximations for large deviation
probabilities from Theorem 3.5 and Corollary 3.6 are used in Ittrich et al.
(2000) for deriving more or less explicit asymptotic quantile approximation
formulae and iteration procedures.

In the tables of this section we compare exact tail probabilities with
approximations for them based on the results of Corollary 3.6. To this end
we take into account approximation results using one, two, and three terms
of the asymptotic expansion in the columns A1 , A2 , and A3 , respectively.
In the evaluation of the leading term of the expansion we actually used b1

instead of the asymptotically equal term 1�(2$(k&1)�2(#;) (k+1)�2), because
this proved to lead to more accurate approximations. The exact tail
probabilities in the column 1&CQ(k, $2; g) are determined using a
numerical algorithm given in Ittrich et al. (2000).

Table I gives numerical results for the usual noncentral chi-square dis-
tribution, whereas Table II deals with the noncentral generalized chi-square
distribution when the density-generating function is of Kotz type with con-
stants (N; #; ;)=(2; 0.9; 1).

These parameter configurations are chosen to reflect a certain typical
behavior of the approximations.

Both tables show the decrease of relative error for increasing values of c.
The approximation with two terms is not always superior to the one-term
approximation. Furthermore, the approximation becomes worse for
increasing dimension (d.f.). This indicates that an asymptotic expansion
including additionally the asymptotic for k � � might result in better
numerical approximations for larger k.

Figure 2 illustrates how the degree of freedom k influence the values
1&CQ(k, $2; g)(c2) for which relative approximation errors of 0.05, 0.03,
and 0.02, respectively, can be guaranteed.

5. PROOFS AND AUXILIARY RESULTS

For y� y0 it holds that

F \A$
c ,�g~ &1 \*

c
y+ g~ ((c&$)2)+

c2 +=
|k&1

|k
|

arctan '( y)

0
(sin :)k&2 d:
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with

'( y)=�
4$2g~ &1 \*

c
y+ g~ ((c&$)2)+

\c2&$2& g~ &1 \*
c

y+ g~ ((c&$)2)++
2&1.

For proving Lemma 3.2 we start by expanding '( y) for y � 0.

Lemma 5.1. Under assumptions (D1) and (D2, m) it holds that

'( y)= :
m&1

j=0

aj+1 y j+1�2+O( ym+1�2) (21)

as y � 0, where the first coefficients are

a1 =- c1

1

- $ (1&$�2)
,

a2=c3�2
1

3+$�c
8$3�2(1&$�c)2+

c2

- c1

1

2 - $ c(1&$�c)
,

and

a3 =c5�2
1

23+10$�c&$2�c2

128$5�2(1&$�c)3 +- c1 c2

3(3+$�c)
16$3�2c(1&$�c)2

&
c2

2

c3�2
1

1

8 - $ c2(1&$�c)
+

c3

- c1

1

2 - $ c2(1&$�c)
.

Proof. We start with considering

4$2g~ &1 \*
c

y+ g~ ((c&$)2)+
\c2&$2& g~ &1 \*

c
y+ g~ ((c&$)2)++

2

=
4$2

c2

g~ &1 \*
c

y+ g~ ((c&$)2)+<c2

\1&
$2

c2&
g~ &1( *

c y+ g~ ((c&$)2))
c2 +

2 .
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From (D2, m) we have

4$2

c2

g~ &1 \*
c

y+ g~ ((c&$)2)+<c2

\1&
$2

c2&
g~ &1( *

c y+ g~ ((c&$)2))
c2 +

2

=
4$2

c2

:
m

j=0

cj \y
c+

j

+O \\y
c+

m+1

+
_1&

$2

c2& :
m

j=0

cj \y
c+

j

+\\y
c+

m+1

+&
2

=
1

\1&
$
c+

2

:
m

j=0

cj \y
c+

j

+O \\y
c+

m+1

+
_1&

1
2$(1&$�c)

:
m

j=1

cj
y j

c j&1+O \ym+1

cm +&
2 .

