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We explore the electromagnetic gauge invariance of the hadron tensor of the Drell–Yan process with one
transversely polarized hadron. The special role is played by the contour gauge for gluon fields. The pre-
scription for the gluonic pole in the twist 3 correlator is related to causality property and compared with
the prescriptions for exclusive hard processes. As a result we get the extra contributions, which naively
do not have an imaginary phase. The single spin asymmetry for the Drell–Yan process is accordingly
enhanced by the factor of two.

© 2010 Published by Elsevier B.V. Open access under CC BY license. 
1. Introduction

The problem of the electromagnetic gauge invariance in the
deeply virtual Compton scattering (DVCS) and similar exclusive
processes has intensively been discussed during last few years, see
for example [1–5]. This development explored the similarity with
the earlier studied inclusive spin-dependent processes [6], and the
transverse component of momentum transfer in DVCS corresponds
to the transverse spin in DIS.

The gauge invariance of relevant amplitudes is ensured by
means of twist three contributions and the use of the equations of
motion providing a possibility to exclude the three-particle (quark–
gluon) correlators from the amplitude. After combining with the
two-particle correlator contributions, one gets the gauge invariant
expression for the physical amplitude or, in the case of lepton–
hadron processes, for the corresponding hadron tensor [6].

This method was originally developed in the case of the par-
ticular inclusive processes with transverse polarized hadrons, like
structure function g2 in DIS [6] and Single Spin Asymmetry (SSA)
[7] due to soft quark (fermionic poles [8]). At the same time, the
colour gauge invariance of the so-called gluonic poles contributions
[9] was previously explored [10] by other methods relying on the
Wilson exponentials [11–14].

Here we combine the approaches described above and apply
them in the relevant case of the Drell–Yan (DY) process where one
of hadrons is the transversally polarized nucleon.
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The SSA in the DY process was first considered in QCD in the
case [15,16] of the longitudinally polarized hadron. This observable
is especially interesting if the second hadron is a pion, because of
the sensitivity [17,18] to the shape of pion distribution amplitude,
being currently the object of major interest [19,20] (see also [21]
and references therein).

The imaginary phases in the SSA with longitudinally polar-
ized nucleon are due to the hard perturbative gluon loops [15,
16] or twist 4 contribution of the pion distribution amplitude
[17,18,22]. At the same time, the source of the imaginary part,
when one calculates the single spin asymmetry associated with
P + P↑↓ → ��̄+ X process, is the quark propagator in the diagrams
with quark–gluon (twist three) correlators. This leads [23] to the
gluonic pole contribution to SSA. It has been reproduced (up to the
derivative term, corresponding to the case of single inclusive Drell–
Yan process, when only one of the leptons is observed) in the case
of the non-zero boundary condition imposed on gluon fields, and
the asymmetric boundary conditions have been considered as a
privileged ones [24]. The reason is that these boundary conditions
provide the purely real quark–gluon function B V (x1, x2) which pa-
rameterizes 〈ψ̄γ + AT

αψ〉 matrix element. By this fact the diagrams
with two-particle correlators do not contribute to the imaginary
part of the hadron tensor related to the SSA. This property seems
quite natural, as the corresponding diagram does not have a cut
capable of producing the imaginary phase [25].

In our Letter, we perform a thorough analysis of the transverse
polarized DY hadron tensor in the light of the QED gauge invari-
ance, the causality and gluonic pole contributions.

We show that to restore the electromagnetic gauge invariance
of the transverse polarized DY hadron tensor, it is mandatory to
add the extra diagram contribution (cf. [26] where the similar
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Fig. 1. The Feynman diagrams which contribute to the polarized Drell–Yan hadron tensor.
contribution was associated with the so-called special propagator),
also at the twist three level. In contrast to the naive assumption,
we demonstrate that this new additional contribution is directly
related to the certain complex prescription in the gluonic pole
1/(x1 − x2) of the quark–gluon function B V (x1, x2). It is essential
that this prescription is process-dependent, supporting the idea of
effective process-dependent Sivers function (see, e.g., [27] and ref-
erences therein) related to this correlator.

