Asymptotic Behavior and Uniqueness for an Ultrahyperbolic Equation with Variable Coefficients*

A. C. Murray
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Received April 5, 1974; revised May 29, 1975

Abstract

This paper describes the asymptotic behavior of solutions of a class of semilinear ultrahyperbolic equations with variable coefficients. One consequence of the general analysis is a uniqueness theorem for a mixed boundary-value problem. Another demonstrates unique continuation at infinity. These results extend previous work by M. H. Protter, [Asymptotic decay for ultrahyperbolic operators, in "Contributions to Analysis" (Lars Ahlfors et al., Eds.), Academic Press, New York, 1974], and A. C. Murray and M. M. Protter, [Indiana U. Math. J. 24 (1974), 115-130], on a more restricted class of equations.

1. Introduction

Let D be a bounded domain in $\mathbb{R}^{m}, m \geqslant 2$, and let Γ denote the exterior of the unit ball in $\mathbb{R}^{n}, n \geqslant 2$. Use $r=|y|$ to denote the length of a vector y in \mathbb{R}^{n}. For $R \geqslant 1$, the sets $S(R)$ and $\Gamma(R)$ are defined by

$$
\begin{aligned}
& S(R)=\left\{y \in \mathbb{R}^{n}: r=|y|=R\right\}, \\
& \Gamma(R)=\left\{y \in \mathbb{R}^{n}: 1<|y|<R\right\} .
\end{aligned}
$$

Let L be an ultrahyperbolic operator defined in $D \times I$ ' by

$$
\begin{equation*}
L u \equiv A u-B u, \tag{1.1}
\end{equation*}
$$

where

$$
A u \equiv\left(a_{i j}(x, y) u_{x_{i}}\right)_{x_{j}} \quad \text { and } \quad B u \equiv b_{k \ell}(x, y) u_{y_{k} y_{\ell}} .
$$

Repeated indices i, j are to be summed from 1 to m, while repeated indices k, ℓ (and later K, L) are to be summed from 1 to n.

The coefficient matrices $\left[a_{i j}\right]$ and $\left[b_{k \ell}\right]$ are assumed to be positive definite and symmetric with C^{1} entries defined for $(x, y) \in D \times \Gamma$. Further, A is assumed

[^0]to be uniformly elliptic, thus there exist positive constants \underline{a} and \bar{a} such that
$$
\underline{a}|\xi|^{2} \leqslant a_{i j}(x, y) \xi_{i} \xi_{j} \leqslant \bar{a}|\xi|^{2}
$$
for all $(x, y) \in D \times \Gamma$ and all $\xi \in \mathbb{R}^{m}$. Also, the coefficients of A are subject to the condition
$$
\left|\left(a_{i j}\right)_{y_{k}}\right| \leqslant \mathscr{M} r^{-1}
$$
for some small constant \mathscr{M}.
The matrix $\left[b_{k t}\right]$ is assumed to be close to the identity $\left[\delta_{k t}\right]$ in the sense that
$$
b_{k \ell}(x, y)=\delta_{k \ell}+c_{k \ell}(x, y),
$$
where the $c_{k \ell}$ are small, slowly varying functions. Specifically, we assume that there are constants $\mathscr{C}, \mathscr{K}, \mathscr{L}$, such that
\[

$$
\begin{gathered}
\sum_{k, \ell=1}^{n}\left|c_{k \ell}(x, y)\right|^{2} \leqslant \mathscr{C}^{2} \\
\left|\left(c_{k \ell}\right)_{y_{k}}\right| \leqslant \mathscr{K} r^{-1}, \quad\left|\left(c_{k \ell}\right)_{x_{i}}\right| \leqslant \mathscr{L} r^{-1}
\end{gathered}
$$
\]

throughout $D \times \Gamma$.
We shall consider solutions of the equation

$$
\begin{equation*}
I u=f\left(x, y, u, \nabla_{x} u, \nabla_{y} u\right) \tag{1.2}
\end{equation*}
$$

in the region $D \times I$, where f is subject to a consistency condition

$$
f(x, y, 0,0,0)=0
$$

and a Lipschitz condition
$\left|f(x, y, u, p, q)-f\left(x, y, u^{\prime}, p^{\prime}, q^{\prime}\right)\right| \leqslant \phi_{0}\left|u-u^{\prime}\right|+\phi_{1}\left|p-p^{\prime}\right|+\phi_{2}\left|q-q^{\prime}\right|$,
where the $\phi_{i}, 0 \leqslant i \leqslant 2$, are functions of y. Thus we can consider not only solutions of (1.2) but, more generally, solutions of the differential inequality

$$
\begin{equation*}
|L u| \leqslant \phi_{0}(y)|u|+\phi_{1}(y)\left|\nabla_{x} u\right|+\phi_{2}(y)\left|\nabla_{3} u\right| . \tag{1.3}
\end{equation*}
$$

Broadly put, our results say that if a nonzero solution of (1.3) vanishes on $\partial D \times \Gamma$, then it cannot decay arbitrarily fast as $|y| \rightarrow \infty$. The precise results can be stated as follows for a solution u of (1.3) which is C^{2} on $D \times \Gamma$ and vanishes on $\partial D \times \Gamma$. Assume that L satisfies Condition C, a technical hypothesis
(spelled out in Section 2) saying that the constants $\mathscr{C}, \mathscr{K}, \mathscr{L}$, and \mathscr{M} are "small enough." Introduce the "energy"

$$
E(u, R) \equiv R^{1-n} \int_{S(R)} \int_{D}\left\{|u|^{2}+\left|\nabla_{v} u\right|^{2}+u_{x_{1}} a_{i j} u_{x_{j}}\right\} d x d \sigma
$$

If the ϕ_{i} are bounded in Γ, then
(i) u cannot have bounded support in $D \times I$, unless $u \neq 0$;
(ii) $E(u, R)$ cannot decay faster than $\exp \left(-\rho R^{2}\right)$ for all ρ, unless $u=0$; and
(iii) there is an explicit lower bound of the form

$$
E(u, R)=K \exp \left(-\rho R^{2}\right) E(u, 1) .
$$

More generally, suppose that $\phi_{i}=O\left(r^{\beta}\right)$ for $-\frac{1}{2}<\beta<\infty$. Then the results (i), (ii), and (iii) remain valid when the function $\exp \left(-\rho R^{2}\right)$ is replaced by $\exp \left(-\rho R^{2+28}\right)$. As a consequence, we have uniqueness for the mixed boundaryvalue problem

$$
\begin{array}{ll}
L u=f\left(x, y, u, \nabla_{x} u, \nabla_{\nu} u\right) \text { in } & D \times \Gamma(R) \\
\text { with Dirichlet data given on } & \hat{c} D \times \Gamma(R) \tag{1.4}\\
\text { and Cauchy data given on } & D \times S(R)
\end{array}
$$

Results of this type were obtained previously by Murray and Protter [3] and Protter [5] in the special case where $\left[b_{k c}\right]$ is the identity matrix $\left[\delta_{k \ell}\right]$. The burden of this paper is to extend the estimate procedure of [3] to the case of variable $b_{k l}$.