Since

1
(1&x)2= :

�

j=0

( j+1) x j for |x|<1,

we obtain for sufficiently large c and small y,

4$2g~ &1 \*
c

y+ g~ ((c&$)2)+
\c2&$2& g~ &1 \*

c
y+ g~ ((c&$)2)++

=
1

\1&
$
c+

2 _ :
m

j=0

cj \y
c+

j

+O \\y
c+

m+1

+&

__ :
m

j=0

( j+1) \ 1
2$(1&$�c)

:
m

l=1

cl
yl

cl&1+
j

+O( ym+1)&
=

1

\1&
$
c+

2 _ :
m

j=0

cj \y
c+

j

+O \\y
c+

m+1

+&_ :
m

j=0

A� j y j+O( ym+1)& ,
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where

A� 0 =1,

A� 1=
c1

$(1&$�c)
,

A� 2=
3c2

1

4$2(1&$�c)2+
c&2

c$(1&$�c)
,

A� 3=
c3

1

2$3(1&$�c)3+
3c1c2

2c$2(1&$�c)2+
c3

c2$(1&$�c)
,

and

A� j=A� j (c, *)=O(1) as c � �, j=4, ..., m.

This leads to

4$2g~ &1 \*
c

y+g~ ((c&$)2)+
\c2&$2&g~ &1 \*

c
y+g~ ((c&$)2)++

2= :
m

j=0

Aj y j+O(ym+1), y � 0,

with

A0 =1,

A1=
c1

$(1&$�c)2 ,

A2=c2
1

3+$�c
4$2(1&$�c)3+c2

1
c$(1&$�c)2 ,

A3=
c3

1(2+$�c)
4$3(1&$�c)

+
c1c2(3+$�c)
2c$2(1&$�c)3+

c3

c2$(1&$�c)2 ,

and

Aj=Aj (c, *)=O(1), c � �, j=4, ..., m.

We are now able to expand '. It is

'( y)=� :
m

j=1

Aj y j+O( ym+1), y � 0,

=- A1 y1�2 �1+ :
m

j=2

Aj

A1

y j&1+O( ym), y � 0.
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Using

- 1+x= :
m&1

j=0

&j x j+O(xm), |x|<1,

we get for sufficiently small y that

'( y)=- A1 y1�2 _ :
m&1

j=0

&j _ :
m

l=2

Al

A1

yl&1&
j

+O( ym)& .

The proof of the lemma is finished by rearranging the terms in brackets
according to the ascending powers of y. K

We now put

'~ ( y)='( y2)

and consider

9k( y)=|
arctan '~ ( y)

0
(sin :)k&2 d:. (22)

Note that

F \A$
c ,�g~ &1 \*

c
y+ g~ ((c&$)2)+

c2 +=
|k&1

|k
9k(- y). (23)

It follows that

9$k( y)=
'~ ( y)k&2 '~ $( y)
[1+'~ 2( y)]k�2 . (24)

This representation enables us to derive an expansion for 9k by first
expanding 9$k using Lemma 5.1 and then applying termwise integration.

Proof of Lemma 3.2. Using the continuous differentiability of ', from
(21) one can derive an expansion for '~ $,

'~ $( y)= :
m&1

j=0

aj+1 y2 j (2 j+1)+O( y2m).
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Inserting this expansion, together with (21), into the relation (24) gives

9$k( y)

=
[�m&1

j=0 a j+1 y2 j+1+O( y2m+1)]k&2 [�m&1
j=0 a j+1 y2 j (2 j+1)+O( y2m)]

[1+[�m&1
j=0 aj+1 y2 j+1+O( y2m+1)]2]k�2 .

(25)

It holds that

_ :
m&1

j=0

aj+1 y2 j+1+O( y2m+1)&
k&2

=ak&2
1 yk&2 _ :

m&1

j=0

+ j y2 j+O( y2m)& , (26)

where

+0 =1,

+1=(k&2)
a2

a1

,

+2=(k&2)
a3

a1

+
(k&2)(k&3)

2
a2

2

a2
1

,

and

+j=+j (*, c)=0(1), c � �, j=3, ..., m&1.

Furthermore, we have

_1+_ :
m&1

j=0

a j+1 y2 j+1+O( y2m+1)&
2

&
k�2

= :
m&1

l=0
\k�2

l +\ :
m&1

j=0

aj+1 y2 j+1+
2l

+O( y2m)

=1+ :
m&1

j=1

&j y2 j+O( y2m)

with

&1 =
k
2

a2
1 ,

&2=ka1 a2+
k(k&2)

8
a4

1 ,
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and

&j=&j (*, c)=0(1), c � �, j=3, ..., m&1.

Because of

1
1+x

= :
m&1

l=0

(&1) l x l+O(xm), |x|<1,

this leads to

1
[1+'~ 2( y)]k�2= :

m&1

j=0

!j y2 j+O( y2m), y � 0, (27)

with

!0 =1,

!1= &
k
2

a2
1 ,

!2= &ka1a2+
k(k+2)

8
a4

1 ,

and

!j=!j (*, c)=O(1), c � �, j=3, ..., m&1.

