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1. I N T R O D U C T I O N  A N D  
FORMULATION OF T H E  PROBLEM 

Throughout this paper, E,  F, and G will be real Banach spaces. We shall consider the following 
problem of optimization: 

Minimize f (x) ,  

subject to 

- g ( ~ )  e K ,  

x E S c E ,  

(P) 

where f and g are mappings from E into F and G, respectively, and where S and K are two 
subsets of E and G. We assume that the spaces F and G are ordered by cones Q c F,  K c G 
and that these cones are closed, convex, and with nonempty interior. 

We denote by jr = {x E S :  -g (x )  E K }  the feasible set of (P). 
We can consider the following partial order in F: 

y, z E F ,  y - < F z ~ z - y E Q  

(analogously for G). 
Also, we can consider the following relation: 

y, z E F, y -<G z v=> z -  y E intQ 

(where int Q is the interior of Q). 
Then, we have two concepts of solution for (P). 

DEFINITION 1.1. We say that x0 E j r  is an efficient solution for (P) i f x  E jr, f ( x )  -<F f(Xo) => 
f ( x )  = f (xo) .  

DEFINITION 1.2. We say that xo E jr is a weak efficient solution for (P) if there is not x E jr, 
such that f(z)  ~F f(xo). 

This class of problems has been investigated extensively in recent years. For example, when 
in (P) we take E = R n, F = R p, and G = Rm; Q -- R~_ and K = R~) was studied by Clarke [1], 
Craven [2], Minami [3], Mishra and Mukherjee [4], Osuna-Gbmez [5] (see also [6-8]), among 
others with relation to the optimality conditions (under various differentiability hypotheses). 
The infinite-dimensional case was considered by E1 Abdouni and Thibault [9], Cola~tas, Li and 
Wang [10], and Brand,o, Rojas-Medar and Silva [11]. In [10], problem (P) was studied in the 
absence of the constraint - g ( x )  E K and some regularity on f and S was assumed. 

E1 Abdouni and Thibault studied a more general vectorial mathematical programming problem 
than (P). They considered not only inequality constraints, but also equality constraints and 
proved necessary conditions of optimality of the Fritz John kind in the nonsmooth case. The 
approach which they used is that devised by Clarke [1] for nonsmooth optimization problems, 
which is based on the Ekeland variational principle. However, no Karush-Kuhn-Tucker type 
conditions nor sufficient conditions of optimality have been derived for problem (P). In [11], these 
last results were proved by using the invexity notion between Banach spaces (introduced here), 
also they introduced a Mond-Weir like dual for problem (P) and established duality relations. 
Our purpose in this work is to extend those results given in [5] (see also [6-8]), for arbitrary 

Banach spaces. 
The notion of convexity is very important in optimization theory. The following results are 

well known: if 0 : S C R~ --* R is a convex function defined on S, where S is a nonempty, convex 
subset of ]R n, then 

(1) if • E S is a local minimum of ~ on S, then ~ is a global minimum of 0 (on S); 
(2) if~ is differentiable on S and S is open set, Vg(xl)(x2 - x l )  <_ 9(x2) - -  ~}(Xl),  VXl,X2 E S 

(and, in particular, if • E S, V0(~) = 0, then • is a global minimum of S). 
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These two properties of convex functions are very important in optimization theory. 

In fact, there exist other class of functions that are not convex and that  have analogous prop- 
erties: they are the generalized convex functions ([12-15].) 

We suggest the following definition of preinvex functions between Banach spaces, analogously 
as was done in [11], for the case of invexity. We note that this definition generalizes the notion 
given previously by Hanson and Mond [16], for the scalar case. We will prove that this class 
of functions satisfies properties analogous to (1) and (2) and this will be useful in obtaining 
some optimality conditions for problem (P) (in the sense of weak efficiency). We would like to 
say that the vectorial problems between Banach spaces has many applications in mathematical 
economies and engineering. In fact, when we study the multiobjective control problems where the 
dynamics are given by partial differential equations and we impose conditions of positivity of the 
solutions in some Sobolev space, we can write this restriction as the restriction g in problem (P). 
Furthermore, we can consider as objective functional f ,  for example f = (fl ,  f2,. • •, f~) or f -- f~, 
where A E J,  in the first case are finite objectives, and in the second case are infinite objectives, 
that can represent perturbations in some components of the solution. 

The paper is organized as follows. In Section 2, we give the definition of preinvexity and we 
prove some results. In Section 3, we study the optimality conditions. In Section 4, we prove the 
global results for weak efficiency. 