Other authors have considered the uniqueness question for certain boundaryvalue problems for the special ultrahyperbolic equations

$$
\begin{equation*}
\sum_{i=1}^{m} u_{x_{i} x_{i}}-\sum_{k=1}^{n} u_{y_{k} y_{k}}=0 \tag{1.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{i, j=1}^{m}\left(a_{i j} u_{x_{i}}\right)_{x_{j}}-\sum_{k=1}^{n} u_{y_{k} v_{k}}=c u \tag{1.6}
\end{equation*}
$$

In [4], Owens gives examples of bounded domains V such that a solution of (1.5) in V is determined by giving both its value on all of ∂V and its normal derivative on an appropriate part of $\dot{\partial} V$. The domain considered in our problem (1.4) is not among those Owens discusses, nor is our boundary condition quite as severe as his.

In [1], Diaz and Young consider the Dirichlet and Neumann problems for (1.6) in a region $D \times P$ where D is a bounded domain in x-space and P is a bounded parallelepiped. Their conditions for uniqueness relate the dimensions of P to the eigenvalues of a related problem in D.
In [2], Levine considered the abstract Cauchy problem for certain ordinary differential equations in Hilbert space. Our Eq. (1.2) can be interpreted in the terminology of [2] by taking $r==|y|$ for an independent variable. In this framework, Levine's results do not apply to the problem (1.4). However, they do apply to the analogous problem for $x \in D, r \geqslant R$.
Paper [3] contains a discussion of related work on the question of asymptotic behavior.
The main results of this paper are established in Section 3 by means of a weighted energy inequality. This inequality is stated and proved as Theorem 1 in Scction 2. The proof of this theorem is quite technical, and one may prefer to omit it on first reading.

2. A Weighted Energy Estimate

We consider an operator L defined by (1.1) and having the properties described above. We assume that L satisfies

Condition C.

$$
\begin{align*}
\frac{1}{2}-\mathscr{C}[4 n+2+\mathscr{C}]-6 \mathscr{K} n^{3 / 2}(1+\mathscr{C}) & \geqslant 0, \tag{1}\\
1-\mathscr{C}\left(n+n^{1 / 2}-1\right)-\mathscr{K} n^{3 / 2} & \geqslant \frac{3}{4}, \tag{2}\\
\frac{3}{4} \underline{a}-\mathscr{L} m \bar{a}^{2}-\mathscr{M} n^{1 / 2} m(1+\mathscr{C}) & \geqslant \frac{1}{2} \underline{a}, \tag{2}\\
2 n^{2} \mathscr{L} & <\frac{1}{2}, \tag{3}\\
1-\mathscr{C}-(1+\mathscr{C})\left\{\mathscr{C}|2 \alpha-3|+2 \mathscr{C}+n^{3 / 2} \mathscr{K}\right\} & \geqslant \frac{4}{5}, \tag{4}\\
\frac{1}{5}-(1+\mathscr{C})\left\{n^{1 / 2} \mathscr{C}+n \mathscr{C}+n^{3 / 2} \mathscr{K}\right\} & \geqslant 0 . \tag{4}
\end{align*}
$$

These inequalities are not chosen to be "best possible," but rather to fit naturally into the estimates that will arise. These hypotheses are expressed in terms of the dimensions m and n, the moduli of ellipticity of A, and a parameter α which will permit us to handle a variety of growth properties for the ϕ_{i} in (1.3).
For convenient reference, let \mathscr{U} denote the class of functions $u-u(x, y)$ which are C^{2} in $D \times \Gamma, C^{1}$ on the closure of $D \times \Gamma$, and zero on (∂D) $\times \Gamma$.

Theorem 1. Suppose $u \in \mathscr{U}, L$ satisfies Condition C , and $\alpha>1$. Then there
are computable positive constants $k_{i}, 0 \leqslant i \leqslant 3$, such that for all sufficiently large λ

$$
\begin{align*}
& \int_{\Gamma(R)} r^{3-\alpha-n} e^{2 \lambda r^{2}}\|L u\|^{2} d y+k_{0}(\lambda \alpha)^{3} R^{2 \alpha-1} e^{2 \lambda R^{\alpha}} E(u, R) \\
& \geqslant k_{1}(\lambda \alpha)^{3} \int_{\Gamma(R)} r^{2 \alpha-n-1} e^{2 \lambda r^{\alpha}}\|u\|^{2} d y \\
& \quad+k_{2} \lambda \alpha \int_{\Gamma(R)} r^{1-n} e^{2 \lambda r \alpha}\left\{\left\|\nabla_{x} u\right\|^{2}+\left\|\nabla_{y} u\right\|^{2}\right\} d y \\
& \quad+k_{3} e^{2 \lambda} E(u, 1) \tag{2.1}
\end{align*}
$$

The k_{i} are independent of u; the necessary size of λ depends on the behavior of u on $D \times S(1)$.

The rest of this section is devoted to the proof of the weighted energy estimate (2.1) for a function u in \mathscr{U}. For parameters $\lambda>n$ and $\alpha>1$, we introduce the auxiliary function

$$
w(x, y)=u(x, y) \exp \left(\lambda r^{\alpha}\right)
$$

Then computation shows that

$$
\begin{align*}
e^{\lambda r^{\alpha}} L u= & A w-B w+2 \lambda \alpha r^{\alpha-2} y_{k} b_{k t} w_{y_{\ell}} \\
& -\lambda \alpha r^{\alpha-4}\left\{\left(\lambda \alpha r^{\alpha}-\alpha+2\right) y_{k} b_{k t} y_{t}-\delta_{k \ell} b_{k \ell} r^{2}\right\} w . \tag{2.2}
\end{align*}
$$

For brevity let q denote the quantity

$$
q=\left(\lambda \alpha r^{\alpha}-\alpha+2\right) y_{k} b_{k t} y_{t}-\delta_{k t} b_{k t} r^{2}
$$

By squarring (2.2) and dropping a positive term on the right, we can obtain the initial inequality

$$
\begin{align*}
e^{2 \lambda r^{\alpha}}|L u|^{2} \geqslant & 4(\lambda \alpha)^{2} r^{2 \alpha-4}\left(y_{k} b_{k \epsilon} w_{y \ell}\right)^{2} \\
& +2\left(2 \lambda \alpha r^{\alpha-2} y_{k} b_{k \ell} w_{y_{\ell}}\right)\left(A w-B w-\lambda \alpha r^{\alpha-4} q w\right) . \tag{2.3}
\end{align*}
$$