Combining (25), (26), and (27) yields:

9$k( y)=ak&2
1 yk&2 _ :

m&1

j=0

+j y2 j+O( y2m)&
__ :

m&1

j=0

a j+1 y2 j (2 j+1)+O( y2m)&_ :
m&1

j=0

! j y2 j+O( y2m)&
= :

m&1

j=0

Bj yk&2+2 j+O( yk&2+2m),
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with

B0 =ak&1
1 ,

B1= &
k
2

ak+1
1 +(k+1) ak&2

1 a2 ,
(28)

B2=ak&2
1 a3(k+3)+

(k&2)(k+3)
2

ak&3
1 a2

2

&
k(k+3)

2
ak

1 a2+
k(k+2)

8
ak+3

1 ,

and

Bj=Bj (*, c)=O(1), c � �, j=3, ..., m&1.

Termwise integrating this relation with respect to y and inserting the result-
ing expansion into (23) completes the proof. K

Proof of Lemma 3.3. To expand fk we insert the expansion of the inter-
section-percentage function and that from assumption (D2, m) into the
relation

fk(c, *, y)=F \A$
c ,�g~ &1 \*

c
y+ g~ ((c&$)2)+

c2 +
__g~ &1 \*

c
y+ g~ ((c&$)2)+&

(k&2)�2

g~ &1$ \*
c

y+ g~ ((c&$)2)+ .

This yields

fk(c, *, y)=
|k&1

|k

ck+1

* _ :
m&1

j=0

B j

k&1+2 j
y(k&1)�2+ j+O( y(k&1)�2+m)&

__ :
m

j=0

cj \y
c+

j

+O \\y
c+

m+1

+&
(k&2)�2

__ :
m

j=1

cj j
y j&1

c j +O \ ym

cm+1+& .
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We again make use of the binomial expansion

_ :
m

j=0

cj \y
c+

j

+O \\y
c+

m+1

+&
(k&2)�2

=c(k&2)�2
o _ :

m

j=0

*j \y
c+

j

+O \\y
c+

m+1

+&
with

*0 =1,

*1=
(k&2) c1

2c0

,

*2=
(k&2) c2

2c0

+
(k&2)(k&4) c2

1

8c2
0

,

and

*j=*j (c, *)=O(1), c � �.

This finally gives

fk(c, *, y)=
|k&1

|k

ck+1

* \ :
m&1

j=0

B j

k&1+2 j
y(k&1)�2+ j+O( y(k&1)�2+m)+

_c (k&2)�2
0 _ :

m

j=0

*j \y
c+

j

+O \\y
c+

m+1

+&
__ :

m

j=1

cj j
y j&1

c j +O \ ym

cm+1+&
=

|k&1

|k

ck

*
:

m&1

j=0

bj+1 y(k&1)�2+ j+O( y(k&1)�2+m)

with

b1 =
c (k+1)�2

1

(k&1) $(k&1)�2(1&$�c)
,

b2=
c (k+3)�2

1

$(k+1)�2(1&$�c)3 _&
k&3

8(k+1)
+

k&3
4(k&1)

$
c

&
$2

8c2&
+

c (k&1)�2
1 c2

c$(k&1)�2(1&$�c)
k+3

2(k&1)
,
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and

b3 =
c (k+5)�2

1

$(k+3)�2(1&$�c)5 _(k&5)(k&3)
128(k+3)

&
(k&5)(k&3)

32(k+1)
$
c

+
3(k&5)(k&3)

64(k&1)
$2

c2&
k&5

32
$3

c3+
k&3
128

$4

c4&
+

c (k+1)�2
1 c2

c$(k+1)�2(1&$�c)3 _(k+5)(k&3)
16(k+1)

&
(k+5)(k&3)

8(k&1)
$
c

+
k+5

16
$2

c2&
+

c (k&1)�2
1 c3

c2$(k&1)�2(1&$�c)
k+5

2(k&1)
+

c (k&3)�2
1 c2

2

c2$(k&1)�2(1&$�c)
k+5

8
. K

Proof of Corollary 3.6. From Example 2 we know that the Kotz type
density-generating function satisfies the assumption (D2, m) with *=c2#.
Thus for #> 1

2 the assumptions of Theorem 3.5 are fulfilled. Furthermore,

Ik, g~ =
1 \2N+k&2

2# +
2#;(2N+k&2)�(2#) .