In more detail, we show that the causal pole prescription in
the quark propagator, involved in the hard part of the standard di-
agram, supports the choice of a contour gauge and, in turn, the
representation of the quark–gluon function B V (x1, x2) in the form
of the gluonic pole with the mentioned complex prescription. This
representation must be extended on the diagram, which naively
does not contribute to the imaginary part. They ensure an extra
contribution to the imaginary part which is necessary to maintain
the electromagnetic gauge invariance. Finally, the account for this
extra contributions corrects the SSA formula for the transverse po-
larized Drell–Yan process by the factor of 2.

Our analysis is also important in view of the recent inves-
tigation of DY process within both the collinear and the trans-
verse momentum factorization schemes with hadrons replaced by
on-shell parton states [28]. They examined these two factoriza-
tion approaches and claimed the substantial differences between
them in the calculations of the angular asymmetries. This may
be compared with the calculations of the angular distribution of
the DY lepton pair production in the framework of the trans-
verse momentum-dependent factorization approach [29]. It was
found that in the intermediate transverse momentum region the
collinear factorization and the transverse momentum-dependent
factorization are consistent in the description of the lepton pair
angular distributions. This corrected the earlier claims of [30],
questioning (like [28]) the unique predictions for the SSAs within
collinear and transverse momentum-dependent factorization ap-
proaches. Because of these controversies, the properties of trans-
verse momentum integrated SSAs which we are elaborating here
are of additional importance.

2. Causality and contour gauge for the gluonic pole

We study the contribution to the hadron tensor which is related
to the single spin (left–right) asymmetry measured in the Drell–
Yan process with the transversely polarized nucleon: N(↑↓)(p1) +
N(p2) → γ ∗(q)+ X(P X ) → �(l1)+ �̄(l2)+ X(P X ), where the virtual
photon producing the lepton pair (l1 + l2 = q) has a large mass
squared (q2 = Q 2) while the transverse momenta are small and
integrated out. The left–right asymmetry means that the transverse
momenta of the leptons are correlated with the direction S × ez
where Sμ implies the transverse polarization vector of the nucleon
while ez is a beam direction [31].

The DY process with the transversely polarized target manifests
[23] the gluonic pole contributions. Since we perform our calcu-
lations within a collinear factorization, it is convenient (see, e.g.,
[32]) to fix the dominant light-cone directions for the DY process
shown in Fig. 1
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√

2
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, (1)

so that the hadron momenta p1 and p2 have the plus and mi-
nus dominant light-cone components, respectively. Accordingly, the
quark and gluon momenta k1 and � lie along the plus direction
while the antiquark momentum k2 – along the minus direction.

Focusing on the Dirac vector projection, containing the gluonic
pole, let us start with the standard hadron tensor generated by the
diagram depicted in Fig. 1(a):

W (1)
μν

=
∫

d4k1 d4k2 δ(4)(k1 + k2 − q)

∫
d4�Φ

(A)[γ +]
α (k1, �)Φ̄

[γ −](k2)

× tr

[
γμγ −γνγ

+γα
�+γ − − k−

2 γ +

−2�+k−
2 + iε

]
, (2)

where

Φ
(A)[γ +]
α (k1, �)

F2= 〈
p1, S T

∣∣ψ̄(η1)γ
+g Aα(z)ψ(0)

∣∣S T , p1
〉
,

Φ̄[γ −](k2)
F1= 〈p2|ψ̄(η2)γ

−ψ(0)|p2〉. (3)

Throughout this Letter, F1 and F2 denote the Fourier transfor-
mation with the measures

d4η2 eik2·η2 and d4η1 d4z e−ik1·η1−i�·z, (4)

respectively, while F −1
1 and F −1

2 mark the inverse Fourier trans-
formation with the measures

dyeiyλ and dx1 dx2eix1λ1+i(x2−x1)λ2 . (5)

Analyzing the γ -structure of (2), we may conclude that the
first term in the quark propagator singles out the combination:
γ +γαγ − with α = T which will lead to the matrix element of the
twist three operator, 〈ψ̄γ + AT