Once multiplied through by $r^{3-\alpha-n}$, (2.3) yields

$$
\begin{aligned}
r^{3-\alpha-n} e^{2 \lambda r^{\alpha}}|L u|^{2} \geqslant & 4(\lambda \alpha)^{2} r^{\alpha-1-n}\left(y_{k} b_{k \ell} w_{v_{\ell}}\right)^{2} \\
& -4 \lambda \alpha r^{1-n} y_{k} b_{k \ell} w_{y_{\ell}} B w \\
& +4 \lambda \alpha r^{1-n} y_{k} b_{k \ell} w_{y_{\ell}} A w \\
& -4(\lambda \alpha)^{2} r^{\alpha-3-n} q y_{k} b_{k \ell} w_{y \ell} w .
\end{aligned}
$$

We integrate this over $D \times \Gamma(R)$ and let T_{i} denote the i th term on the right side of the result. Thus

$$
\begin{equation*}
\int_{\Gamma(R)} r^{3-\alpha-n} e^{2 \lambda r^{\alpha}} \int_{D}|L u|^{2} d x d y \geqslant T_{1}+T_{2}+T_{3}+T_{4} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& T_{1}=4(\lambda \alpha)^{2} \int_{\Gamma(R)} r^{\alpha-1-n} \int_{D}\left|y_{k} b_{k \ell} w_{y_{\ell}}\right|^{2} d x d y \\
& T_{2}=-2 \lambda \alpha \int_{D} 2 \int_{\Gamma(R)} r^{1-n} y_{k} b_{k t} w_{v_{\ell}} b_{\mathrm{LK}} w_{y_{\mathrm{K}} y_{\mathrm{L}}} d y d x \\
& T_{3}=2 \lambda \alpha \int_{D} 2 \int_{\Gamma(R)} r^{1-n} y_{k} b_{k t} w_{y_{\ell}}\left(a_{i j} w_{x_{j}}\right)_{x_{i}} d y d x
\end{aligned}
$$

and

$$
T_{4}=-2(\lambda \alpha)^{2} \int_{D} 2 \int_{\Gamma(R)} r^{\alpha-3-n} q y_{k} b_{k t} w v_{y_{\ell}} d y d x
$$

The next task is to obtain useful estimates of the T_{i} by careful exploitation of the hypotheses on $\left[a_{i j}\right]$ and $\left[b_{k c}\right]$. These estimates and their proofs appear in the next three lemma. For any smooth $v=v(x, y)$ it will be convenient to use $\|v\|^{2}$ to denote the integral of $|v(x, y)|^{2}$ over domain D in x-space. Let $\nu=\left(v_{1}, \ldots, v_{n}\right)$ denote the outer unit normal on the boundary of $\Gamma(R)$. The expression $d \sigma$ refers to the usual $(n-1)$ measure on hypersurfaces in \mathbb{R}^{n}.

Lemma 1.

$$
\begin{align*}
T_{1}+T_{\mathrm{z}} \geqslant & -2 \lambda \alpha \int_{D} \int_{\partial \Gamma(R)} r^{1-n\left\{2\left(y_{k} b_{k} \varepsilon w_{\ell \ell}\right) w_{y_{\mathrm{K}}}-\left(w_{y_{k}} b_{k \ell} w_{y_{\ell}}\right) y_{\mathrm{K}}\right\} b_{\mathrm{KL}} \nu_{\mathrm{L}} d o d x} \\
& +\lambda \alpha \int_{\Gamma(R)} r^{1-n}\left\|\nabla_{y} w\right\|^{2} d y \tag{2.5}
\end{align*}
$$

Proof. We first study T_{2} alone. Its integrand is

$$
\mathscr{I}_{2}(x, y)=-2 r^{1-n} y_{k} b_{k \ell} w_{y_{\ell}} b_{\mathrm{KL}} w_{y_{\mathrm{K}} v_{\mathrm{L}}}
$$

In order to integrate $\mathscr{\mathscr { V }}_{2}(x, y)$ over $D \times \Gamma(R)$ by means of the divergence theorem, we use the identity

$$
\begin{aligned}
\mathscr{I}_{2}(x, y)= & -\left[r^{1-n}\left\{2\left(y_{k} b_{k \ell} w_{y_{\ell}}\right) w_{y_{\mathrm{K}}}-\left(w_{v_{k}} b_{k \ell} w_{y_{\ell}}\right) y_{\mathrm{K}}\right\} b_{\mathrm{KI}}\right]_{v_{\mathrm{L}}} \\
& -2(n-1) r^{-1-n}\left(y_{k} b_{k \ell} w_{y_{\ell}}\right)^{2} \\
& +r^{1-n}\left\{(n-1) r^{-2}\left(y_{k} b_{k \ell} y_{\ell}\right)-\delta_{k \ell} b_{k \ell}\right\}\left(w_{y_{\mathrm{K}}} b_{\mathrm{KL}} w_{v_{\mathrm{L}}}\right) \\
& +2 r^{1-n} \sum_{k=1}^{n}\left(b_{k \ell} w_{y_{\ell}}\right)^{2} \\
& +r^{1-n} y_{k}\left\{2 w_{v_{\ell}} w_{y_{\mathrm{K}}}\left(b_{k \ell} b_{\mathrm{KL}}\right)_{v_{\mathrm{L}}}-\left(b_{k \ell} b_{\mathrm{KL}}\right)_{v_{\ell}} w_{v_{\mathrm{K}}} w_{v_{\mathrm{L}}}\right\}
\end{aligned}
$$

The first term is a divergence: call it \mathscr{T}. The second term is negative, but it can be dominated by T_{1}. The next two terms can be estimated fairly directly since

$$
\begin{aligned}
\left\{(n-1) r^{-2} y_{k} b_{k \ell} y_{\ell}-\delta_{k \ell} b_{k \ell}\right\} & \geqslant(n-1)(1-\mathscr{C})-n-n^{1 / \mathscr{C}}, \\
\left(w_{y_{\mathrm{K}}} b_{\mathrm{KL}} w_{y_{\mathrm{L}}}\right) & \geqslant(1-\mathscr{C})\left|\vee_{y} w\right|^{2},
\end{aligned}
$$

and

$$
\sum_{k}\left(b_{k \ell} w_{y_{\ell}}\right)^{2}=\left|\nabla_{y} w\right|^{2}+2 w_{y_{k}} c_{k \ell} w_{y_{\ell}}+\sum_{k}\left(c_{k \ell} w_{y_{\ell}}\right)^{2} \geqslant(1-2 \mathscr{C})\left|\nabla_{y} w\right|^{2}
$$

In the last term of \mathscr{I}_{2}, Cauchy-Schwarz estimates yield

$$
\left|y_{k}\left\{2 w_{y_{\ell}} w_{y_{\mathrm{K}}}\left(b_{\mathrm{KL}} b_{k \ell}\right)_{y_{\mathrm{L}}}-\left(b_{\mathrm{KL}} b_{k \ell}\right)_{y_{\ell}} w_{y_{\mathrm{K}}} w_{y_{\mathrm{L}}}\right\}\right| \leqslant 6 n^{3 / 2} \mathscr{K}(1+\mathscr{C})\left|\nabla_{y} w\right|^{2}
$$