2. P R E I N V E X  F U N C T I O N S  

In this section, we define the preinvexity for functions between Banach spaces and we study 
some properties. Also, we stress the alternative theorem of Gordan type for preinvex functions. 
These results will be crucial to obtain the optimality conditions for problem (P). 

DEFINITION 2.1. (See [16].) Le t  E be a Banach space. The  function O : ~ C E -~ R is called 

preinvex with respect to ~? on S C ~ ,  i f  for all x l , x 2  E S and for each A E (0, 1), there exists a 

vector function ~? : S x S --~ E,  such that 

o (x2 + Av (xl, x2)) <_ (xl) + (1 - o (x:).  

Moreover, i f  the set  S C E has the following proper ty  

x 2 + A y ( x l , x 2 )  e S ,  V x l , x 2 E S ,  VA E (0,1), 

we will say that  S is invex with respect to the vectorial function ~. 

Let Q* := {w* c F* : (w*, x) > 0, Vx E Q}, the dual cone of Q and F* the topological dual 
of F. We denote (., .) the canonical duality in the F* × F (that is, (w*,x) = w*(x) ,  Yw* E F*, 

V x e F ) .  
We generalize Definition 2.1 to the functions between Banach spaces in the following way. 

DEFINITION 2.2. The function f : ~2 C E --* F is called preinvex wi th  respect  to ~ on S C ~ i f  

for each w* C Q*, the composition function w* o f is preinvex with respect  to ~, in the  sense o f  

Definition 2.1. 

LEMMA 2.3. Definition 2.2 is equivalent to: for ali x l , x 2  E S and each A E (0, 1), there exists a 
vector ~ : S x S --* E ,  such that  

f (x2 + )~ (Xl, x2)) --F Af (xl) d- (1 -- )~) f (x2). (1) 

To prove this result, we will need recall the following lemma (see [17, p. 215]). 
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LEMMA 2.4. Let  F be a Banach space ordered by the cone Q c F,  wi th  Q convex and closed. 
I f  there exists y E F ,  such that (y*,y) > O, Vy* E Q*, then y e Q. 

The inverse affirmation is dearly true. 

PROOF OF LEMMA 2.3. Let Xl,X2 E S and A E (0, 1). The following equivalences are true 

f (x2 + ~,n (:~, ~ ) )  ___r ~,f ( ~ )  + (1 - ~,) f ( ~ )  

< ..,..xf (Xl) + (1 - )~) f (x2) - f (x2 + )~r/(Xl, x2)) e Q 

w* ()~f (Xl) + (1 - A) f (x2) - f (x2 + )~w (Xl, x2))) >_ o, 

.., ;- w* o f (x2 + )vr/(Xl, x2)) _< .~w* o f (Xl) + (1  - -  ,~) OJ* 0 f (.T2) , 

Vw* E Q*, 

Vw* E Q*, 

where the first equivalence follows from the definition of __F, the second from Lemma 2.4 and 
the third from the linearity of w*. | 

DEFINITION 2.5. Let f : ~ C E ~ F.  We say that f is directionally differentiable at xo in the 
direction d, denote f ' ( xo ,  d), ff the foIlowing limit  ex/sts 

lira f (xo + Ad) - f (x0) 
~--*0+ 

The following property of the directionaily differentiable preinvex functions will be extensively 
used in the rest of the paper. 

LEMMA 2.6. Let f : ~ C E --* F be a preinvex function on S C f~, directionMly differentiable. 
Then, 

(w* o f) t  (x, r/(z,y)) <_ w* o f ( y )  - w* o f ( x ) ,  

Yw* e Q*, Vx ,  y ~ S. 

PROOF. Assume that  f is preinvex on S. Then, by Definition 2.2 w* o f is preinvex on S, for all 
w* E Q* (in the sense of Definition 2.1). 

Then, by Definition 2.1, 

,,,* o f (~ + ~,n(x, v)) <_ ,~* (~f(v) + (1 - ~,) f ( ~ ) ) ,  (2) 

v ~  e (0,1). 
From (2) 

w* o f (x + A~l(x,y)) - w* o f ( x )  ~ AT* ( f ( y )  - f ( x ) ) .  

Dividing the inequality (3) by )~, and taking the limit when A -* 0 +, we obtain 

(w* o f ) '  (x,r/(x,y)) < w* o f ( y )  -- w* o f ( x ) ,  

(3) 

Vw* E Q*, Vx ,  y ~ S. | 

We recall the following result, see [18, p. 54]. 