αψ〉 with the transverse gluon field.
After factorization, this matrix element will be parametrized via
the function B V (x1, x2). The second term in the numerator of the
quark propagator separates out the combination γ +γαγ + with
α = −. Therefore, this term will give 〈ψ̄γ + A+ψ〉 which, as we
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will see now, will be exponentiated in the Wilson line [−∞−,0−].
Indeed, this part of the standard hadron tensor is given by

W (1)[k−
2 -term]

μν

=
∫

dμ(ki; x1, y) tr
[
γμγ −γνγ

+γ −γ +]
Φ̄[γ −](k2)

× 1

2

∫
dz−

∫
d�+ e−i�+z−

�+ − iε

∫
d4η1 e−ik1·η1

× 〈
p1, S T

∣∣ψ̄(η1)γ
+g A+(

0, z−, �0T
)
ψ(0)

∣∣S T , p1
〉
, (6)

where

dμ(ki; x1, y) = dx1 d4k1 δ
(
x1 − k+

1 /p+
1

)
dy d4k2 δ

(
y − k−

2 /p−
2

)
× [

δ(4)(x1 p1 + yp2 − q)
]
. (7)

Note that the prescription −iε in the denominator of this ex-
pression directly follows from the standard (see, e.g., [33]) causal
prescription for the massless quark propagator in (2).

Integrating over �+ , one can immediately obtain the corre-
sponding θ -function in (6):

W (1)[k−
2 -term]

μν =
∫

dμ(ki; x1, y) tr
[
γμγ −γνγ

+]
Φ̄[γ −](k2)

×
∫

d4η1 e−ik1·η1
〈
p1, S T

∣∣ψ̄(η1)γ
+ig

×
+∞∫

−∞
dz− θ

(−z−)
A+(

0, z−, �0T
)
ψ(0)

∣∣S T , p1
〉
.

(8)

Including all gluon emissions from the antiquark going from the
upper blob in Fig. 1(a) (the so-called initial state interactions), we

get the corresponding P -exponential in Φ
(A)[γ +]
α (k1, �). The latter

is now represented by the following matrix element:∫
d4η1 e−ik1·η1

〈
p1, S T

∣∣ψ̄(η1)γ
+[−∞−,0−]

ψ(0)
∣∣S T , p1

〉
, (9)

where

[−∞−,0−] = P exp

{
−ig

0∫
−∞

dz− A+(
0, z−, �0T

)}
. (10)

If we include in the consideration the gluon emission from the in-
coming antiquark (the mirror contributions), we will obtain the
Wilson line [η−

1 ,−∞−] which will ultimately give us, together
with (10), the Wilson line connecting the points 0 and η1 in (9).
This is exactly what happens, say, in the spin-averaged DY pro-
cess [34]. However, for the SSA, these two diagrams should be
considered individually. Indeed, their contributions to SSAs, con-
trary to spin-averaged case, differ in sign and the dependence on
the boundary point at −∞− does not cancel.

To eliminate the unphysical gluons from our consideration
and use the factorization scheme [6], we may choose a contour
gauge [35][−∞−,0−] = 1 (11)

which actually implies also the axial gauge A+ = 0 used in [6].
Let us discuss the problem of gauge choice in more detail.

In (11), the so-called starting point x0 (see [35]) is fixed to be
at −∞− owing to the certain complex prescription +iε in the
quark propagator in (2). If we would change the starting point
x0 on +∞− , this would correspond to the choice of the “anti-
causal” complex prescription −iε . On the other hand, the axial
gauge A+ = 0 is independent on the choice of x0 and we are able
to eliminate the Wilson line by choosing simply A+ = 0 without
referring to the starting point x0. Nevertheless, since our prescrip-
tion +iε in the quark propagator uniquely fixes the starting point
x0 at −∞, the expression for the Wilson line (10) hints the choice
of gauge (11).

