
Theoretical Computer Science 456 (2012) 51–64

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Quantum counterfeit coin problems✩

Kazuo Iwama a, Harumichi Nishimura b,∗, Rudy Raymond c, Junichi Teruyama a

a School of Informatics, Kyoto University, Yoshida-Honmachi, Kyoto 606-8501, Japan
b Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
c IBM Research – Tokyo, 1623-14 Shimotsuruma, Yamato 242-8502, Japan

a r t i c l e i n f o

Article history:
Received 31 December 2010
Received in revised form 10 May 2012
Accepted 26 May 2012
Communicated by C.S. Calude

Keywords:
Counterfeit coin problems
Quantum computing
Query complexity

a b s t r a c t

The counterfeit coin problem requires us to find all false coins from a given bunch of coins
using a balance scale.We assume that the balance scale gives us only ‘‘balanced’’ or ‘‘tilted’’
information and thatwe know the number k of false coins in advance. The balance scale can
be modeled by a certain type of oracle and its query complexity is a measure for the cost of
weighing algorithms (the number ofweighings). In this paper,we study the quantumquery
complexity for this problem. Let Q (k,N) be the quantum query complexity of finding all
k false coins from the N given coins. We show that for any k and N such that k < N/2,
Q (k,N) = O(k1/4), contrasting with the classical query complexity, Ω(k log(N/k)), that
depends on N . So our quantum algorithm achieves a quartic speed-up for this problem.
We do not have a matching lower bound, but we show some evidence that the upper
bound is tight: any algorithm, including our algorithm, that satisfies certain properties
needsΩ(k1/4) queries.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Exponential speed-ups by quantum algorithms have been highly celebrated, but their specific examples are not toomany.
In contrast, almost every unstructured search problem can be sped up simply by using amplitude amplification [6,7,9],
providing a huge number of combinatorial problems for which quantum algorithms are quadratically faster than classical
ones. Interestingly there are few examples in between. (For instance, [8] provides a cubic speed-up while their classical
lower bound is not known.) The reason is probably that the amplitude amplification is too general to combine with other
methods appropriately. In fact we know few such cases including the one by [16] where they improved a simple Grover
search algorithm for triangle finding by using clever combinatorial ideas (but unfortunately still less than quadratically
compared to the best classical algorithm). This paper achieves a quartic speed-up for a well-known combinatorial problem.

The counterfeit coin problem is a mathematical puzzle whose origin dates back to 1945; in the American Mathematical
Monthly, 52, p. 46, E. Schell posed the following questionwhich is probably one of the oldest questions about the complexity
of algorithms: ‘‘You have eight similar coins and a beam balance. At most one coin is counterfeit and hence underweight.
How can you detect whether there is an underweight coin, and if so, which one, using the balance only twice?’’ The
puzzle immediately fascinated many people and since then there have been several different versions and extensions in
the literature (see e.g., [10,11,15,17]).

✩ An extended abstract of this article was presented in Proceedings of 21st ISAAC, Lecture Notes in Computer Science, vol. 6506, pp. 85–96, 2010.
∗ Corresponding author.

E-mail addresses: iwama@kuis.kyoto-u.ac.jp (K. Iwama), hnishimura@is.nagoya-u.ac.jp (H. Nishimura), raymond@jp.ibm.com (R. Raymond),
teruyama@kuis.kyoto-u.ac.jp (J. Teruyama).

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.05.039

http://dx.doi.org/10.1016/j.tcs.2012.05.039
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:iwama@kuis.kyoto-u.ac.jp
mailto:hnishimura@is.nagoya-u.ac.jp
mailto:raymond@jp.ibm.com
mailto:teruyama@kuis.kyoto-u.ac.jp
http://dx.doi.org/10.1016/j.tcs.2012.05.039

52 K. Iwama et al. / Theoretical Computer Science 456 (2012) 51–64

This paper considers the quantum version of this problem, which, a bit surprisingly, has not appeared in the literature.
To make our model simple, we assume that we cannot obtain information on which side is heavier when the balance scale
is tilted. So, the balance scale gives us only binary information, balanced (i.e., two sets of coins on the two pans are equal in
weight) or tilted (different inweight). Our goal is to detect the false coinwith aminimumnumber of weighings. The problem
is naturally extended to the case that there are two or more (=k that is known in advance) false coins with equal weight.
For the simplest case that k = 1, the following easy (classic) algorithm exists: we put (approximately) N/4 coins on each
pan. If the balance scale is tilted, then we know the false coin is in those N/2 coins and if it is balanced, then the false one
should be in the remainingN/2 ones. Also, it is easy to see that twoweighings are enough forN = 4. Thus ⌈logN⌉weighings
are enough for k = 1 and this is also an information theoretic lower bound. (The original version of the problem assumes
ternary outputs from the balance scale: left-heavy, right-heavy and balanced, and that the false coin is always underweight.
As one can see easily, however, the same idea allows us to obtain the tight ⌈log3 N⌉ upper bound.)

Our model of a balance scale is a so-called oracle. A balance oracle or simply a B-oracle is an N-bit register, which includes
(originally unknown) N bits, x1x2 · · · xN ∈ {0, 1}N . In order to retrieve these values, we can make a querywith a query string
q1q2 · · · qN ∈ {0, 1,−1}N including the same number of 1’s and (−1)’s. Then the oracle returns a one-bit answer χ defined
as:

χ = 0 if x1q1 + · · · + xNqN = 0 and χ = 1 otherwise.

Consider x1, . . . , xN as N coins where 0 means a fair coin and 1 a false one. Then, qi = 1 means we place coin xi on the left
pan and qi = −1 on the right pan. Since wemust have the same number of 1’s and (−1)’s, the answer χ correctly simulates
the balance scale, i.e., χ = 0 means it is balanced and χ = 1 tilted. The number of weighings needed to retrieve x1 through
xN (or to identify all the false coins) is called query complexity.

The main purpose of this paper is to obtain quantum query complexity for the counterfeit coin problems. Observe that
if we know in advance that an even-cardinality set X includes at most one false coin, then by using the balance scale for
any equal-size partition of X we can get the parity of X , i.e., the parity of the number (zero or one, now) of false coins in
X . This means that for strings including at most one 1, the B-oracle is equivalent to the so-called Inner Product oracle (or IP
oracle) [5]. Therefore, by Bernstein–Vazirani algorithm [5], we need only one weighing to detect the false coin. (Note that
this observation was essentially done by Terhal and Smolin [22].) This already allows us to design the following quantum
algorithm for general k: recall that we know k in advance. So, if we sample N/k coins at random, then they include exactly
one false coin with high probability and we can find it using the B-oracle just once as mentioned above. Thus, by using the
standard amplitude amplification [7] (together with careful consideration for the answer-confirmation procedure), we need
O(k) weighings to find all k false coins. For a small k, this is already much better thanΩ(k log(N/k)) that is an information
theoretic lower bound for the classical case.

Our contribution. This paper shows that this complexity can be furthermore improved quartically, namely, our new
algorithm needs O(k1/4)weighings. Note that the above idea, the one exploiting Bernstein–Vazirani’s, already breaks down
for k = 2, since the balance scale tilts even if the pans hold two (even) false coins if they both go to a same pan. Moreover,
if k grows, say as large as linear in N , the balance scale will be tilted almost always for randomly selected equal partitions.
Nevertheless, Bernstein–Vazirani’s is useful since it essentially reduces our problem (identifying false coins) to the problem
of deciding the parity of the number of the false coins that turns out to be an easier task for B-oracles. By this we can get a
single quadratic speed-up and another quadratic speed-up by amplitude amplification.

We conjecture that this bound is tight, but unfortunately, we cannot prove it at this moment. The main difficulty is that
we have a lot of freedom on ‘‘the size of the pans’’ (= the number of coins placed on the two pans of the balance scale),
which makes it hard to design a single weight scheme of the adversary method [1]. However, we do have a proof claiming
that it would be hard to do better unless we can remove the two fundamental properties of our algorithm. These properties
are (i) the big-pan property and (ii) the random-partition property. We have considered several possibilities for removing
them, but were not successful for even one of them.