Thus we find that

$$
\begin{aligned}
\mathscr{I}_{2}(x, y) \geqslant & \mathscr{T}-2(n-1) r^{-1-n}\left(y_{k} b_{k \ell} v_{v_{\ell}}\right)^{2} \\
& +r^{1-n}\left\{1-\mathscr{C}(4 n+2+\mathscr{C})-\mathscr{K} 6 n^{3 / 2}(1+\mathscr{C})\right\}\left|\nabla_{y} w\right|^{2}
\end{aligned}
$$

By applying (C_{1}), we get

$$
\begin{equation*}
\mathscr{I}_{2}(x, y)>\mathscr{T}+\frac{1}{2} r^{1-n}\left|\nabla_{y} w\right|^{2}-2(n-1) r^{-1-n}\left(y_{k} b_{k \ell} w_{y_{\ell}}\right) . \tag{2.6}
\end{equation*}
$$

By integrating (2.6) over $D \times \Gamma(R)$ and then applying the divergence theorem, we get

$$
\begin{aligned}
T_{2} \geqslant & -2 \lambda \alpha \int_{\partial \Gamma(R)} \int_{D} r^{1-n}\left\{2\left(y_{k} b_{k \ell} w_{y_{\ell}}\right) w_{y_{\mathbf{K}}}-\left(w_{y_{k}} b_{k \ell} w_{y_{\ell}}\right) y_{\mathrm{K}}\right\} b_{\mathbf{K L}} \nu_{\mathrm{L}} d x d \sigma \\
& +\lambda \alpha \int_{\Gamma(R)} \int_{D} r^{1 \cdots n}\left|\nabla_{y} w\right|^{2} d x d y \\
& -4(n-1) \lambda \alpha \int_{\Gamma(R)} \int_{D} r^{-1-n}\left(y_{k} b_{k \ell} w_{y_{\ell}}\right)^{2} d x d y
\end{aligned}
$$

To finish the proof of Lemma 1 from this point it suffices to recall that $\lambda>n$ and $\alpha>1$, so

$$
T_{1}-4(n-1) \lambda \alpha \int_{\Gamma^{(R)}} r^{-1-n}\left\|y_{k} b_{k \ell} w_{y_{\ell}}\right\|^{2} d y \geqslant 0
$$

Lemma 2.

$$
\begin{align*}
T_{3} \geqslant & -2 \lambda \alpha \int_{D} \int_{\partial \Gamma(R)} r^{1-n} y_{k} b_{k \ell} \nu_{\ell} w_{x_{i}} a_{i j} w_{x_{j}} d \sigma d x \\
& +\underline{a} \lambda \alpha \int_{\Gamma(R)} r^{1-n}\left\|\nabla_{x} w\right\| 2 d y \\
& -2 \lambda \alpha \mathscr{L} n^{2} \int_{\Gamma(R)} r^{1-n}\left\|\nabla_{g_{j}} w\right\|^{2} d y \tag{2.7}
\end{align*}
$$

The last term on the right side of (2.7) can be dominated by the last term on the right of (2.5) by invoking the condition

$$
\begin{equation*}
2 n^{2} \mathscr{L}<\frac{1}{2} \tag{3}
\end{equation*}
$$

It should also be remarked that if the $b_{k \ell}$ are independent of x, then $\mathscr{L}=0$ and the conditions are needed only on $\mathscr{G}, \mathscr{K}, \mathscr{M}$.

Proof. We consider the integrand in T_{3}, namely

$$
\mathscr{I}_{3}(x, y)=2 r^{1-n} y_{k} b_{k t} w_{y_{t}} A w .
$$

Preparing to use the divergence theorem, we find that

$$
\begin{aligned}
\mathscr{I}_{3}(x, y)= & \left(2 r^{1-n} y_{k} b_{k \ell} w_{y_{\ell}} a_{i j} w_{x_{j}}\right)_{x_{i}} \\
& -\left(r^{1-n} y_{k} b_{k \ell} w_{x_{i}} a_{i j} w_{x_{j}}\right)_{y_{\ell}} \\
& +\left(r^{1-n} y_{k} b_{k \ell}\right)_{y_{\ell}} w_{x_{i}} a_{i j} w_{x_{j}} \\
& +r^{1-n} y_{k} b_{k \ell} w_{x_{i}}\left(a_{i j}\right)_{y_{\ell}} w_{x_{j}} \\
& -2 r^{1-n} y_{k}\left(c_{k \ell}\right)_{x_{i}} w_{y_{\ell}} a_{i j} w_{x_{j}} .
\end{aligned}
$$

Before integrating, notice that $w_{q_{\ell}}=0$ on $(\partial D) \times \mathbb{R}^{n}$, since $w=u \exp \left(\lambda r^{\alpha}\right)=0$ for $x \in \partial D$. After integrating and making the natural estimates, we get

$$
\begin{align*}
T_{3}= & 2 \lambda \alpha \int_{\Gamma^{(R)}} \int_{D} \mathscr{I}_{3}(x, y) d x d y \\
\geqslant & -2 \lambda \alpha \int_{\partial \Gamma(R)} \int_{D} r^{1-n} y_{k} b_{k \ell} \nu_{\ell} w_{x_{i}} a_{i j} w_{x_{j}} d x d \sigma \\
& +2 \lambda \alpha \mathscr{P} \int_{\Gamma(R)} r^{1-n}\left\|\nabla_{x^{w}}\right\|^{2} d y \\
& -2 \lambda \alpha \mathscr{L} n^{2} \int_{\Gamma(R)} r^{1-n}\left\|\nabla_{y} w\right\|^{2} d y, \tag{2.8}
\end{align*}
$$

where \mathscr{S} stands for the quantity

$$
\mathscr{P}=\left\{1-\mathscr{C}\left(n+n^{1 / 2}-1\right)-\mathscr{K} n^{3 / 2}\right\} \underline{a}-\mathscr{L} m \bar{a}^{2}-\mathscr{M} n^{1 / 2} m(1+\mathscr{C})
$$

Clearly the hypotheses $\left(\mathrm{C}_{2} \mathrm{a}\right)$ and $\left(\mathrm{C}_{2} \mathrm{~b}\right)$ are chosen to give the result $\mathscr{S} \geqslant \frac{1}{2} \underline{a}$. So the estimate (2.7) follows from (2.8).