Imposing this gauge one arrives [35] at the following represen-
tation of the gluon field in terms of the strength tensor:

Aμ(z) =
∞∫

−∞
dω− θ

(
z− − ω−)

G+μ
(
ω−) + Aμ(−∞). (12)

Moreover, as we will demonstrate below, if we choose instead an
alternative representation for the gluon in the form:

Aμ(z) = −
∞∫

−∞
dω− θ

(
ω− − z−)

G+μ
(
ω−) + Aμ(∞) (13)

(which corresponds to the gauge condition [+∞−,0−] = 1 and
also results in A+ = 0) keeping the causal prescription +iε in (2),
the cost of this will be the breaking of the electromagnetic gauge
invariance for the DY tensor.

We are now ready to pass to the term with �+γ − in (2) which
gives us finally the matrix element of the twist three quark–gluon
operator with the transverse gluon field. Let us stop, in more de-
tail, on the parametrization of the relevant matrix elements:〈
p1, S T

∣∣ψ̄(λ1ñ)γβ g AT
α(λ2ñ)ψ(0)

∣∣S T , p1
〉

F −1
2= iεβαS T p1

B V (x1, x2). (14)

Using the representation (12), this function can be expressed as

B V (x1, x2) = T (x1, x2)

x1 − x2 + iε
+ δ(x1 − x2)B V

A(−∞)(x1), (15)

where the real regular function T (x1, x2) (T (x, x) �= 0) parametrizes
the vector matrix element of the operator involving the tensor Gμν

(cf. [36]):〈
p1, S T

∣∣ψ̄(λ1ñ)γβ ñν Gνα(λ2ñ)ψ(0)
∣∣S T , p1

〉
F −1

2= εβαS T p1
T (x1, x2). (16)

Owing to the time-reversal invariance, the function B V
A(−∞)(x1),

iεβαS T p1
δ(x1 − x2)B V

A(±∞)(x1)

F= 〈
p1, S T

∣∣ψ̄(λ1ñ)γβ g AT
α(±∞)ψ(0)

∣∣S T , p1
〉
, (17)

can be chosen as

B V
A(−∞)(x) = 0. (18)

Indeed, the function B V (x1, x2) is an antisymmetric function of its
arguments [6], while the antisymmetrization of the additional term
with B V

A(−∞)(x1) gives zero.
There is no doubt that the only source of the imaginary part of

the hadron tensor is the quark propagator. One may try to realize
this property by assumption that matrix elements are purely real,

B V (x1, x2) = P
x1 − x2

T (x1, x2), (19)

corresponding to asymmetric boundary condition for gluons [24]:
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B V
A(∞)(x) = −B V

A(−∞)(x). (20)

Here we suggest another way of reasoning. The causal pre-
scription for the quark propagator, generating its imaginary part,
simultaneously leads to the imaginary part of the gluonic pole. Let
us emphasize that this does not mean the appearance of imag-
inary part of matrix element (which by itself does not have an
explicit physical meaning) but rather the prescription of its con-
volution with hard part. This procedure is in agreement with the
prescriptions which were appeared in the exclusive case in the
parametrization of the generalized gluon distributions [37,38].

This interplay of large and short distances is especially clear
when our result is compared to approach [26] where the similar
imaginary part appears in the special propagator formally included
to the hard part, while we have a complex soft ingredient gener-
ated by its interaction with the hard part.

Note that the fixed complex prescription +iε in the gluonic
pole of B V (x1, x2) (see (15)) is one of our main results and is
very crucial for an extra contribution to hadron tensor we are now
ready to explore. Indeed, the gauge condition must be the same
for all the diagrams, and it leads to the appearance of imaginary
phase of the diagram (see Fig. 1(b)) which naively does not have
it. Let us confirm this by explicit calculation.