Relatedwork.Query complexities have been studied almost always for the standard index oracle, which accepts an index
i and returns the value of xi. Other than this oracle, we know few ones including the IP oracle [5] mentioned before and the
evenmore powerful one that returns the number (not the parity) of 1’s in the string [22]. Also, [22] presented a single-query
quantum algorithm for the binary search problem under the IP oracle, which is essentially based on the same idea as the
k = 1 case of our problem mentioned above.

The quantum adversary method, which is used for B-oracles in this paper, was first introduced by Ambainis [1] for the
standard oracle. Many variants have followed including weighted adversary methods [2,23], spectral adversary method [4],
Kolmogorov complexity method [13], all of which were shown to be equivalent [21]. After Høyer et al. [12] introduced
a stronger quantum adversary method called the negative adversary method, Reichardt [19,20] showed that this method
characterizes the quantum query complexity up to constant factors for any Boolean function. See [3,14] for further recent
developments.

Models. A B-oracle is a binary string x = x1 · · · xN where xi = 1 (resp. xi = 0) means that the i-th coin is false (resp. fair).
For instance, the string 0001 for N = 4 means that the fourth coin is a unique false coin. A query to the oracle is given as a
string q = q1 · · · qN ∈ {0, 1,−1}N thatmust be in the set

⌊N/2⌋
l=1 Ql whereQl is the set of strings q such that q has exactly l 1’s

and l (−1)’s. Here, 1 (or −1, resp.) in the i-th component means that we place the i-th coin on the left pan (on the right pan,
resp.) and 0means that the i-th coin is not placed on either pan. The answer from the oracle is represented by a binary value

K. Iwama et al. / Theoretical Computer Science 456 (2012) 51–64 53

χx(q)where χx(q) = 0 means the balance scale is balanced, that is, q1x1 + · · · + qNxN = 0 and χx(q) = 1 means it is tilted,
that is, q1x1+· · ·+qNxN ≠ 0. In quantum computation, the B-oracle is viewed as a unitary transformationOB,x. Namely,OB,x
transforms |q⟩ to (−1)χx(q)|q⟩. Throughout this paper, we assume that the Hamming weight k of the B-oracle x, denoted as
wt(x) = k, is less than N/2 since our B-oracle model is unable to distinguish x from x (the bit string obtained by flipping all
bits of x).

2. Upper bounds

Here is our main result in this paper:

Theorem 1. The quantum query complexity for finding the k false coins among N coins is O(k1/4).

Notice that our algorithm is exact, i.e., its output must be correct with probability one to compare our result with the
classical case (which has been often studied in the exact setting). Since we use exact amplitude amplification [7] to make
our algorithm exact, the assumption that k is known is necessary. But it should be noted that our bounded-error algorithm
described in this section works even for unknown k. Also, we note that our algorithm can be easily adapted so that it works
when the output of the balance scale is ternary (while we assume it is binary for simplicity).

Before the proof, we first describe our basic approach, a simulation of the IP oracle by the B-oracle. Recall that the IP
oracle (Inner Product oracle) [5] transforms a prequery state |q⟩R to (−1)q·x|q⟩R, whereq ∈ {0, 1}N in register R is a query
string and x ∈ {0, 1}N is an oracle. Then the Bernstein–Vazirani algorithm (the Hadamard transform) retrieves the string x
andwe know the k false coins in the case of our problem. Observe that the IP oracle flips the phase of |q⟩R if and only ifq ·x is
odd, in other words, if and only if the set {i |qi = 1} includes an odd number of indexes such that xi = 1. Note that an index
i such that xi = 1 is a false coin in our case. If k = 1, then {i |qi = 1} includes at most one false coin. Hence we can simply
replace the IP oracle with the query stringq by the B-oracle with a query string q such that an arbitrary one half (the first
one half, for instance) of the 1’s inq are changed to (−1)’s, which means that the one half of the coins in {i |qi = 1} (i.e.,
the set of coins placed on the pans) go to the left pan and the remaining one half to the right pan. (As shown in a moment,
we can assume without loss of generality that wt(q) is even.)

Now we consider the general (k ≥ 1) case. If {i |qi = 1} includes an odd number of false coins, then the balance scale
is tilted for any such q mentioned above; this is desirable for us. If {i |qi = 1} includes an even number of false coins, we
wish the balance scale to be balanced. In order for this to happen, however, we must divide the (unknown) false coins in
{i |qi = 1} into the two pans evenly, for which there are no obvious ways other than using randomization. Our idea is to
introduce the second registerR′ as follows: onR′, we prepare, conditionally on registerR being in state |q⟩, a superposition of
all possible states q1(q), q2(q), . . . , qh(q), obtained by flipping one half of 1’s inq into (−1)’s. By using this superposition as
a query to the B-oracle, we can achieve a success (being able to detect if the balance scale is balanced) probability of 1/

√
m,

wherem is the number of false coins in {i |qi = 1}. In order to increase this probability, we can use copies of register R′ or,
more efficiently, quantum amplitude amplification [7].

As suggested before, we begin with the restriction of the IP oracle without losing its power. A parity-restricted query in
the following lemma means a superposition of query strings whose Hamming weights are even.

Lemma 1. Let S<N/2 := {x ∈ {0, 1}N | wt(x) < N/2}. Then there is a quantum algorithm to identify an oracle in S<N/2 by a
single parity-restricted query to the IP oracle.

Proof. For a given oracle x ∈ S<N/2, define

|ψx⟩ =
1

√
2N−1


q∈Qew

(−1)q·x|q⟩,
where Qew = {q ∈ {0, 1}N | wt(q) = 0 mod 2}. Then the state after applying the Hadamard transform H⊗N on |ψx⟩ (where
H is the Hadamard gate [18]) can be rewritten as follows:

H⊗N
|ψx⟩ =

1
√
2N−1


q∈Qew

(−1)q·xH⊗N
|q⟩

=
1

2N−1
√
2


q∈Qew


z∈{0,1}N

(−1)q·(x⊕z)
|z⟩

=
1

√
2
(|x⟩ + |x⟩)+

1

2N−1
√
2


q∈Qew


z≠x,x

(−1)q·(x⊕z)
|z⟩

=
1

√
2
(|x⟩ + |x⟩) .

Note that the last equality in the above equations holds since the vector 1
2N−1

√
2

q∈Qew


z≠x,x(−1)q·(x⊕z)

|z⟩must vanish by

the fact that this vector is orthogonal to the vector 1
√
2
(|x⟩ + |x⟩) that already has a unit length. For any x ≠ y, the two states

54 K. Iwama et al. / Theoretical Computer Science 456 (2012) 51–64

H⊗N
|ψx⟩ =

1
√
2
(|x⟩ + |x⟩) and H⊗N

|ψy⟩ =
1

√
2
(|y⟩ + |y⟩) are orthogonal since x ≠ y by the restriction of their Hamming

weights. This implies that for any two different x and y, the two states |ψx⟩ and |ψy⟩ are orthogonal, and hence there is a
unitary transformation W : |x⟩ → |ψx⟩. Thus we can design an algorithm similar to Bernstein–Vazirani [5] just replacing
the Hadamard transform byW . For a concrete (polynomial-time) construction ofW , see Appendix A. �

Now we give the proof of our main result.

Proof of Theorem 1. For exposition, we first give a bounded-error algorithm (Find∗(k)) and then make it exact (Find(k)).
For any query stringq ∈ {0, 1}N with even Hamming weight, the set Pq is defined as

Pq :=

q ∈ Qwt(q)/2 | |qi| =qi for any i ∈ {1, 2, . . . ,N}


.

Notice that this corresponds to the set of all ‘‘partitions’’ of the set {i |qi = 1} into two sets of size wt(q)/2, and that each
partition in the set, which specifies how to split the wt(q) coins in half to place them on the left and right pans, can be
identified with the corresponding query q in Pq. In the rest of this section, for simplicity, we fix the oracle x and denote the
answer χx(q) for the query q to x by χ(q).

Algorithm Find∗(k).
1. Prepare N qubits |0⟩⊗N in a register R, and apply a unitary transformation W of Lemma 1 to them. Then, we have the

state 1
√

2N−1

q∈Qew
|q⟩R.