Lemma 3. There is a constant $\lambda_{0}=\lambda_{0}(\alpha, n)$, independent of \mathscr{C} and \mathscr{K}, such that if $\lambda>\lambda_{0}$, then

$$
\begin{align*}
T_{4} \geqslant & -2(\lambda \alpha)^{2} \int_{\partial \Gamma(R)} r^{\alpha-3-n} q y_{k} b_{k \ell} \nu_{\ell}\|w\|^{2} d \sigma \\
& +\frac{1}{5}(\lambda \alpha)^{3} \int_{\Gamma(R)} r^{2 \alpha-1-n}\|w\|^{2} d y . \tag{2.9}
\end{align*}
$$

Proof. After integrating by parts, one can re-express T_{4} as

$$
\begin{align*}
T_{4}= & -2(\lambda \alpha)^{2} \int_{\partial \Gamma(R)} r^{\alpha-3-n} q y_{k} b_{k \ell} \nu_{\ell}\|w\|^{2} d \sigma \\
& +2(\lambda \alpha)^{2} \int_{\Gamma(R)}\|w\|^{2}\left\{r^{-n}\left(r^{a-3} q\right) y_{k} b_{k t}\right\}_{y_{t}} d y \tag{2.10}
\end{align*}
$$

The derivation of (2.9) from (2.10) requires a very delicate estimate of the divergence term

$$
J \equiv\left\{r^{-n}\left(r^{\alpha-3} q\right) y_{k} b_{k t}\right\}_{v_{\ell}} .
$$

Computation yields

$$
J=r^{\alpha-n-3} q\left[\delta_{k \ell} c_{k \ell}+y_{k}\left(c_{k \ell}\right)_{v_{\ell}}-n r^{-2} y_{k} c_{k \ell} y_{\ell}\right]+r^{-n} y_{k} b_{k \ell}\left(r^{\alpha-3} q\right)_{y_{\ell}}
$$

By $\left(\mathrm{C}_{1}\right)$ we have $\mathscr{C}<1$. Since $\lambda>n$ and $\alpha>1$, it follows that in $D \times \Gamma$

$$
q \geqslant r^{2}\left\{\left(\lambda \alpha r^{\alpha}-\alpha+2\right)(1-\mathscr{C})-\left(n+n^{1 / 2} \mathscr{C}\right)\right\} \geqslant 1-\mathscr{C}\left(n+n^{1 / 2}+1\right)
$$

Thus $\left(\mathrm{C}_{1}\right)$ is sufficient to keep $q>0$. After expanding the quantity $y_{k} b_{k t}\left(r^{\alpha-3} q\right)_{y_{\ell}}$, and grouping its terms according to the powers of r, one can obtain an estimate of the form

$$
y_{k} b_{k \ell f}\left(r^{\alpha-3} q\right)_{v_{\ell}} \geqslant \lambda \alpha r^{2 \alpha-1} Q_{1}-r^{\alpha-1} Q_{2}
$$

where Q_{1} and Q_{2} are algebraic expressions in α, n, \mathscr{C}, and \mathscr{K}. Assumption $\left(\mathrm{C}_{4} \mathrm{a}\right)$ makes $Q_{1} \geqslant \frac{4}{5}$, and thus

$$
y_{k} b_{k t}\left(r^{\alpha-3} q\right)_{y_{\ell}} \geqslant \frac{4}{5} \lambda \alpha r^{2 \alpha-1}-r^{\alpha-1} Q_{2} .
$$

Either $\left(\mathrm{C}_{1}\right)$ or $\left(\mathrm{C}_{4}\right.$ a) allows Q_{2} to be bounded above in terms of \boldsymbol{n} and α alone. Take λ_{0} so large that $\frac{1}{5} \lambda_{0}>Q_{2}$. Then for $\lambda>\lambda_{0}$

$$
y_{k} b_{k t}\left(r^{\alpha-3} q\right)_{v_{\ell}} \geqslant \frac{3}{5} \lambda \alpha r^{2 \alpha-1}
$$

and

$$
J \geqslant \frac{3}{5} \lambda \alpha r^{2 \alpha-n-1}-r^{\alpha-n-3} q\left[n^{1 / 2 \mathscr{C}}+n^{3 / 2} \mathscr{K}+n^{\mathscr{C}}\right]
$$

Since $q \leqslant\left(\lambda \alpha r^{\alpha}-\alpha+2\right) r^{2}(1+\mathscr{C})$, one now sees that

$$
\begin{aligned}
J \geqslant & r^{2 \alpha-n-1} \lambda \alpha\left[\frac{3}{5}-(1+\mathscr{C})\left\{n^{1 / 2} \mathscr{C}+n \mathscr{C}+n^{3 / 2} \mathscr{K}\right\}\right] \\
& -r^{\alpha-n-1}(2-\alpha)(1+\mathscr{C})\left\{n^{1 / \mathscr{C}}+n^{3 / 2} \mathscr{K}+n \mathscr{C}\right\} .
\end{aligned}
$$

Using ($\mathrm{C}_{4} \mathrm{~b}$), we get

$$
J \geqslant \frac{1}{5} r^{\alpha-n-1}\left\{2 \lambda \alpha r^{\alpha}-|2-\alpha|\right\}
$$

Take λ_{0} also larger than $|2-\alpha|$. Then for $\lambda>\lambda_{0}$ we arrive at the result

$$
J \geqslant \frac{1}{5} \lambda \alpha r^{\alpha-n-1}
$$

Putting this into (2.10) we finish the proof of Lemma 3.
Returning to the main line of the proof, we will assume that $\lambda>\max \left\{n, \lambda_{0}\right\}$ so the result of Lemma 3 will be valid. Applying the three lemmas to estimate the right side of (2.4) one derives the following inequality, in which $\mathscr{I}(R)$ and $\mathscr{I}(1)$ denote certain boundary integrals to be detailed presently:

$$
\begin{align*}
& \int_{\Gamma(R)} r^{3 a-n} e^{2 \lambda r^{\alpha}}\|L u\|^{2} d y+2 \lambda \alpha \mathscr{I}(R) \\
& \geqslant 2 \lambda \alpha \mathscr{A}(1)+\frac{1}{5}(\lambda \alpha)^{3} \int_{\Gamma(R)} r^{2 \alpha-n-1} e^{2 \lambda r^{\alpha}}\|u\|^{2} d y \\
& \quad+\lambda \alpha \int_{\Gamma(R)} r^{1-n\left\{\frac{1}{2}\left\|\nabla_{y} w\right\|^{2}+\underline{a} e^{2 \lambda r^{\alpha}}\left\|\nabla_{x} u\right\|^{2}\right\} d y .} \tag{2.11}
\end{align*}
$$

Notice that $\partial \Gamma(R)$ is composed of the two spheres $S(R)$ and $S(1)$. The outer unit normal ν from $\partial \Gamma(R)$ is therefore given by $\nu=R^{-1} y$ on $S(R)$ and by $\nu=-y$ on $S(1)$.