3. Hadron tensor and gauge invariance

We now return to the hadron tensor and calculate the part in-
volving �+γ − , obtaining the following expression for the standard
hadron tensor (see the diagram in Fig. 1(a)):

W (1)[�+-term]
μν

=
∫

d2�qT W (1)
μν

= −
∫

dx1 dy
[
δ(x1 − xB)δ(y − yB)

]
q̄(y)

× �m
∫

dx2 tr

[
γμγβγν p̂2γ

T
α

(x1 − x2)p̂1

(x1 − x2)ys + iε

]
× B V (x1, x2)εβαS T p1

, (21)

where we used �+γ − = (x2 − x1)p̂1 and

〈p2|ψ̄
(
λñ∗)γμψ(0)|p2〉 F −1

1= p2μq̄(y). (22)

We are now in position to check the QED gauge invariance by
contraction with the photon momentum qμ . Calculating the trace

1

4
(x1 − x2)εβαS T p1

tr
[
q̂γβγν p̂2γ

T
α p̂1

]
= εαp2 S T p1

gT
αν y(x1 − x2)s, (23)

one gets

qμ W (1)
μν = −

∫
dx1 dy

[
δ(x1 − xB)δ(y − yB)

]
q̄(y)ενp2 S T p1

×
1∫

−1

dx2 �m
x1 − x2

x1 − x2 + iε
B V (x1, x2) �= 0, (24)

if the gluonic pole is present. Note that here and below we con-
sider only the imaginary part of the hadron tensor (as for any
single spin asymmetry).

Let us analyze this problem from a viewpoint of the so-called
ξ -process (see [33], Section 33.2) applied for the partonic sub-
process. Generally speaking, the single diagram in Fig. 1(a) cannot
give the gauge invariant hadron tensor. One needs the second di-
agram (cf. [26]) with the gluon insertion in the quark line, see
Fig. 1(b).

We would like to emphasize that the diagrams which are anal-
ogous to Fig. 1(b) were considered in [26] as well. Note that in
the mentioned paper the imaginary parts of these diagrams ex-
isted owing to the introduction of the so-called special propagators
in the hard part of the hadron tensor. In contrast to that, as we
will demonstrate below, our imaginary parts of the diagrams in
Fig. 1(b) exist due to the three-particle function B V (x1, x2) work-
ing within the standard collinear factorization procedure.

We now focus on the contribution from the diagram depicted
in Fig. 1(b). The corresponding hadron tensor takes the form:

W (2)
μν =

∫
d4k1 d4k2 δ(4)(k1 + k2 − q) tr

[
γμF (k1)γνΦ̄(k2)

]
, (25)

where the function F (k1) reads

F (k1) = S(k1)γα

∫
d4η1 e−ik1·η1

× 〈
p1, S T

∣∣ψ̄(η1)g AT
α(0)ψ(0)

∣∣S T , p1
〉
. (26)

Performing the collinear factorization, we derive the expression for
the factorized hadron tensor which corresponds to the diagram in
Fig. 1(b):

W (2)
μν =

∫
dx1 dy

[
δ(x1 − xB)δ(y − yB)

]
q̄(y)

× tr

[
γμ

(∫
d4k1 δ

(
x1 p+

1 − k+
1

)
F (k1)

)
γν p̂2

]
. (27)

After some algebra, the integral over k1 in (27) can be rewritten as∫
d4k1 δ

(
x1 p+

1 − k+
1

)
F [γ +](k1)

= p̂2γ
T
α γβ

2p−
2 p+

1

εβαS T p1

1

x1 + iε

1∫
−1

dx2 B V (x1, x2), (28)

where the parametrization (14) has been used. Taking into account
(28) and calculating the Dirac trace, the contraction of the tensor
W (2)

μν with the photon momentum qμ gives us

qμ W (2)
μν =

∫
dx1 dy

[
δ(x1 − xB)δ(y − yB)

]
q̄(y)ενp2 S T p1

×
1∫

−1

dx2 �mB V (x1, x2). (29)

From this, one can observe that if the function B V (x1, x2) is the
purely real one (see (19)), this part of the hadron tensor, which is
associated with the diagram in Fig. 1(b), does not contribute to the
imaginary part.

We now study the net effect of the W (1)
μν and W (2)

μν contribu-
tions and its role for the QED gauge invariance. Adding the contri-
butions of (24) and (29), one can easily obtain:

qμ W (1)
μν + qμ W (2)

μν

= ενp2 S T p1
q̄(yB)�m

1∫
−1

dx2 B V (xB , x2)

[
xB − x2

xB − x2 + iε
− 1

]
.