2. Conditionally on register R being in state |q⟩, implement Steps 2.1–2.4 on a register R′.
2.1. Apply a unitary transformation Aq to the initial state |0⟩ on R′ to create a quantum state Aq|0⟩ :=


q∈Pq α|q⟩R′

with α =
1√
|Pq| , which represents a uniform superposition of all partitions q in Pq. Then, the current state is

|ξ2,1⟩ =
1

√
2N−1


q∈Qew

|q⟩R
q∈Pq

α|q⟩R′

=
1

√
2N−1

 
q∈Qew∩Qefc

|q⟩R
q∈Pq

α|q⟩R′ +


q∈Qew∩Qofc

|q⟩R
q∈Pq

α|q⟩R′

 ,
where Qefc (resp. Qofc) denotes the set of allq’s such that the set {i | qi = 1} includes an even (resp. odd) number of false
coins.

2.2. Let χ be the Boolean function defined by χ(q) = 1 if and only if χ(q) = 0 (that is, the balance scale is
balanced). Then, under the above Aq and χ , run the amplitude amplification algorithm QSearch(Aq, χ) when the initial
success probability ofAq is unknown (Theorem 3 in [7]). Here ‘‘success’’ means that the balance scale is balanced, and hence
we use χ , not χ , in QSearch. Then we obtain a state in the form of

|ξ2,2⟩ =
1

√
2N−1

 
q∈Qew∩Qefc

|q⟩R
q∈Pq

βq|q, gq⟩R′ +


q∈Qew∩Qofc

|q⟩R
q∈Pq

α|q, gq⟩R′


where |gq⟩ is a garbage state. Note that, in the first term, the amplitudes βq such that χ(q) = 1 are now large by amplitude
amplification while the second term does not change since the balance scale is always tilted.

2.3. If Step 2.2 finds a ‘‘solution’’, i.e., a partition q such that χ(q) = 1, then do nothing. Otherwise, flip the phase
(and then the phase is kick-backed into R). Notice that when {i |qi = 1} includes an odd number of false coins, the phase
is always flipped, while when it includes an even number of false coins, the phase is not flipped with high amplitude. Now
the current state is

|ξ2,3⟩ =
1

√
2N−1

 
q∈Qew∩Qefc

|q⟩R
q∈Pq

βq(−1)χ(q)|q, gq⟩R′ −


q∈Qew∩Qofc

|q⟩R
q∈Pq

α|q, gq⟩R′


=

1
√
2N−1

 
q∈Qew∩Qefc

|q⟩R
q∈Pq

βq|q, gq⟩R′ −


q∈Qew∩Qofc

|q⟩R
q∈Pq

α|q, gq⟩R′


− 2


q∈Qew∩Qefc

|q⟩R|errq⟩R′

where |errq⟩R′ =
1

√

2N−1


q∈Pq:χ(q)=1 βq|q, gq⟩R′ .

K. Iwama et al. / Theoretical Computer Science 456 (2012) 51–64 55

2.4. Reverse the quantum transformation done in Steps 2.1 and 2.2. Notice that the reversible transformation is done
on R′ in parallel for eachq while the contents of R does not change since it is the control part. Therefore, the state becomes

|ξ2,4⟩ =
1

√
2N−1


q∈Qew∩Qefc

|q⟩R|0⟩R′ −
1

√
2N−1


q∈Qew∩Qofc

|q⟩R|0⟩R′ − 2


q∈Qew∩Qefc

|q⟩R|err ′q⟩R′

=
1

√
2N−1


q∈Qew

(−1)q·x|q⟩R|0⟩R′ − 2


q∈Qew∩Qefc

|q⟩R|err ′q⟩R′

where |err ′q⟩R′ is the transformed state of |errq⟩R′ .
3. ApplyW−1 to the state in R. By Lemma 1, we obtain the final state

|ξ3⟩ = |x⟩R|0⟩R′ − 2W−1

 
q∈Qew∩Qefc

|q⟩R|err ′q⟩R′


.

Then measure R in the computational basis. (End of Algorithm)
For justifying the correctness of Find∗(k), it suffices to show that the squared magnitude of the second term of |ξ3⟩ is

a small constant, say, 1/400, since we then measure the desired value x with probability at least 9/10 (in fact, at least
(1 −

√
1/400)2 > 9/10). By the unitarity, its squared magnitude is equal to that of the last term of |ξ2,3⟩. Therefore, we

evaluate the following value ϵ.

ϵ := 4

 
q∈Qew∩Qefc

|q⟩R|errq⟩R′


2

=
4

2N−1


q∈Qew∩Qefc




q∈Pq:χ(q)=1

βq|q, gq⟩R′


2

.

Lemma 2. ϵ is at most 1/400.

Proof. Consider an arbitraryq in Qew ∩ Qefc (i.e., it involves an even number of false coins). When {i |qi = 1} includes m
(≤ k) false coins (wherem is even), the probability that a partition q is such that χ(q) = 1 is at least

p =

 m
m/2

 wt(q)−m
(wt(q)−m)/2

 wt(q)
wt(q)/2 = Ω


1

√
m


= Ω


1

√
k


.

By Theorem 3 in [7], it is guaranteed that, in the algorithm QSearch(Aq, χ), an expected number of applications of the
Grover-like subroutine to find a ‘‘solution’’, i.e., a partition q such that χ(q) = 1, is bounded by O(1/

√
p) = O(k1/4).

The subroutine consists of (i) Aq, (ii) its inverse, (iii) the transformation Oχ defined by Oχ |q⟩ = (−1)χ(q)|q⟩, and (iv) the
transformation U0 defined by U0|z⟩ = |z⟩ if z ≠ 0 and −|z⟩ if z = 0. Note that Aq (and hence its inverse) and U0 can
be implemented without any query to the B-oracle, and Oχ can be implemented with one query to the B-oracle. Thus the
expected number of queries to find a ‘‘solution’’ is O(k1/4). By setting the number of applications of the subroutine to c0k1/4
where c0 is a large constant, Step 2.2 finds a ‘‘solution’’ with probability at least 1599/1600. This means that for anyq in
Qew ∩ Qefc,


q∈Pq:χ(q)=0 βq|q, gq⟩R′ has squared magnitude at most 1/1600. Thus we have

ϵ =
4

2N−1


q∈Qew∩Qefc




q∈Pq:χ(q)=0

βq|q, gq⟩R′


2

≤
1

400
.

This completes the proof of Lemma 2. �

Finally, it is easy to see from the above proof that the query complexity of Find∗(k) is O(k1/4) since it makes O(k1/4)
queries in Step 2 and no queries in Steps 1 and 3.

Now we consider the exact algorithm Find(k). By the symmetric structure of algorithm Find∗(k), the success probability
of identifying x correctly is independent of x (recall that the oracle candidates are

N
k


N-bit strings xwith Hamming weight

k). Thus we can use the so-called exact amplitude amplification algorithm (Theorem 4 in [7]) to convert it into the exact
algorithm.

Here is the brief description of Find(k) (see Appendix B for the details). First, we implement Find∗(k). As shown above,
Find∗(k) produces the correct output (i.e., the k false coins) with a constant probability (≥9/10) larger than 1/4. Notice that
we canmake the success probability exactly 1/4 by an appropriate adjustment. Second, we need an algorithm for checking if
the output is correct to amplify the success probability to 1. Namely, an algorithm Check needs to judge whether k coins are

56 K. Iwama et al. / Theoretical Computer Science 456 (2012) 51–64

indeed all false,which canbe implemented classically inO(log k)queries (as seen inAppendix B). Thenwe can implement the
exact amplitude amplification: like the 1/4-Grover’s algorithm [6], flip the phase if Check judges that the output is correct,
and apply the reflection about the state obtained after Find∗(k). It is not difficult to see that Find(k) always finds the k false
coins and the total complexity is O(k1/4). Therefore, the proof of Theorem 1 is completed. �

3. Lower bounds

This section discusses the lower bounds for the query complexity of finding the k false coins from N coins (i.e., the oracle
x ∈ {0, 1}N with wt(x) = k). We conjecture that the upper bound O(k1/4) is tight but, unfortunately, we have not been
able to show whether it is true or not. Instead, we show that if there would be an algorithm that improves the upper bound
essentially, then it would have a completely different structure from our algorithm.