To obtain the coefficients of the asymptotic expansion we evaluate

b1(k&1)
2

=
c (k+1)�2

1

2$(k&1)�2(1&$�c)

=
(1&$�c)k

2$(k&1)�2 \#;(1&$�c)2#&
N&1

c2# +
(k+1)�2 ,

b2(k&1)(k+1)
4

=&
c (k+3)�2

1 (k&1)(k&3)
32$(k+1)�2(1&$�c)3 +

c (k+3)�2
1 (k+1)(k&3)

16c$(k&1)�2(1&$�c)3

&
c (k+3)�2

1 (k&1)(k+1)
32c2$(k&3)�2(1&$�c)3+

c (k&1)�2
1 c2(k+3)(k+1)

8c$(k&1)�2(1&$�c)
,

and

b3

(k&1)(k+1)(k+3)
8

=
c (k+5)�2

1 (k&5)(k&3)(k&1)(k+1)

1024$(k+3)�2 \1&
$
c+

5

&
c (k+5)�2

1 (k&5)(k&3)(k&1)(k+3)

256c$(k+1)�2 \1&
$
c+

5
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+
3c(k+5)�2

1 (k&5)(k&3)(k+1)(k+3)

512c2$(k&1)�2 \1&
$
c+

5

&
c (k+5)

1 (k&5)(k&1)(k+1)(k+3)

256c3$(k&3)�2 \1&
$
c+

5

+
c (k+5)�2

1 (k&3)(k&1)(k+1)(k+3)

1024c4$(k&5)�2 \1&
$
c+

5

+
c (k+1)�2

1 c2(k&3)(k&1)(k+3)(k+5)

128c$(k+1)�2 \1&
$
c+

3

&
c (k+1)�2

1 c2(k&3)(k+1)(k+3)(k+5)

64c2$(k&1)�2 \1&
$
c+

3

+
c (k+1)�2

1 c2(k&1)(k+1)(k+3)(k+5)

128c3$(k&3)�2 \1&
$
c+

3

+
c (k&1)�2

1 c3(k+1)(k+3)(k+5)

16c2$(k&1)�2 \1&
$
c+

+
c (k&3)�2

1 c2
2(k&1)(k+1)(k+3)(k+5)

64c2$(k&1)�2 \1&
$
c+

.

Rearranging the terms according to powers of c, putting the leading term
outside the brackets, and using

b1 t
1

(k&1) $(k&1)�2(#;) (k+1)�2 , c � �,
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lead to expansion (20), where

D1&2# = &
c (k+3)�2

1

b1$(k+1)�2 \1&
$
c+

3

k&3
16

D&2#=
c (k+3)�2

1

b1$(k&1)�2 \1&
$
c+

3

(k+1)(k&3)
8(k&1)

+
c(k&1)�2

1 c2

b1$(k&1)�2 \1&
$
c+

(k+1)(k+3)
4(k&1)

D&1&2#= &
c (k+3)�2

1

b1$(k&3)�2 \1&
$
c+

3

k+1
16

D2&4#=
c (k+5)�2

1

b1$(k+3)�2 \1&
$
c+

5

(k&5)(k&3)(k+1)
512

D1&4#= &
c (k+5)�2

1

b1$(k+1)�2 \1&
$
c+

5

(k&5)(k&3)(k+3)
128

+
c(k+1)�2

1 c2

b1 $(k+1)�2 \1&
$
c+

3

(k&3)(k+3)(k+5)
64

D&4#=
c (k+5)�2

1

b1$(k&1)�2 \1&
$
c+

5

3(k&5)(k&3)(k+1)(k+3)
256(k&1)

&
c (k+1)�2

1 c2

b1$ (k&1)�2 \1&
$
c+

3

(k&3)(k+1)(k+3)(k+5)
32(k&1)

+
c (k&1)�2

1 c3

b1$(k&1)�2 \1&
$
c+

(k+1)(k+3)(k+5)
8(k&1)

+
c (k&3)�2

1 c2
2

b1$ (k&1)�2 \1&
$
c+

(k+1)(k+3)(k+5)
32
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D&1&4#= &
c (k+5)�2

1

b1$(k&3)�2 \1&
$
c+

5

(k&5)(k+1)(k+3)
128

+
c(k+1)�2

1 c2

b1 $(k&3)�2 \1&
$
c+

3

(k+1)(k+3)(k+5)
64

D&2&4#=
c (k+5)�2

1

b1$(k&5)�2 \1&
$
c+

5

(k&3)(k+1)(k+3)
512

,

where

b1=
\1&

$
c+

k

(k&1) $(k&1)�2 \#; \1&
$
c+

2#

&
N&1

c2# +
(k+1)�2

and the coefficients cj , j=1, 2, 3, are given in Example 2. K
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