(30)
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Fig. 2. The Feynman diagrams which contribute to the α3-order amplitude in QED.
If we tacitly assume that B V (x1, x2) is some real and regular (at
x1 = x2) function that the numerator and denominator in the first
term inside the brackets are contracted and, as a result of this,
both the first and second terms in (30) do not have an imaginary
part. That would mean the electromagnetic gauge invariance for
the tensor.

The existence of the gluonic pole changes the situation. Insert-
ing now (15) into (30), one gets

qμ W (1)
μν + qμ W (2)

μν

= ενp2 S T p1
q̄(yB)

× �m

1∫
−1

dx2 T (xB , x2)

[
xB − x2

(xB − x2 + iε)2
− 1

xB − x2 + iε

]
.

(31)

Performing the calculation one gets:

qμ W (1)
μν + qμ W (2)

μν = 0. (32)

This is nothing else than the QED gauge invariance for the imag-
inary part of the hadron tensor. From (31), we can see that the
gauge invariance takes place only if the prescriptions in the gluonic
pole and in the quark propagator of the hard part are coinciding.
Indeed Eq. (31) with the field (13) takes the form

qμ W (1)
μν + qμ W (2)

μν

= ενp2 S T p1
q̄(yB)

× �m

1∫
−1

dx2 T (xB , x2)

[
xB − x2

(xB − x2 − iε)(xB − x2 + iε)

− 1
]
. (33)
xB − x2 + iε
It is clear that the first term in the brackets is purely real, and the
imaginary part from the second term stays uncompensated. Let us
note for completeness, that the treatment of the pole in the prin-
cipal value sense is equivalent to the mean arithmetic of two dis-
cussed prescriptions and also cannot satisfy the gauge invariance.
Thus we completed the reductio ad absurdum of the hint suggested
in Section 2 and found that the contour gauge (11) is a correct one.
In other words, it means that the prescription in the quark propa-
gator must agree with the representation of B V (xB , x2). Otherwise,
one may face the problem with the gauge invariance.

It is instructive to compare the electromagnetic gauge invari-
ance of the gluonic poles contributions with that of perturbative
QCD. In the latter case the imaginary part is provided by hard
gluon loops and the QED gauge invariant set consists of 3 dia-
grams depicted in Fig. 2. At the same time, the imaginary part is
due to the single diagram in Fig. 2(a) and it is gauge invariant
by itself as the photon line couples to two on-shell (because of
the Cutkosky cutting rule) quarks. This reasoning, however, does
not happen to work for (non-perturbative) gluonic pole contribu-
tion (see Fig. 1(a)) and the contribution of the diagram in Fig. 1(b)
should be added to ensure the electromagnetic gauge invariance.
This is clearly seen from Eq. (30) where the analog of the contri-
bution of the diagram in Fig. 2(a) is represented by the first term
in the brackets. Its imaginary part is zero (i.e. QED gauge invariant)
only if gluonic pole is absent at all. This situation corresponds also
to the difficulties in the applicability of Ward identities to gluonic
poles contributions (see [39] and references therein).

As we have shown, only the sum of two contributions repre-
sented by the diagrams in Fig. 1(a) and (b) can ensure the elec-
tromagnetic gauge invariance. We now inspect the influence of a
“new” contribution 1(b) on the single spin asymmetry and obtain
the QED gauge invariant expression for the hadron tensor. It reads

W GI
μν = W (1)

μν + W (2)
μν = − 2

q2
εν S T p1 p2

Zμq̄(yB)T (xB , xB), (34)

where one used q2 = sxB yB and introduced the vector



524 I.V. Anikin, O.V. Teryaev / Physics Letters B 690 (2010) 519–525
Zμ = p̂1μ − p̂2μ ≡ xB p1μ − yB p2μ, (35)

which together with the vectors:

Xμ = −2

s

[
(Z · p2)

(
p1μ − qμ

2xB

)
− (Z · p1)

(
p2μ − qμ

2yB

)]
,

Yμ = 2

s
εμp1 p2q (36)

form the mutually orthogonal basis (see [31]). Here p̂iμ are the
partonic momenta (qμ = p̂1μ + p̂2μ). With the help of (35) and
(36), the lepton momenta can be written as (this is the lepton c.m.
system)

l1μ = 1

2
qμ + Q

2
fμ(θ,ϕ; X̂, Ŷ , Ẑ),

l2μ = 1

2
qμ − Q

2
fμ(θ,ϕ; X̂, Ŷ , Ẑ), (37)

where Â = A/
√−A2 and

fμ(θ,ϕ; X̂, Ŷ , Ẑ) = X̂μ cosϕ sin θ + Ŷμ sinϕ sin θ + Ẑμ cos θ.