3.1. Basic ideas

Before describing our results, we observe two properties of our algorithm Find(k). First, Find(k) uses only ‘‘big pans’’, i.e.,
it always places at least Ω(N) coins on the pans, which is called the big-pan property. (The algorithm Find∗(k) in Section 2
uses ‘‘small pans’’ but it can be adapted with no essential change so that it works even if the size of pans must be big, as
easily shown in Appendix B.) Second, the B-oracle is always used in such a way that once the coins placed on the two pans
are determined, the partition of them into the two pans is done uniformly at random, which is called the random-partition
property. In this section, we show twoΩ(k1/4) lower bounds: the first one holds for any algorithm that satisfies the big-pan
property. The second one also indicates that if our algorithm has the random-partition property, then it is unlikely to beat
the O(k1/4) upper bound.

For this purpose, we revisit one version of the (nonnegative) quantum adversary method, called the strong weighted
adversary method in [21], due to Zhang [23]. Let f be a function from a finite set S to another finite set S ′. Recall that in a
query complexity model, an input x in S is given as an oracle. An algorithm A would like to compute f (x)while it can obtain
the information about x by a unitary transformation

Ox|q, a, z⟩ = |q, a ⊕ ζx(q), z⟩, (1)

where |q⟩ is the register for a query string q from a finite set Q , |a⟩ is the register for the binary answer ζx(q), and |z⟩ is the
work register. Note that the adversary method usually assumes the so-called index oracle, namely x is a string in {0, 1}N , q
is an integer 1 ≤ i ≤ N , and ζx(q) is the ith bit (0 or 1) of x. However, one can easily see that the above generalization to
ζx(q) requires no essential changes for its proof. Thus Theorem 14 of [23] can be restated as follows:

Lemma 3. Letw,w′ denote a weight scheme as follows:

1. Every pair (x, y) ∈ S×S is assigned a nonnegativeweightw(x, y) = w(y, x) that satisfiesw(x, y) = 0whenever f (x) = f (y).
2. Every triple (x, y, q) ∈ S × S × Q is assigned a nonnegative weight w′(x, y, q) that satisfies w′(x, y, q) = 0 whenever
ζx(q) = ζy(q) or f (x) = f (y), andw′(x, y, q)w′(y, x, q) ≥ w2(x, y) for all x, y, q such that ζx(q) ≠ ζy(q) and f (x) ≠ f (y).

For all x, q, let µ(x) =


yw(x, y) and ν(x, q) =


yw
′(x, y, q). Then, the quantum query complexity of f is at least

Ω

max
w,w′

min
x,y,q: w(x,y)>0,
ζx(q)≠ζy(q)


µ(x)µ(y)

ν(x, q)ν(y, q)

 .
3.2. Big pan lower bounds

First, we show that our upper bound is tight under the big-pan property. In what follows, L ≥ l denotes the restriction
that at least l coins must be placed on each pan whenever the balance scale is used.

Theorem 2. If L ≥ l, any quantum algorithm needsΩ((lk/N)1/4) queries to find the k false coins among N coins. In particular,
Ω(k1/4) queries are necessary if there is some constant c such that L ≥ N/c.

Proof. Let l = N/d. The lower bound we should show is Ω((k/d)1/4). We can assume that d ≤ k/3 (otherwise, the lower
bound becomes trivial). To use Lemma 3, let S = {x ∈ {0, 1}N | wt(x) = k}, Q = Q≥N/d, ζx(q) = χx(q), and f (x) = x, where
the set Q≥l′ is defined as Q≥l′ =


l≥l′ Ql. Then, our weight scheme is as follows: let w(x, y) = 1 for any pair (x, y) ∈ S × S

such that x ≠ y, and let w′(x, y, q) = 1 for all (x, y, q) ∈ S × S × Q≥N/d such that χx(q) ≠ χy(q) and x ≠ y. It is easy to
check that this satisfies the condition of a weight scheme. Then, for any x, we have µ(x) =


yw(x, y) =

N
k


− 1. We need

to evaluate ν(x, q)ν(y, q) for pairs (x, y) such that χx(q) = 1 and χy(q) = 0 or χx(q) = 0 and χy(q) = 1. By symmetry, it
suffices to consider the case where χx(q) = 1 and χy(q) = 0. Fix q ∈ Q≥N/d arbitrarily and assume that q ∈ QN/c where
c ≤ d. Since χx(q) = 1 means that for input x the balance scale is tilted when N/c coins are placed on each pan according

K. Iwama et al. / Theoretical Computer Science 456 (2012) 51–64 57

to a query q, we can see that ν(x, q) =


yw
′(x, y, q) is the number of all inputs y’s such that the balance scale is balanced

for the same query q. Therefore, by summing up all the cases such that those N/c coins includem false ones, it holds that

ν(x, q) = γ (N, k, c),

where γ (N, k, c) is defined as

γ (N, k, c) =

k/2
m=0


N/c
m

2
(1 − 2/c)N
k − 2m


.

Since χy(q) = 0, we have ν(y, q) =


xw
′(x, y, q) =

N
k


− γ (N, k, c) by counting all x’s such that the balance scale is

titled. Then the product ν(x, q)ν(y, q) is γ (N, k, c)
N

k


− γ (N, k, c)


. By Lemma 3 the quantum query complexity of our

problem is at least

Ω

min
c: c≤d

 N
k


− 1

2
γ (N, k, c)

N
k


− γ (N, k, c)


 = Ω

min
c: c≤d

 N
k


γ (N, k, c)

 . (2)

Then, we can show the following lemma.

Lemma 4. γ (N, k, c)/
N
k


= O(

√
c/k) for any 2 ≤ c ≤ d (≤ k/3).

Proof. Note that γ (N, k, c)/
N
k


means the probability that the balance scale is balanced when N/c coins (N coins include k

false ones) are randomly placed on each pan, and hence its value decreases as c approaches to 2. So, it suffices to prove the
lemma for c ≥ 4.

Let us denote each term in the sum γ (N, k, c) by t(m) =
N/c

m

2(1−2/c)N
k−2m


form = 0, 1, . . . , k/2.We divide γ (N, k, c) into

the two parts, that is, we write γ (N, k, c) = T>k/2c + T≤k/2c where T>k/2c =


m:m>k/2c t(m) and T≤k/2c =


m:m≤k/2c t(m).
For the proof, it suffices to show that both T>k/2c/

N
k


and T≤k/2c/

N
k


are bounded by O(

√
c/k). First we consider T>k/2c/

N
k


.

When N/c coins are randomly placed on each pan, let E1 be the event that at least k/c false coins are placed on the pans,
and E2 be the event that the balance scale is balanced. Then, we can see that

T>k/2cN
k

 = Pr[E1 ∧ E2]

≤ Pr[E2|E1] = O(1/

k/c)

= O(

c/k).

Second we consider T≤k/2c/
N
k


. Let r(m) = t(m + 1)/t(m). Note that r(m) is monotone decreasing onm since

r(m) =

 N/c
m+1

2 (1−2/c)N
k−2(m+1)


N/c

m

2(1−2/c)N
k−2m


=

N
c − m

2
(k − 2m)(k − 2m − 1)

(m + 1)2((1 − 2/c)N − k + 2m + 1)((1 − 2/c)N − k + 2m + 2)
.

Now we verify that r(k/2c − 1) > 4. In fact, since c ≤ k/3 < 2 + k/2, we have

(1 − 2/c)N − k + k/c < (1 − 2/c)(N − k/2 − c) (3)

and

k − k/c − 3 ≥ k(1 − 2/c). (4)

Thus we obtain

r(k/2c − 1) =
(1/c)2(N − k/2 − c)2(k − k/c − 2)(k − k/c − 3)

(k/2c)2((1 − 2/c)N − k + k/c)((1 − 2/c)N − k + k/c − 1)

>
4(k − k/c − 2)(k − k/c − 3)

k2(1 − 2/c)2
(by Eq. (3))

≥ 4 (by Eq. (4)).

These facts imply that

T≤k/2c =


m:m≤k/2c

t(m) <

1 + 1/4 + (1/4)2 + · · ·


t(k/2c) = (4/3)t(k/2c),

58 K. Iwama et al. / Theoretical Computer Science 456 (2012) 51–64

which is bounded by (4/3)t(k/c) since t(m) takes the maximum value atm = k/c . Calculating t(k/c)/
N
k


using the Stirling

formula n! ∼
√
2πn(N/e)N , we obtain

t(k/c)N
k

 =

N/c
k/c

2(1−2/c)N
(1−2/c)k

N
k

 =

k!
((kc)!)

2((1− 2
c)k)!

·
(N−k)!

((N−k
c)!)2((1− 2

c)(N−k))!