LEMMA 2.7. I f  Q C F is a convex cone, int Q # @ and 0 # p e Q*, then p(s) > 0 when s e int Q. 

Also, we will prove the following alternative theorem of Gordan's type. This result will be 
useful in the next sections. 

THEOREM 2.8. Let  f : E --* F be a preiavex function wi th  respect to 77 on J: C E ,  where 5 r 
is an invex set  wi th  respect to ~?. Let  Q c F be a convex cone wi th  n o n e | p r y  interior. Then, 
either 

(i) there exists x E 5 c, such that  - f ( x )  C int Q, or 
(ii) there exAsts p 6 Q* \ {0}, such that  (p o f)(~r) c R+. 
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PROOF. First, we assume that  Systems (i) and (ii) have solutions x • ~" and p • Q* \ {0}. 
Then, from Lemma 2.7, we have that  p(f (x))  < 0, with x • f ,  consequently, we obtain an 

contradiction with (ii). 
Now, we assume that  System (ii) has no solution. We will prove that  System (i) has a solution. 
We put 

A := f ( ~ ' )  + int Q. 

Set A is open: in fact, let k • A. Then, there exist x • ~" and s • intQ, such that  k = f ( x )+ s .  
Since s • int Q, there exist a ball N with center at zero, such that  s + N C Q. 
But, k + N = f ( x )  + (s + N) C A, and consequently, A is open. 
Now, we will prove that  A is convex. Let kl,k2 • A and ~- • (0, 1). 

Then, kl -- f ( x l )  A- Sl ,  k2 ---- f(x2) + S2, with Xl, x2 • 5 r and Sl, s2 • int S. 

(1 - -  T)  k l  + Tk2 ~- [(1 - T) .f ( x l )  + T/(XZ)]  + [(1 -- r)  Sl + rS2]. (4) 

But, since f is preinvex, we have 

(1 - -  T) f (Xl) -4- Tf  (x2) • f (x2 q- T~ (Xl,X2)) + Q (5) 

and 

(1 - -  T) Sl + T82 • int Q. 

By hypothesis, jc is invex, that  is, 

(6) 

x2 + ~-~ (xi,x2) • : ' ,  (7) 

is true. 

From (4)-(7), we obtain (1 - "r)ki + Tk2 • A, that  is, the set A is convex. 
Since system (1) has no solution, then 0 q~ A: From Hahn-Banach theorem, there exists 

p • F* \ {0}, such that  

p(A) c R+. (s) 

We fix s • intQ. We would like to prove: p(f (x))  > O, Vx  • ~.  
Since s • int Q, we have 

s + Y C int Q, (9) 

for some ball N. 

For T • R+ sufficiently big, we have (1/T)f(x)  • N and from (9) we have s - (1/T)f(x)  • int Q 
and recalling that  intQ, is a cone, we obtain Ts -- f ( x )  • intQ, that  is Ts • f ( x )  + i n t Q  c A, 
and therefore, by (8) we have 

p(s) > 0, V s • int Q. (10) 

But, for each s > 0 sufficiently small, such that  k = f (x )  + ss • A, and therefore, 

(p o f )  (x) = p(k) - ~p(s) > -~p(s)  -~ 0, 

as s --+ 0 +, consequently 

( p o f ) ( x )  > 0, v x e ~ .  (11) 

For each so • Q, p(so) = (1/T)p(Tso) and for T > 0 small, Ts0 • int Q, therefore of (10) we 
have p(so) > 0 ~/So • int Q, that  is, 

p • Q*\{O}, (12) 

and (11) and (12) imply that  p is a solution of System (ii). I 
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3.  C O N D I T I O N S  O F  O P T I M A L I T Y  

This section is divided in three parts. In Section 3.1, we study the scalar optimization prob- 
lem, i.e., when the objective function is real-valued; in Section 3.2, we establish and prove the 
scalarization theorem. This theorem will be important because of the relationship the optimal 
solution of the scalar problem with the vectorial problem, and in Section 3.3, we use the above 
result to obtain optimality conditions for the vectorial problem (P). 

3.1. C o n d i t i o n s  of  O p t i m a l i t y  for  Sca la r  P r o b l e m s  

Now, we consider the following scalar optimization problem: 

e(~),  Minimize 

subject to 

-g(x) E K, 
x6ScE, 

(PM) 

where E,G are Banach spaces, G is ordered by the closed convex cone with nonempty interior K,  
8 : E --* ll~, g : E --~ G are directionally differentiable and S is a nonempty open subset of E. 