The terms $\mathscr{I}(\rho)$ for $\rho=R$ and $\rho=1$ have the form

$$
\begin{aligned}
\mathscr{I}(\rho)= & \int_{S(\rho)} \int_{D} r^{-n}\left\{2\left(y_{k} b_{k \ell} w_{y_{\ell}}\right)^{2}-\left(w_{y_{k}} b_{k \ell} w_{y_{\ell}}\right)\left(y_{\mathrm{K}} b_{\mathrm{KL}} y_{\mathrm{L}}\right)\right\} d x d \sigma \\
& +\int_{S(\rho)} \int_{D} r^{-n}\left(y_{k} b_{k \ell} y_{\ell}\right)\left(w_{x_{i}} a_{i j} w_{x_{j}}\right) d x d \sigma \\
& +(\lambda \alpha) \int_{S(\rho)} r^{\alpha-4-n} q\left(y_{k} b_{k \ell} y_{\ell}\right)\|w\|^{2} d \sigma
\end{aligned}
$$

The next objectives are an upper bound for $\mathscr{I}(R)$ and a lower bound for $\mathscr{I}(1)$.
Since $\left[b_{i j}\right]$ is symmetric and positive definite

$$
\left(y_{k} b_{k \ell} w_{y_{\ell}}\right)^{2} \leqslant\left(y_{\mathrm{K}} b_{\mathrm{KL}} y_{\mathrm{L}}\right)\left(w_{y_{k}} b_{k t} w_{y_{\ell}}\right) .
$$

Standard methods lead to

$$
w_{y_{k}} b_{k \ell} w_{y \ell} \leqslant(1+\mathscr{C}) 2 e^{2 \lambda r \alpha}\left\{(\lambda \alpha)^{2} r^{2 \alpha-2} u^{2}+\left|\nabla_{y} u\right|^{2}\right\} .
$$

Because of $\left(\mathrm{C}_{1}\right)$ one can verify that in $D \times \Gamma$

$$
0<q<\lambda \alpha r^{\alpha+2}(1+\mathscr{C})
$$

Using these remarks one concludes that

$$
\begin{aligned}
\mathscr{I}(R) \leqslant & 3(\lambda \alpha)^{2}(1+\mathscr{C})^{2} \int_{S(R)} r^{2 \alpha-n} e^{2 \lambda r^{\alpha}}\|u\|^{2} d \sigma \\
& +2(1+\mathscr{C})^{2} \int_{S(R)} r^{2-n} e^{2 \lambda r \alpha}\left\|\nabla_{y} u\right\|^{2} d \sigma \\
& +(1+\mathscr{C}) \int_{S(R)} r^{2-n} e^{2 \lambda r^{\alpha}} \int_{D} u_{x_{i}} a_{i j} u_{x_{j}} d x d \sigma
\end{aligned}
$$

Recalling the definition of the "energy" $E(u, R)$, we see that

$$
\begin{equation*}
\mathscr{I}(R) \leqslant 3(\lambda \alpha)^{2}(1+\mathscr{C})^{2} R^{2 \alpha-1} e^{2 \lambda R^{\alpha}} E(u, R) . \tag{2.12}
\end{equation*}
$$

The argument leading to a lower bound for $\mathscr{I}(1)$ in terms of $E(1, u)$ is contained in the proof of the final lemma.

Lemma 4. There is $a \lambda_{1}$ such that if $\lambda>\max \left\{2 n, \lambda_{1}\right\}$, then

$$
\begin{equation*}
\mathscr{I}(1) \geqslant \frac{1}{2}(1-\mathscr{C})^{2} e^{2 \lambda} E(u, 1) \tag{2.13}
\end{equation*}
$$

The value of λ_{1} depends only on the behavior of u and $\nabla_{y} u$ on $D \times S(1)$.
Proof. By expressing $\mathscr{I}(1)$ almost entirely in terms of u, one may obtain the inequality

$$
\begin{align*}
\mathscr{I}(1) \geqslant & \lambda \alpha e^{2 \lambda}(1-\mathscr{C}) \int_{S(1)} q\|u\|^{2} d \sigma \\
& +e^{2 \lambda}(1-\mathscr{C}) \int_{S(1)} \int_{D} u_{x_{i}} a_{i j} u_{x_{j}} d x d \sigma \\
& +\int_{S(1)} \int_{D}\left(\nu_{k} b_{k \ell} w_{y_{\ell}}\right)^{2} d x d \sigma \\
& -e^{2 \lambda} \int_{S(1)} \int_{D}\left\{\left(u_{y_{k}} b_{k \ell} u_{y_{\ell}}\right)\left(\nu_{\mathrm{K}} b_{\mathrm{KL}} \nu_{\mathrm{L}}\right)-\left(\nu_{k} b_{k \ell} u_{y_{\ell}}\right)^{2}\right\} d x d \sigma . \tag{2.14}
\end{align*}
$$

Under $\left(\mathrm{C}_{1}\right)$ and with $\lambda>2 n, r=1$, one gets

$$
q \geqslant(\lambda \alpha-\alpha+2)(1-\mathscr{C})-n(1+\mathscr{C}) \geqslant \frac{3}{4} \lambda \alpha(1-\mathscr{C})
$$

The proofs now proceeds by separate arguments depending on the behavior of u on $D \times S(1)$.

Case 1. Assume that the integral of $\|u\|^{2}$ over $S(1)$ is positive. Inequality (2.14) can be weakened to the form

$$
\begin{align*}
\mathscr{I}(1) \geqslant & \frac{3}{4}(\lambda \alpha)^{2} e^{2 \lambda}(1-\mathscr{C})^{2} \int_{S(1)}\|u\|^{2} d \sigma \\
& +e^{2 \lambda}(1-\mathscr{C}) \int_{S(1)} \int_{D} u_{x_{i}} a_{i j} u_{x_{j}} d x d \sigma \\
& -e^{2 \lambda(1+\mathscr{C})^{2} \int_{S(1)}\left\|\nabla_{y} u\right\|^{2} d \sigma} . \tag{2.15}
\end{align*}
$$

Under $\left(\mathrm{C}_{1}\right)$ one can show that if

$$
\lambda>\lambda_{1} \equiv\left[10 \int_{S(1)}\left\|\nabla_{y} u\right\|^{2} d \sigma\right]^{1 / 2}\left[\int_{S(1)}\|u\|^{2} d \sigma\right]^{-1 / 2}
$$

then

$$
\begin{align*}
& \frac{1}{4} \lambda^{2}(1-\mathscr{C})^{2} \int_{S(1)}\|u\|^{2} d \sigma-(1+\mathscr{C})^{2} \int_{S(\mathbf{1})}\left\|\nabla_{y} u\right\|^{2} d \sigma \\
& \quad \geqslant \frac{1}{2}(1-\mathscr{C})^{2} \int_{S(1)}\left\|\nabla_{y} u\right\|^{2} \tag{2.16}
\end{align*}
$$