N!

((Nc)!)
2((1− 2

c)N)!

∼
cN

2πk(N − k)
√
1 − 2/c

,

which is bounded by O(c/k) since k ≤ N/2 and c ≥ 4. Thus, the sum T≤k/2c/
N
k


is bounded by O(c/k) = O(

√
c/k). From

the above, we obtain γ (N, k, c)/
N
k


= O(

√
c/k). �

Now Lemma 4 implies the desired boundΩ((k/d)1/4) by Eq. (2), and hence the proof of Theorem 2 is completed. �

On the contrary, we can show that any algorithm that uses only ‘‘small pans’’ also needsΩ(k1/4) queries (Theorem 5). For
instance, we cannot break the current bound k1/4 by any algorithm that places O(N/k) coins on the pans. (Notice that the
pans include only a constant number of false coins with high probability in this case and therefore the balance scale can be
balanced with a better probability for the case where the pans include an even number of false coins, but at the same time,
we cannot use a wide range of superpositions.) Moreover, we can obtain another lower bound for the case where ‘‘big pans’’
and ‘‘small pans’’ are both available but ‘‘medium pans’’ are not (Theorem 6). Unfortunately, one can see that there is still a
gap between the sizes of the big pans and small pans even for a weakest nontrivial (ω(1)) lower bound. See Appendix C for
the details of these results.

3.3. Lower bounds for the quasi B-oracle

Recall that we wish to prove that our upper bound is tight under the random partition property. Unfortunately, there is
no obvious way of doing that since the property is on the ‘‘structure of the algorithm’’, not a restriction on the oracle itself.
Instead, our approach is to introduce a new oracle (what we call the quasi B-oracle) that seems both to inherit the nature of
the B-oracle and to extract an essence of the random partition property.

We generalize the ‘‘deterministic’’ oraclesOx given by Eq. (1) in the following ‘‘stochastic’’ form: For any x ∈ S, a stochastic
oracleOx is defined asOx|q, a, z⟩ =


Pr[ζx(q) = 0]|q, a, z⟩ + (−1)a


Pr[ζx(q) = 1]|q, a ⊕ 1, z⟩, (5)

where the probabilities Pr[ζx(q) = 0] and Pr[ζx(q) = 1] are taken over the ‘‘coin toss’’ of the stochastic oracle whose bias is
determined as a function of x and q (we should be careful not to lose its unitarity). Then, we can define the quasi B-oracle by
setting

Pr[ζx(q) = 0] =

0 (if wt(x ∧ q) is odd)
√
1/wt(x ∧ q) (if wt(x ∧ q) is positive and even)

1 (if wt(x ∧ q) = 0),
(6)

where x and q areN-bit strings, and x∧q is theN-bit string obtained by the bitwise AND of x and q. The quasi B-oracle reflects
the following fact under the random-partition property: if the coins on the pans include an odd number of false ones, then
the balance scale is always tilted, and if they include an even number (=m) of false ones, the balance scale will be balanced
with probability 1/

√
m. (Note that the bit strings q in Eq. (6) corresponds to the bit stringsq in Find∗(k).)

Here we generalize Lemma 3 to the case of stochastic oracles.

Lemma 5. Letw,w′ denote a weight scheme as Lemma 3 except replacing Condition 2 to

2′ Every triple (x, y, q) ∈ S × S × Q is assigned a nonnegative weight w′(x, y, q) that satisfies w′(x, y, q) = 0 whenever
Pr[ζx(q) = ζy(q)] = 1 or f (x) = f (y), and w′(x, y, q)w′(y, x, q) ≥ w2(x, y) for all x, y, q such that Pr[ζx(q) ≠ ζy(q)] > 0
and f (x) ≠ f (y).

Then, the quantum query complexity of f for the stochastic oracle given in Eq. (5) is at least

Ω

max
w,w′

min
x,y,q: w(x,y)>0,
Pr[ζx(q)≠ζy(q)]>0


µ(x)µ(y)

ν(x, q)ν(y, q)
1

P01,q +

P10,q

 ,
where Pab,q = Pr[ζx(q) = a]Pr[ζy(q) = b].

Proof. The proof follows that of [23, Theorem 14] essentially; in the following we mainly describe the difference. Assume
that there is a T -query quantum algorithmA computing f with high probability. Note that the initial state ofA is |ψ0

x ⟩ = |0⟩

K. Iwama et al. / Theoretical Computer Science 456 (2012) 51–64 59

for any input x. The final state for input x can be written as |ψT
x ⟩ = UT−1Ox · · ·U1OxU0|0⟩ for some unitary transformations

U0, . . . ,UT−1. Since A computes f with high probability, there is some constant ϵ < 1 such that |⟨ψT
x |ψT

y ⟩| ≤ ϵ for any x
and ywith f (x) ≠ f (y). Let |ψk

x ⟩ = Uk−1Ox · · ·U1OxU0|0⟩. For any x and ywith f (x) ≠ f (y), we can represent

|ψk−1
x ⟩ =


q,a,z

αq,a,z |q, a, z⟩, |ψk−1
y ⟩ =


q,a,z

βq,a,z |q, a, z⟩.

After querying to the oracle, we haveOx|ψ
k−1
x ⟩ =


q,a,z

αq,a,z


Pr[ζx(q) = 0]|q, a, z⟩ + (−1)a


Pr[ζx(q) = 1]|q, a ⊕ 1, z⟩


=


q,a,z


Pr[ζx(q) = 0]αq,a,z + (−1)a⊕1


Pr[ζx(q) = 1]αq,a⊕1,z


|q, a, z⟩,

Oy|ψ
k−1
y ⟩ =


q,a,z


Pr[ζy(q) = 0]βq,a,z + (−1)a⊕1


Pr[ζy(q) = 1]βq,a⊕1,z


|q, a, z⟩.

Hence we have (recall that Pab,q := Pr[ζx(q) = a]Pr[ζy(q) = b]):

⟨ψk
x |ψ

k
y ⟩ =


q,a,z


P00,qα∗

q,a,zβq,a,z +


q,a,z


P11,qα∗

q,a⊕1,zβq,a⊕1,z

+


q,a,z

(−1)a⊕1

P01,qα∗

q,a,zβq,a⊕1,z +


q,a,z

(−1)a⊕1

P10,qα∗

q,a⊕1,zβq,a,z

=


q,a,z


P00,qα∗

q,a,zβq,a,z +


q,a,z


P11,qα∗

q,a,zβq,a,z

+


q,a,z

(−1)a⊕1

P01,qα∗

q,a,zβq,a⊕1,z +


q,a,z

(−1)a

P10,qα∗

q,a,zβq,a⊕1,z .

On the contrary,

⟨ψk−1
x |ψk−1

y ⟩ =


q,a,z

α∗

q,a,zβq,a,z .

Thus the difference between ⟨ψk−1
x |ψk−1

y ⟩ and ⟨ψk
x |ψ

k
y ⟩ is

⟨ψk−1
x |ψk−1

y ⟩ − ⟨ψk
x |ψ

k
y ⟩ =


q,a,z:Pr[ζx(q)≠ζy(q)]>0


1 −


P00,q −


P11,q


α∗

q,a,zβq,a,z

+(−1)a


P01,qα∗

q,a,zβq,a⊕1,z −

P10,qα∗

q,a,zβq,a⊕1,z


since Pr[ζx(q) = ζy(q)] = 1, that is, P00,q + P11,q = 1 implies that P00,q = 1 or P11,q = 1. By the triangle inequality,

1 − ϵ ≤ 1 − |⟨ψT
x |ψT

y ⟩| ≤

T
k=1

|⟨ψk−1
x |ψk−1

y ⟩ − ⟨ψk
x |ψ

k
y ⟩|

≤

T
k=1


q,a,z

Pr[ζx(q)≠ζy(q)]>0


1 −


P00,q −


P11,q


|αq,a,z ||βq,a,z | +


P01,q +


P10,q


|αq,a,z ||βq,a⊕1,z |



≤

T
k=1


q,a,z

Pr[ζx(q)≠ζy(q)]>0


P01,q +


P10,q


(|αq,a,z ||βq,a,z | + |αq,a,z ||βq,a⊕1,z |)


.