THEOREM 3.1. We assume that  the functions in problem (PM), 8 and g axe preinvex functions 
with respect to the same ~1 and are directionally differentiable. Let ~ be a solution of (PM). 
Then, there exist A* >_ 0 and #* E K*, not simultaneously zero such that  

( A * o ) ' ( ~ , n ( ~ , y ) ) + ( W  o g ) ' ( ~ , n ( ~ , y ) )  ~ 0 ,  v y e s ,  

and 

<,*,g(~)> = 0. 

PROOF. From the hypotheses make, we have that  the feasible set ~c := {x e S : -g(x)  6 K} is 
invex with respect to ~/. 

Let • be the solution of (PM). In this case, the system 

[ e ( x )  - e(~) ] 
- L g ( x )  6 int (R+ x K) 

has no solution x E ~'. 
From Theorem 2.8, we have that  there exists p = (7,v*) 6 (~+ x K*)\{(0,0)},  such that  

[e(~) - e (~)] + , *  o a(~) > 0, v ~  e 3=, (13) 

consequentl~ 
~* o ~ (2) = 0. (14) 

We observe that  for each )~ > 0 sufficiently small, we have 2 + A~(~,y) 6 F,  Vy 6 S since 5 r is 
invex with respect to ~. 

From (13) and (14), we obtain 

r e  (2 + An (2, y)) - ~0 (2) + v* o g (2 + An (2, y)) - ~* o 9 (2) 
lim 

~-~0+ A (15) 
= ( ~ ) '  (~, ~ (~, y)) + (v* o g)' (~, ~ (~, y)) > 0. 

Setting in (15) ~- = A* and # = v*, we obtain the desired result. | 
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3.2.  A T h e o r e m  of  Sca lar i za t ion  

We will consider the following optimization problem 

Minimize f ( x ) , 

subject to (P1) 

x E P ,  

where f : E --+ F,  F c E, E and F axe Banach spaces, F is ordered by the closed, convex cone Q 
with nonempty interior. 

The following theorem of scalaxization is true for problem (P1). 

THEOREM 3.2. Assume that in (P1) the function f is preinvex with respect to 7 in the set F and 
that the feasible set F is invex with respect to 7. I f  x* E F is a weak eIticient solution of (P1), 
then there exists w* 6 Q* \ {0}, such that 

_< o v z e r .  

PROOF. We consider the following sets 

V := {u e F :  0 -~F u}; Y := {v E F :  v ~F f (x*) - f (x ) ,  for some x E F}. 

Since x* is a weak efficient solution of (P1), we obtain U M V = •. 
In fact, assume the contrary, that  is, that  there exists z E U M V. 
In this case, there exists x • F such that  0 "~f z - - f  f (x*) -- f (x ) .  
But, z E int Q, and consequently, there exists a ball N with center at zero such that  z + N  C Q. 
We have, z "~F f(x*) - f (x) ,  that  is, f (x*) - f (x )  • z ÷ Q, consequently, 

( f  ( x * ) -  f (x ) )  A- N C (z + N) + Q  C Q-t-Q C Q 

(because Q is a convex cone). Moreover, f(x*) - f (x)  E in tQ and we deduce that  

f(x) -<F f (x*), x • r ,  

this is a contradiction with the fact that  x* is a weak efficient solution of (P1). Then, UN V = ~. 
U is obviously open and convex (because U = int Q and Q is convex). 
In view of the fact that  the function f preinvex and the set F is invex, we have that  V is 

convex. 
In fact, let vl,v2 • V and A • (0, 1). Then, there exist Xl,X2 • F, such that  

vl -----F f (x*) -- f (xl) and v2 ~F  f (x*) -- f (x2). 

It  is easy to see that  

~vl _~F ~ f  (x*) -- Af(xl)  and (1 - ~)v2 _~F (1 - ~) f (x*) - (1 - ~) f (x2), 

and we deduce that  

Avl + (1 - A) v2 "<F f (x*) -- [)~f (Xl) + (1 - A) f (x2)] 

f (x*) - f + (xi ,  

where the last inequality is consequence of the preinvexity of f .  Since F is an invex set with 
respect to 7, we have x2 + A~(xl, x2) • F, and therefore, V is convex. 

From Hahn-Banach theorem, there exists w* • F*\{0}, such that  

< 0 < v •u, v ev. 