From (2.15) and (2.16) it follows that

$$
\mathscr{I}(1) \geqslant \frac{1}{2} e^{2 \lambda}(1-\mathscr{C})^{2} \int_{S(1)}\left\{\|u\|^{2}+u_{x_{i}} a_{i j} u_{x_{j}}+\left\|\nabla_{y} u\right\|^{2}\right\} d \sigma
$$

This is exactly the required bound (2.13).
Case 2. Assume that $\|u\|^{2}$ vanishes identically on $S(1)$; so $u(x, y)=0$ for all $x \in D, y \in S(1)$. Considering u as a function of y for a fixed $x \in D$, we now have $\nabla_{y} u= \pm\left|\nabla_{y} u\right| \nu$, since ν is the outer unit normal from $\Gamma(R)$ on $S(1)$. Thus the inequality (2.14) takes the form

$$
\mathscr{I}(1) \geqslant \int_{S(1)} \int_{D}\left(\nu_{k} b_{k \ell} w_{y \epsilon}\right)^{2} d x d \sigma
$$

But in this case, one also finds that

$$
\nu_{k} b_{k \ell} w_{y_{\ell}}=e^{\lambda} \nu_{k} b_{k \ell} u_{y \ell}= \pm e^{\lambda}\left|\nabla_{y} u\right| v_{k} b_{k \ell} v_{\ell}
$$

on $D \times S(1)$. Thus

$$
\begin{equation*}
\mathscr{I}(1) \geqslant e^{2 \lambda}(1-\mathscr{C})^{2} \int_{S(1)}\left\|\nabla_{y} u\right\|^{2} d \sigma \tag{2.17}
\end{equation*}
$$

Because u and $\nabla_{x} u$ vanish in $D \times S(1)$ in this case, (2.17) is equivalent to

$$
\mathscr{I}(1) \geqslant e^{2 \lambda}(1-\mathscr{C})^{2} \int_{S(1)}\left\{\left\|\nabla_{\mathscr{3}} u\right\|^{2}+\|u\|^{2}+u_{x_{i}} a_{i j} u_{x_{j}}\right\} d \sigma,
$$

which leads to (2.13) without further conditions on λ.
Having completed the proof of Lemma 4, we return to the proof of Theorem 1. We now require that $\lambda \geqslant \max \left\{2 n, \lambda_{0}, \lambda_{1}\right\}$ in order to assure the validity of (2.11), (2.12), and (2.13).

Combining these three inequalities we find that

$$
\begin{align*}
& \int_{\Gamma(R)} r^{3-\alpha-n} e^{2 \lambda r^{\alpha}}\|L u\|^{2} d y+6(1+\mathscr{C})^{2}(\lambda \alpha)^{3} R^{2 \alpha+1} e^{2 \lambda R^{\alpha}} E(u, R) \\
& \quad \geqslant \frac{1}{5}(\lambda \alpha)^{3} \int_{\Gamma(R)} r^{2 \alpha-n-1} e^{2 \lambda r \alpha}\|u\|^{2} d y \\
& \quad+\lambda \alpha \int_{\Gamma(R)} r^{1-n\left\{\frac{1}{2}\left\|\nabla_{y} w\right\|^{2}+\underline{a}\left\|\nabla_{x} w\right\|^{2}\right\} d y+(1-\mathscr{C})^{2} \lambda \alpha e^{2 \lambda} E(u, 1)} . \tag{2.18}
\end{align*}
$$

It remains only to estimate the two terms referring to w instead of u. Since $w=u \exp \left(\lambda r^{\alpha}\right)$, it follows that

$$
\left|\nabla_{x} w\right|^{2}=e^{2 \lambda r x}\left|\nabla_{x} u\right|^{2}
$$

and

$$
\left|\nabla_{y} w\right|^{2}=e^{2 \lambda r^{\alpha}} \sum_{k=1}^{n}\left\{\lambda \alpha r^{\alpha-2} y_{k} u+u_{y_{k}}\right\}^{2} .
$$

But the bound

$$
\left|2\left(\lambda \alpha r^{\alpha-2} y_{k} u\right) u_{y_{k}}\right| \leqslant \frac{6}{5}\left(\lambda \alpha r^{\alpha-1} u\right)^{2}+\frac{5}{6}\left|\nabla_{y} u\right|^{2}
$$

leads to

$$
\left\|\nabla_{y} w\right\|^{2} \geqslant e^{2 \lambda \lambda^{\alpha}}\left\{-\frac{1}{5}\left(\lambda \alpha r^{\alpha-1}\right)^{2}\|u\|^{2}+\frac{1}{6}\left\|\nabla_{y} u\right\|^{2}\right\} .
$$

Thus (2.18) will yield the desired inequality (2.1) once we set

$$
\begin{array}{ll}
k_{0} \geqslant 6(1+\mathscr{C})^{2}, & k_{1}=\frac{1}{10} \\
k_{2}=\min \left\{\frac{1}{2}, \underline{a}\right\} & k_{3} \leqslant(1-\mathscr{C})^{2}
\end{array}
$$

The proof of Theorem 1 is finally complete.

3. The Main Results

We now apply the weighted energy inequality of Theorem 1 to the study of solutions of ultrahyperbolic equations.

Theorem 2. Suppose that u belongs to \mathscr{T} and satisfies

$$
\begin{equation*}
|L u| \leqslant \phi_{0}|u|+\phi_{1}\left|\nabla_{x} u\right|+\phi_{2}\left|\nabla_{y} u\right| \tag{1.3}
\end{equation*}
$$

If ϕ_{0}, ϕ_{1}, and ϕ_{2} are bounded in Γ, then for some positive constants k, K, and for all sufficiently large λ

$$
\begin{equation*}
K \lambda^{3} R^{3} e^{2 \lambda R^{2}} E(u, R) \geqslant k E(u, 1)+\int_{\Gamma(R)} r^{1-n} e^{2 \lambda r^{2}}\|u\|^{2} d y \tag{3.1}
\end{equation*}
$$

Proof. We invoke (2.1) with $\alpha=2$ and λ sufficiently large. Because of the assumption on the ϕ_{i}, we have

$$
\|L u\|^{2} \leqslant \Phi\left\{\|u\|^{2}+\left\|\nabla_{x} u\right\|^{2}+\left\|\nabla_{y} u\right\|^{2}\right\}
$$

for some Φ. Putting this bound on $\|L u\|^{2}$ into (2.1), we can obtain the inequality

$$
\begin{aligned}
& k_{0} 8 \lambda^{3} R^{3} e^{2 \lambda R^{2}} E(u, R) \\
& \geqslant \\
& \int_{\Gamma(R)}\left\{8 k_{1} \lambda^{3} r^{2}-\Phi\right\} r^{1-n} e^{2 \lambda r^{2}}\|u\|^{2} d y \\
& \quad+\int_{\Gamma(R)}\left\{2 k_{2} \lambda-\Phi\right\} r^{1-n} e^{2 \lambda r^{2}}\left\{\left\|\nabla_{x} u\right\|^{2}+\left\|\nabla_{y} u\right\|^{2}\right\} d y+k_{3} E(u, 1) .
\end{aligned}
$$

If λ is taken not only so large that (2.1) holds, but also so large that

$$
8 k_{1} \lambda^{3}-\Phi \geqslant 1, \quad \text { and } \quad 2 k_{2} \lambda-\Phi \geqslant 0
$$

then we get the inequality (3.1) claimed by Theorem 2.
The crucial observation about (3.1) is that the right side is a nonnegative increasing function of R. From (3.1) one is led to the following results.