The remainingpart is completely similar to theproof of [23, Theorem14]. Summingup the inequalities for all (x, y) ∈ S×S
with weightw(x, y), we have (1 − ϵ)


x,yw(x, y) ≤ 2T 1

√
A


x,yw(x, y)where

A = min
x,y,q: w(x,y)>0

Pr[ζx(q)≠ζy(q)]>0

µ(x)µ(y)
ν(x, q)ν(y, q)

1
P01,q +


P10,q

2 .
Therefore, we obtain T = Ω(

√
A) and hence the proof is completed. �

Nowwe are ready to give the upper and lower bounds for the query complexity of finding the oracle in case of the quasi
B-oracle. Assume that wt(x) = k. The upper bound is easy bymodifying Theorem 1 so that Step 2 in Find∗(k) can be replaced
with O(k1/4) repetitions of the quasi B-oracle.

60 K. Iwama et al. / Theoretical Computer Science 456 (2012) 51–64

Theorem 3. There is an O(k1/4)-query quantum algorithm to find x using the quasi B-oracle.

On the contrary, we can obtain the tight lower bound by using Lemma 5. The weight scheme contrasts with that of
Theorem 2;w(x, y) is nonzero only if the Hamming distance between x and y, denoted as d(x, y), is 2.

Theorem 4. Any quantum algorithm with the quasi B-oracle needsΩ(k1/4) queries to find x.

Proof. First we define a weight scheme. Let S = {x ∈ {0, 1}N | wt(x) = k} and f (x) = x. In what follows, we assume that
wt(q) = l for a query string q that provides theminimum value of the formula of Lemma 5, and show that the theorem holds
for an arbitrary l ≤ N . For any (x, y) ∈ S × S, letw(x, y) = 1 if d(x, y) = 2 and 0 otherwise. We must satisfyw′(x, y, q) = 0
for any different x, y such that d(x, y) ≠ 2 or Pr[ζx(q) = ζy(q)] = 1, which implies wt(x ∧ q) = wt(y ∧ q). Thus we let
w′(x, y, q) ≠ 0 only if d(x, y) = 2 and wt(x ∧ q) = wt(y ∧ q) ± 1. Define w′(x, y, q) as a function of wt(x ∧ q) = m1 and
wt(y ∧ q) = m2, and thus denote it byw′(x, y, q) = w′(m1,m2). Thenw′(m1,m2) is taken as

w′(m1,m2) =



2m(N − k − l + 2m)
(l − 2m + 1)(k − 2m + 1)

if (m1,m2) = (2m − 1, 2m)

(l − 2m + 1)(k − 2m + 1)
2m(N − k − l + 2m)

if (m1,m2) = (2m, 2m − 1)

1 if (m1,m2) = (2m, 2m + 1), (2m + 1, 2m)
0 otherwise.

It can be easily seen that w,w′ is a weight scheme. Now we evaluate the lower bound under this weight scheme. Clearly,
µ(x) = µ(y) = k(N − k). For evaluating ν(x, q)ν(y, q), we consider only the case where m1 = wt(x ∧ q) = 2m and
m2 = wt(y ∧ q) = 2m − 1 (the other cases such as m1 = 2m and m2 = 2m + 1 can be similarly analyzed). In this case, we
have

ν(x, q) = 2m(N − l − k + 2m)w′(2m, 2m − 1)+ (k − 2m)(l − 2m)w′(2m, 2m + 1)
≤ (l − 2m + 1)(k − 2m + 1)+ (k − 2m)(l − 2m)
≤ 2(l − 2m + 1)(k − 2m + 1),

ν(y, q) = (2m − 1)(N − k − l + 2m − 1)w′(2m − 1, 2m − 2)+ (k − 2m + 1)(l − 2m + 1)w′(2m − 1, 2m)
≤ (2m − 1)(N − k − l + 2m − 1)+ 2m(N − k − l + 2m)
≤ 4m(N − k − l + 2m).

Note that P01,q = 1/
√
2m and P10,q = 0 since Pr[ζx(q) = 0] =

√
1/2m and Pr[ζy(q) = 1] = 1. Thus we have

µ(x)µ(y)
ν(x, q)ν(y, q)

1

(

P01,q +


P10,q)2

=
k2(N − k)2

√
2m

8m(l − 2m + 1)(k − 2m + 1)(N − k − l + 2m)
.

This value is bounded below byΩ(k1/2) sincem ≤ k/2 and l ≤ N . Now Lemma 5 completes the proof. �

Acknowledgments

We are grateful to Mario Szegedy for directing our interest to the topic of this paper, and an anonymous referee for
a helpful idea to improve the earlier upper bounds for general k significantly. We are also grateful to Seiichiro Tani and
Shigeru Yamashita for helpful discussions.

Appendix A. Efficient construction of transformationW

It can be easily seen that our algorithm Find∗(k) can be implemented in time polynomial in the length of the input except
for a bit nontrivial task, constructing the transformationW in the proof of Lemma1. Recall thatW is a unitary transformation
that satisfies W |x⟩ = |ψx⟩ for any x ∈ S<N/2 = {x ∈ {0, 1}N | wt(x) < N/2}, where |ψx⟩ =

1
√

2N−1

q∈Qew
(−1)q·x|q⟩. We

define a subset S+

<N/2 of size 2
N/2 as follows: S+

<N/2 = S<N/2 if N is odd, or S+

<N/2 = S<N/2 ∪{x ∈ {0, 1}N/2 | lex(x) ≤ 2N/2/2}
(where lex(x) is the lexicographic order of x in {0, 1}N/2) if N is even. Notice that S+

<N/2 is a polynomial-time computable set.
Then the following algorithm implementsW .

Algorithm ImplW . Input: |x⟩ such that wt(x) < N/2 in a register S.
1. Create the quantum state 1

√
2
(|x⟩ + |x⟩) in S by Steps 1.1–1.3.

1.1. Prepare 1
√
2
(|0⟩ + |1⟩) in a register R.

1.2. If the content of R is 1, flip all the N bits in S.
1.3. If the content of S is not in S+

<N/2, flip the bit in R.

K. Iwama et al. / Theoretical Computer Science 456 (2012) 51–64 61

2. Apply H⊗N on S.
3. Let S be the output.
It is easy to see that ImplW is implemented in polynomial time. By Step 1.1, we have 1

√
2
|x⟩S(|0⟩ + |1⟩)R. After Step 1.2,

the state becomes 1
√
2
(|x⟩S|0⟩R + |x⟩S|1⟩R). Step 1.3 transforms the state to

1
√
2
(|x⟩S|0⟩R + |x⟩S|0⟩R) =

1
√
2
(|x⟩S + |x⟩S)|0⟩R.

Finally, the state after Step 2 is

H⊗N


1
√
2
(|x⟩S + |x⟩S)


|0⟩R = |ψx⟩S|0⟩R

as shown in the proof of Lemma 1.

Appendix B. Algorithm Find(k)

The exact algorithm Find(k) is given as follows.

Algorithm Find(k). Let a (≥ 9/10) be the success probability of Find∗(k). Let B be the algorithm that uses a single qubit
with initial state |0⟩ and rotates it to

√
1 − 1/4a|0⟩ +

√
1/4a|1⟩. Notice that the probability that Find∗(k) succeeds and B

outputs |1⟩ is exactly 1/4.
(i) Run Find∗(k)with initial state |0⟩R in the register R and obtain a candidate of k false coins X (in fact, the corresponding

oracle), and also run B with initial state |0⟩R′ in the register R′. Let U be the unitary transformation done in this step (that
is, the state after this step is U|0⟩R|0⟩R′).

(ii) Implement Steps (ii-1)–(ii-3) below.
(ii-1) Run algorithm Check, which will be described later, to check if X is indeed the set of k false coins.
(ii-2) If Check outputs YES and B outputs |1⟩, flip the phase. Otherwise, do nothing.
(ii-3) Reverse the operation of Step (ii-1).

(iii) Apply the reflection about the state U|0⟩R|0⟩R′ , i.e., I − 2U|0⟩⟨0|UĎ, where |0⟩ = |0⟩R|0⟩R′ , to the state.
(iv) Measure R in the computational basis.
By a geometric view (Theorem 4 in [7]) similar to the Grover search where the fraction of correct solution(s) is 1/4 [6],

we can verify that Find(k) succeeds with certainty. In Find(k), the ‘‘solution’’ is |X⟩R|1⟩R′ where X is the k false coins. Notice
that Step (ii) implements the transformation that changes |X⟩R|b⟩R′ to −|X⟩R|b⟩R′ if (X, b) is the ‘‘solution’’ and |X⟩R|b⟩R′

otherwise. The total complexity is the number of queries to run Find∗(k) and its inverse three times (once for Step (i) and
twice for Step (iii)) plus the number of queries to run Check and its inverse. So, we obtain a query complexity of O(k1/4) if
Check has a similar complexity.