(38)

Within this frame, the contraction of the lepton tensor with the
gauge invariant hadron tensor (34) reads

Lμν W GI
μν = −2 cos θεν S T p1 p2

q̄(yB)T (xB , xB). (39)

We want to emphasize that this differs by the factor of 2 in
comparison with the case where only one diagram, presented in
Fig. 1(a), has been included in the (gauge non-invariant) hadron
tensor, i.e.

Lμν W (1)
μν = 1

2
Lμν W GI

μν. (40)

Therefore, from the practical point of view, the neglecting of the
diagram in Fig. 1(b) or, in other words, the use of the QED gauge
non-invariant hadron tensor yields the error of the factor of two.

Indeed, taking the contribution of the diagram in Fig. 1(a) cor-
responds to keeping of only the term proportional to p̂1μ in (35).
The contraction with (gauge invariant) leptonic tensor is equivalent
to making it gauge invariant by substitution

p̂1μ ⇒ p̂1μ − qμ
p̂ · q

Q 2
= p1μ − p2μ

2
. (41)

It is this factor of 2 which makes the difference with the correct
gauge invariant expression.

4. Conclusions and discussions

The essence of this Letter consists in the exploration of the
electromagnetic gauge invariance of the transverse polarized DY
hadron tensor. We showed that it is mandatory to include a con-
tribution of the extra diagram which naively does not have an
imaginary part. The account for this extra contribution leads to the
amplification of SSA by the factor of 2.

This additional contribution emanates from the complex glu-
onic pole prescription in the representation of the twist 3 correla-
tor B V (x1, x2) which, in its turn, is directly related to the complex
pole prescription in the quark propagator forming the hard part of
the corresponding hadron tensor.

We stress that in the previous considerations (see, for example,
[26]), the B V -function was always assumed to be purely real one,
while the needed imaginary part was ensured by means of the
specially introduced “propagator”1 in the hard part of the hadron
tensor.

In the present Letter, the causal prescription in the quark prop-
agator, involved in the hard part of the diagram in Fig. 1(a), se-
lects from the physical axial gauges the contour gauge defined by
Eq. (11). At the same time, the contour gauge predestines Eq. (12)
and, therefore, the representation of B V (x1, x2) in the form of the
gluonic pole with the complex prescription, see (15). Since both di-
agrams in Fig. 1(a) and (b) should be considered within the same
(contour) gauge, the representation (15), which we advocate, has
to be applied for the diagram depicted in Fig. 1(b). As a result
of this, the diagram in Fig. 1(b), in contrast to naive assumptions,
has the imaginary part. In some sense, the diagram in Fig. 1(b)
feels the complex prescription in the hard part of the diagram in
Fig. 1(a) by means of the contour gauge which we make used. Note
that, from the physical point of view, the consideration of each of
the diagrams in Fig. 1 individually makes no sense.

This is completely similar to the case of exclusive dijet produc-
tion [38] when the pole prescription in (twist two) matrix element
of gluonic fields is controlled by the corresponding hard subpro-
cess.

We have argued that, in addition to the electromagnetic gauge
invariance, the inclusion of new-found contributions corrects by
the factor of 2 the expression for SSA in the transverse polarized
Drell–Yan process.

Finally, we proved that the complex prescription in the quark
propagator forming the hard part of the hadron tensor, the starting
point in the contour gauge, the representation of B V (x1, x2) like
(15) and the electromagnetic gauge invariance of the hadron tensor
must be considered together as the deeply related items.
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