Theorem 3. Suppose $u \in \mathscr{U}$ and u satisfies (1.3). Assume L satisfies Condition C and the ϕ_{i} are bounded in Γ. Then
(i) if u has bounded support, then $u \equiv 0$;
(ii) $E(u, R)$ cannot decay arbitrarily fast, unless $u \equiv 0$;
(iii) there are positive constants K and ρ, such that for $R>1$

$$
E(u, R) \geqslant K e^{-\rho R^{2}} E(u, 1)
$$

Proof. (i) Suppose that the support of u is contained in some $D \times \Gamma(R)$. Then $E(u, R)$ will be zero. From (3.1) it follows that $\|u\|=0$ in $\Gamma(R)$, and thus that the support of u is empty.
(ii) Suppose $E(u, R)$ is $o\left(e^{-\rho R^{2}}\right)$ for all $\rho>0$. Then (3.1) forces $\|u\|$ to vanish in all $\Gamma(R)$.
(iii) This follows immediately from (3.1).

In the proof of Theorem 2, one should notice that the validity of (3.1) for any given value of R requires only that the ϕ_{i} be bounded in $D \times \Gamma(R)$ and that u
solve (1.3) in $D \times \Gamma(R)$ and vanish on $(\partial D) \times \Gamma(R)$. This remark allows us to treat the question of uniqueness for a mixed boundary value problem.

Theorem 4. Suppose L satisfies Condition C , and the ϕ_{i} are bounded in $\Gamma(R)$. Then there is at most one solution of the problem

$$
\begin{align*}
& L u=f\left(x, y, u, \nabla_{x} u, \nabla_{y} u\right) \quad \text { in } D \times \Gamma(R) \\
& u \text { is specified on }(\partial D) \times \Gamma ; \\
& u \text { and } u_{n}=r^{-1} y_{k} u_{y_{k}} \text { are specified on } D \times S(R) . \tag{3.2}
\end{align*}
$$

Proof. Suppose u and v are both solutions. Set $U=u-v$. Then the Lipschitz condition on f forces U to satisfy the inequality

$$
|L U| \leqslant \phi_{0}|U|+\phi_{1}\left|\nabla_{x} U\right|+\phi_{2}\left|\nabla_{y} U\right|
$$

Clearly $U=0$ on $(\partial D) \times \Gamma$. Also, it is easy to verify that $E(U, R)=0$. Thus by Theorem 2, it follows that $U \equiv 0$ in $D \times \Gamma(R)$.

These results can be extended and sharpened by considering various possible growth conditions on the $\phi_{i}(y)$. We discuss rather informally the case

$$
\left|\phi_{0}(y)\right| \leqslant \Phi r^{\beta}, \quad\left|\phi_{i}(y)\right| \leqslant \Psi r^{\nu}, \quad i=1,2
$$

where $-\frac{1}{2}<\beta, \gamma<\infty$. Now if u solves (1.3), we can conclude that

$$
\|L u\|^{2} \leqslant 3 \Phi^{2} r^{28}\|u\|^{2}+3 \Psi^{2} r^{2 \gamma}\left\{\left\|\nabla_{x} u\right\|^{2}+\left\|\nabla_{y} u\right\|^{2}\right\} .
$$

If u both solves (1.3) and belongs to class \mathscr{U}, then we can invoke Theorem 1 to get

$$
\begin{align*}
& k_{0}(\lambda \alpha)^{3} R^{2 \alpha-1} e^{2 \lambda R^{\alpha}} E(u, r) \\
& \qquad \int_{I^{\prime}(R)}\left\{k_{1}(\lambda \alpha)^{3}-3 \Phi^{2} r^{4+2 \beta-3 \alpha}\right\} r^{2 \alpha-n-1} e^{2 \lambda r^{\alpha}}\|u\|^{2} d y \\
& \quad+\int_{\Gamma(R)}\left\{k_{2} \lambda \alpha-3 \Psi^{2} r^{2+2 \gamma-\alpha}\right\} r^{1-n} e^{2 \lambda r^{\alpha}}\|\nabla u\|^{2} d y+k_{3} E(u, 1) \tag{3.3}
\end{align*}
$$

for $\alpha>1$ and λ sufficiently large. Now we pick $\alpha=\max \left\{\frac{1}{3}(4+2 \beta), 2+2 \gamma\right\}>1$. The effect is to make the powers of r in the curly brackets, $\{\cdots\}$, in (3.3) nonpositive. Thus we can pick λ so large that (3.3) holds and that

$$
k_{1} \lambda^{3}-3 \Phi^{2} \geqslant 1, \quad \text { and } \quad k_{2} \lambda-3 \Psi^{2} \geqslant 0
$$

For all such large λ, (3.3) yields

$$
k_{0}(\lambda \alpha)^{3} R^{2 \alpha-1} e^{2 \lambda R^{\alpha}} E(u, R) \geqslant k_{3} E(u, 1)+\int_{\Gamma(R)} r^{2 \alpha-1-n} e^{2 \lambda r^{\alpha}}\|u\|^{2} d y
$$

This is the analog of Theorem 2 and the results analogous to those in Theorem 3 can be easily recognized.

References

1. J. B. Diaz and E. C. Young, Uniqueness of solutions of certain boundary value problems for ultrahyperbolic equations, Proc. Amer. Math. Soc. 29 (1971), 569-574.
2. H. A. Levine, Some uniqueness and growth theorems in the Cauchy problem for $P u_{t t}+M u_{t}+N u=0$ in Hilbert space, Math. Z. 126 (1972), 345-360.
3. A. C. Murray and M. H. Protter, Asymptotic behavior and the Cauchy problem for ultrahyperbolic operators, Indiana U. Math. J. 24 (1974), 115-130.
4. O. G. OwENs, Uniqueness of solutions of ultrahyperbolic partial differential equations, Amer. J. Math. 69 (1947), 184-188.
5. M. H. Protter, Asymptotic decay for ultrahyperbolic operators, in "Contributions to Analysis" (Lars Ahlfors et al., Eds.), Academic Press, New York, 1974.

[^0]: * Research supported in part by the National Science Foundation, Grant GP 27671.