In fact, Check needs only O(log k) queries, which is given as follows. For simplicity, we assume thatN is a multiple of k+1
and k + 1 is a power of 2 but the generalization is easy. (Note that the following algorithm satisfies the big-pan property. If
we do not care the property, the algorithm can be simplified a lot.)

Algorithm Check.
Input: Two subsets of a set X of N coins, X1 with size k and X1 = X \ X1 with size N − k.
Output: YES iff the coins in X1 are all false and the coins in X1 are all fair.
1. Divide X1 into k + 1 equal-sized subsets Y1, Y2, . . . , Yk+1 (recall the above assumption).
2. Let L = Y1 and R = Y2. For i = 1 to log (k + 1), repeat Steps 2.1–2.2.

2.1. Check if L and R are balanced by Steps 2.1.1–2.1.3.
2.1.1. Construct arbitrarily two subsets L′ and R′ of size N/4 − |L| (= N/4 − |R|) from X \ (X1 ∪ L ∪ R) (this is

possible since |X \ (X1 ∪ L ∪ R)| ≥ N − k − |L| − |R| ≥ (N/4 − |L|)+ (N/4 − |R|)).
2.1.2. Compare L ∪ L′ and R ∪ R′ by a balance scale. If it is tilted, output NO.
2.1.3. Compare R ∪ L′ and L ∪ R′ by a balance scale. If it is tilted, output NO.

2.2. Set L := L ∪ R and R :=
2i+1

j=2i+1 Yj.
3. Output YES.
Obviously, Checkmakes O(log k) queries. The correctness of Check can be seen as follows: Observe that (i) if L′ and R′ are

of different weight, at least one of Steps 2.1.2 and 2.1.3 is tilted, and (ii) if L′ and R′ are of the sameweight, then both of Steps
2.1.2 and 2.1.3 are balanced if and only if L and R are of the same weight. Hence the algorithm essentially verifies if Y1 and
Y2 are of the same weight, Y1 ∪ Y2 and Y3 ∪ Y4 are of the same weight, Y1 ∪ · · · ∪ Y4 and Y5 ∪ · · · ∪ Y8 are of the same weight,
and so on. If all the tests go through, then Y1 through Yk+1 are all the same weight, which cannot happen if X1 includes false
coins since X1 includes at most k such ones.

Finally, we adapt our algorithm so that it can satisfy the big-pan property. We simulate the transformation |q⟩ →

(−1)q·x|q⟩ of the IP oracle by replacing a query stringq ∈ {0, 1}N with even Hamming weight wt(q) by two queries

62 K. Iwama et al. / Theoretical Computer Science 456 (2012) 51–64

with Hamming weight ⌊N/2⌋ when wt(q)/2 is even (similarly for the case where it is odd). We replaceq by two N-
bit stringsq1 andq2 with Hamming weight wt(q)/2 such thatq = q1 ⊕q2. We take an arbitrary N-bit stringb with
wt(b) = ⌊N/2⌋ − wt(q)/2 such that {i | bi = 1} ∩ {i | qi = 1} = ∅. Note that bothq1 ⊕ b andq2 ⊕ b have
Hamming weight ⌊N/2⌋. (Recall that the Hamming weight of query strings must be even. So, if ⌊N/2⌋ is odd, then we
need an adjustment (−1) of the Hamming weight when selectingb.) Since (−1)(q1⊕b)·x(−1)(q2⊕b)·x = (−1)q·x for any x, we
can replace a queryq to the IP oracle by two queriesq1 ⊕b andq2 ⊕b. Thus, we can simulate Find∗(k) without changing
the complexity (up to a constant factor).

Appendix C. Other lower bounds for restricted pans

In addition to Theorem 2, we can show more lower bounds for the case where the size of pans is restricted. In what
follows, L ≤ l denotes the restriction that at most l coins must be placed on each pan whenever the balance scale is used.

First, we give a lower bound for the case where the size of pans is ‘‘small’’. Note that Theorem 5 implies that there is no
o(k1/4)-query algorithm placing at most O(N/

√
k) coins on the pans whenever the balance scale is used.

Theorem 5. If L ≤ l, then any quantum algorithm needs Ω(
√
kN/lmin(k, l)) queries to find the false k coins from N coins. In

particular,Ω(
√
N/l) queries are necessary.

Proof. For simplicity, the followingweight scheme is givenwhen the size of each pan is l, that is,when query strings are inQl.
(But the same bound is also obtained similarly when the size is at most l, and hence we can apply Lemma 3 for Q =


l′≤l Ql′

to obtain the desired bound in the last of this proof.) Let S = {x ∈ {0, 1}N | wt(x) = k} and f (x) = x. For each (x, y) ∈ S × S,
letw(x, y) = 1 if d(x, y) = 2 and 0 otherwise.When a query q to an oracle x represents thatm1 andm2 false coins are placed
on the left and right pans, respectively, and the query q to another oracle y represents thatm3 andm4 false coins are placed
on the left and right pans, respectively, we put the same weight for allw′(x, y, q)’s of such triples (x, y, q), which is denoted
asw′((m1,m2), (m3,m4)). Then we define

w′((m1,m2), (m3,m4))

=



m(N − k − (2l − 2m))
(l − m + 1)(k − 2m + 1)

if (m1,m2,m3,m4) = (m − 1,m,m,m), (m,m − 1,m,m),

(l − m + 1)(k − 2m + 1)
m(N − k − (2l − 2m))

if (m1,m2,m3,m4) = (m,m,m − 1,m), (m,m,m,m − 1),

1 if one ofmi’s ism and the others arem − 1, or
(m1,m2,m3,m4) = (m + 1,m − 1,m,m), (m − 1,m + 1,m,m),
(m,m,m + 1,m − 1), (m,m,m − 1,m + 1),

0 otherwise,

where 1 ≤ m ≤ min(k/2, l). It is easy to see that the condition of a weight scheme is satisfied. Notice that for any x ∈ S
we haveµ(x) = k(N − k). Evaluating ν(x, q) is a bit complicated. Since this value depends on the numbers of false coins on
the two pans,m1 andm2, represented by the pair (x, q), we denote it by ν(m1,m2). We want to evaluate ν(x, q)ν(y, q) such
that w(x, y) > 0, i.e., d(x, y) = 2 and χx(q) ≠ χy(q). By symmetry, we can assume that χx(q) = 1 and χy(q) = 0. Since
d(x, y) = 2,weneed to consider only the following cases: (i) ν(x, q) = ν(m,m−1) (or= ν(m−1,m)) and ν(y, q) = ν(m,m)
(where 0 < m ≤ min(k/2, l)); (ii) ν(x, q) = ν(m + 1,m − 1) (or = ν(m − 1,m + 1)) and ν(y, q) = ν(m,m) (where
0 < m < min(k/2, l)); (iii) ν(x, q) = ν(m+1,m) (or= ν(m,m+1)) and ν(y, q) = ν(m,m) (where 0 ≤ m < min(k/2, l)).
In case of (i),

ν(x, q) =


y:d(x,y)=2, χy(q)=0

w′(x, y, q)

= w′((m,m − 1), (m − 1,m − 1))× m(N − k − (2l − (2m − 1)))
+w′((m,m − 1), (m,m))× (l − (m − 1))(k − (2m − 1))

≤ 2m(N − k − 2l + 2m)
= O(min(k, l)N),

and

ν(y, q) =


x:d(x,y)=2, χx(q)=1

w′(y, x, q)

= (w′((m,m), (m + 1,m))+ w′((m,m), (m,m + 1)))(l − m)(k − 2m)
+ (w′((m,m), (m,m − 1))+ w′((m,m), (m − 1,m)))m(N − k − (2l − 2m))
+ (w′((m,m), (m + 1,m − 1))+ w′((m,m), (m − 1,m + 1)))m(l − m)

= 2(l − m)(k − m)+ 2(l − m + 1)(k − 2m + 1)
= O(kl),

K. Iwama et al. / Theoretical Computer Science 456 (2012) 51–64 63

and hence ν(x, q)ν(y, q) = O(kNlmin(k, l)). Similarly, in case of (iii), it holds that ν(x, q)ν(y, q) = O(kNlmin(k, l)). In case
of (ii),

ν(x, q) = w′((m + 1,m − 1), (m,m))× (l − (m − 1))(m + 1)
= (l − m + 1)(m + 1) = O(min(k/2, l)l) = O(min(k, l)N),

and ν(y, q) = O(kl), and hence we also have ν(x, q)ν(y, q) = O(kNlmin(k, l)). From the above, by Lemma 3 the quantum
query complexity is at least

Ω

 min
x,y,q: w(x,y)>0,
χx(q)≠χy(q)


µ(x)µ(y)

ν(x, q)ν(y, q)

 = Ω


kN

lmin(k, l)


.

This completes the proof. �

Second, we generalize Theorem 2 to the case where ‘‘big pans’’ and ‘‘small pans’’ are both available but ‘‘medium pans’’
are not. Here, ‘‘L ≤ l1 or L ≥ l2’’ means that at most l1 coins or at least l2 coins (or their superposition) must be placed on
each pan whenever the balance scale is used.

Theorem 6. If L ≤ l1 or L ≥ l2 where l1 < l2, any quantum algorithm needsΩ(min((N/l1k)1/2, (l2k/N)1/4)) queries to find the
k false coins from N coins. In particular, for any ϵ ≥ 0, if L ≤ N/k1+2ϵ or L ≥ N/k1−4ϵ , thenΩ(kϵ) queries are necessary.

Proof. We can use the sameweight scheme as the proof of Theorem 2. Let l1 = N/d1 and l2 = N/d2 with d1 > d2. The lower
bound we should show is Ω(min((d1/k)1/2, (k/d2)1/4)). Similar to the proof of Theorem 2, we can show that by Lemma 3
the quantum query complexity is at least

Ω

 min
x,y,q

w(x,y)>0
χx(q)≠χy(q)


µ(x)µ(y)

ν(x, q)ν(y, q)

 = Ω

min
c

c≥d1
or ≤d2

 N
k


γ (N, k, c)

·

N
k

N
k


− γ (N, k, c)

 . (C.1)

Then the theorem can be obtained from Eq. (C.1) by using Lemma 4 for c ≤ d2 and the following lemma (Lemma 6) for
c ≥ d1. (Notice that it suffices to show Lemma 6 for c ≥ 3 since the bound we should obtain from Lemma 6, (d1/k)1/2, is
nontrivial only if d1 = ω(k) and hence the size of pans N/c (≤l1) should be considered only for c = ω(k).)

Lemma 6. (
N
k


− γ (N, k, c))/

N
k


= O(kc) for any c ≥ 3.

Proof. Let us bound the probability that the balance scale is tiltedwhenN/c coins (N coins include k false ones) are randomly
placed on eachpan since it is exactly (

N
k


−γ (N, k, c))/

N
k


. Clearly, this probability is upper boundedby the sum

k
m=1 t

′(m)

where t ′(m) :=
(km)(

N−k
2N/c−m)

(N
2N/c)

denotes the probability of choosing exactly m false coins out of k ones when 2N/c coins are

placed on the pans. Letting r ′(m) :=
t ′(m+1)
t ′(m) , which is equal to (k−m)(2N/c−m)

(m+1)(N−k−2N/c+m+1) , the sum is bounded by
k

m=1

t ′(m) ≤ (r ′(0)+ r ′(0)2 + · · ·)t ′(0) (since r ′(0) ≥ r ′(m) for all m ≥ 1)

≤
r ′(0)

1 − r ′(0)
(by t ′(0) ≤ 1)

= O(r ′(0)).

Since c ≥ 3 and k ≤ N/2, we can see that the following holds:

r ′(0) ≤
2kN

cN − ck − 2N
=

2k
c

·
1

1 −
k
N −

2
c

= O(k/c).

This completes the proof. �

Hence the proof of Theorem 6 is completed. �

Unfortunately, Theorem 6 does not give even a weakest nontrivial lower bound ω(1) if the size of the pans is not
restricted. Onemight have the hope by Theorem6 thatwe could obtain a good upper bound by always placing approximately
N/k coins on the pans, but Theorem 5 denies such a hope since we have anΩ(k1/2−2ϵ) lower bound for l = N/k1−4ϵ .

64 K. Iwama et al. / Theoretical Computer Science 456 (2012) 51–64

References

[1] A. Ambainis, Quantum lower bounds by quantum arguments, J. Comput. Syst. Sci. 64 (2002) 750–767.
[2] A. Ambainis, Polynomial degree vs. quantum query complexity, J. Comput. Syst. Sci. 72 (2006) 220–238.
[3] A. Ambainis, L. Magnin, M. Roetteler, J. Roland, Symmetry-assisted adversaries for quantum state generation, in: Proc. 26th CCC, 2011, pp. 167–177.
[4] H. Barnum, M.E. Saks, M. Szegedy, Quantum query complexity and semi-definite programming, in: Proc. 18th CCC, 2003, pp. 179–193.
[5] E. Bernstein, U. Vazirani, Quantum complexity theory, SIAM J. Comput. 26 (1997) 1411–1473.
[6] M. Boyer, G. Brassard, P. Høyer, A. Tapp, Tight bounds on quantum searching, Fortschr. Phys. 46 (1998) 493–505.
[7] G. Brassard, P. Høyer, M. Mosca, A. Tapp, Quantum amplitude amplification and estimation, in: Quantum Computation and Quantum Information: A

Millennium Volume, in: AMS Contemporary Mathematics Series, vol. 305, 2002, pp. 53–74.
[8] W. van Dam, I. Shparlinski, Classical and quantum algorithms for exponential congruences, Proc. 3rd TQC, Lect. Notes Comput. Sci. 5106 (2008) 1–10.
[9] L.K. Grover, A fast quantum mechanical algorithm for database search, in: Proc. 28th STOC, 1996, pp. 212–219.

[10] R.K. Guy, R.J. Nowakowski, Coin-weighing problems, Am. Math. Mon. 102 (1995) 164–167.
[11] L. Halbeisen, N. Hungerbühler, The general counterfeit coin problem, Discrete Math. 147 (1995) 139–150.
[12] P. Høyer, T. Lee, R. Špalek, Negative weights make adversaries stronger, in: Proc. 39th STOC, 2007, pp. 526–535.
[13] S. Laplante, F.Magniez, Lower bounds for randomized and quantumquery complexity using Kolmogorov arguments, SIAM J. Comput. 38 (2008) 46–62.
[14] T. Lee, R. Mittal, B.W. Reichardt, R. Špalek, M. Szegedy, Quantum query complexity of state conversion, in: Proc. 52th FOCS, 2011, pp. 344–353.
[15] W.A. Liu, W.G. Zhang, Z.K. Nie, Searching for two counterfeit coins with two-arms balance, Discrete Appl. Math. 152 (2005) 187–212.
[16] F. Magniez, M. Santha, M. Szegedy, Quantum algorithms for the triangle problem, SIAM J. Comput. 37 (2007) 413–424.
[17] B. Manvel, Counterfeit coin problems, Math. Mag. 50 (1977) 90–92.
[18] M. Nielsen, I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.
[19] B. Reichardt, Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function, in: Proc. 50th

FOCS, 2009, pp. 544–551.
[20] B. Reichardt, Reflections for quantum query algorithms, in: Proc. 22nd SODA, 2011, pp. 560–569.
[21] R. Špalek, M. Szegedy, All quantum adversary methods are equivalent, Theory Comput. 2 (2006) 1–18.
[22] B.M. Terhal, J.A. Smolin, Single quantum querying of a database, Phys. Rev. A 58 (1998) 1822–1826.
[23] S. Zhang, On the power of Ambainis lower bounds, Theor. Comput. Sci. 339 (2005) 241–256.

	Quantum counterfeit coin problems
	Introduction
	Upper bounds
	Lower bounds
	Basic ideas
	Big pan lower bounds
	Lower bounds for the quasi B-oracle

	Acknowledgments
	Efficient construction of transformation W
	Algorithm Find(k)
	Other lower bounds for restricted pans
	References