The second inequality implies (w*, u) > 0, V u • int Q. 
But, Q is convex with nonempty interior, and then is verified that  in tQ = Q ([19], p. 413) and 

this implies w* • Q*. 
We observe that  for each x • F, we have f (x*) - f (x )  • V, moreover 

(w*, f (x*) -- f (x))  < 0, Vx • I'. I 
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3.3. C o n d i t i o n s  of  O p t i m a l i t y  for  Vec to r i a l  P r o b l e m s  

In this section, we obtain optimality conditions for problem (P). 
Observe that  the weak efficient solutions of vectorial preinvex functions are fully characterized 

by a stationary condition. 

THEOREM 3.3. Let f : ~ C E --* F be a preinvex function on S C ~ with respect to 7] and are 
directionally differentiable. Then, • is a weak ef~cient solution of f on the open set S if and only 
if 

(~* o / ) '  (s:, ~ (2, y)) > 0, (16) 

Vy e S, Vw* e Q*. 

PROOF. First, we show the implication ( 3 ) .  We assume that  • is a weak efficient solution and 
that  (16) is not true. 

In this case, there exist y E S and w* E Q*, such that  

(~* o f ) '  (~, ~ (~, y)) < 0. (17) 

Since S is open and S: E S, we have that  ~ + A~](~, y) E S, for A > 0 sufficiently small. 
From (17), we obtain 

lira w* o f (S: + AT/(S:,y)) - w *  of(S:)  < 0, 
X--+O+ 

and therefore, for A > 0 sufficient small, we get 

~* ( f  (x + A~ (x, Y)) - f (S:)) < 0. 

Since w* E Q*, w* # 0, we have 

f (S: + A~ (S:, y)) -4F f (~), 

with ~ + ),~(~, y) E S. This is a contradiction with the fact that  • is a weak efficient solution. 
Now, we prove the reverse implication ( ~ ) .  
To do this, we assume that  condition (16) is true and that  S: is not a weak efficient solution. 
In this case, there exists y E S, such that  f (y)  "<F f(~2). 
Let w* E Q* \ {0} (it is possible to show that  Q* # {0}; see [20]) and we obtain 

o~* o f ( v )  - ~* o f (~-) < o. ( i s )  

Then, 

0 < (~* o f) '  (~,~ (~, v)) _< ~* of(v) - ~ *  o f ( ~ )  < 0. | 

Next, we give some optimality conditions (necessary and sufficient conditions) for problem (P). 

THEOREM 3.4. NECESSARY CONDITION. Assume that  in problem (P) functions f and g are 
preinvex with respect to the same 7, are directionally differentiable, and the set S is invex with 
respect to ~7. If ~ is a weak efficient solution of (P), then there exJst A* E Q*, Iz* E K*, not ali 
zero, such that 

(A* of) '(~,~](~,y))+(l~* og)'(~,~(~2, y ) )>O,  V y E J  r, 

and 
<~*, g (~) /= 0. 

PROOF. From the hypotheses done, we have that the feasible set ~ is invex with respect to ~. 
By using Theorem 3.2, there e~sts ~* E Q*\{0}  such that 

~*of(~2)~_~*of (x) ,  V x E . T .  

Then, by applying Theorem 3.1 , there exist a >_ 0 and #* E K*, not all zero, such that  

~ (~* o f ) '  (~ ,~  (~ ,y))  + ( .*  o g)' ( ~ , ~ ( ~ , v ) )  > 0 ,  y e T ,  

and 
<.*, g (~)> = 0. 

A* = aA* is a sufficient set and we obtain the desirable result. | 
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THEOREM 3.5. SUFFICIENT CONDITION. Assume that in problem (P) functions f and g are 
preinvex with respect to to the same function ~, directionally differentiable and that  set S is 
invex with respect to ~1. I f  there exist ~ ~ J: and (A*,#*) E Q* x K*, with A* ¢ 0, such that 

(~* o f) '  (~,~(~,x)) + (~* o g)' (~,~ (~,z)) > 0, vy  e~=, (19) 

and 

(~*, g (~)) = o. (20) 

Then, ~2 is a weak efficient solution of (P). 

PROOF. Assume the contrary, that  is • is not a weak efficient solution of (P). Then, there exist 

x E ~" such that  f (x )  -~F f(2.) and since A* E Q*, )~* ~ 0, by using Lemma 2.7, we have 
A*(f(x) - f (~))  < 0 and using Lemma 2.6, we obtain 

(~* o ]) '  (~,~(~,~)) < 0. (21) 

Also, we have 

(~* o g)' (~, ~ (~, z))  < ,*  o g(~) - , *  o g (~) < o, 

where the first inequality is obtained from Lemma 2.6 and the second by the feasibility of x and 
of (20). Consequently, we have 

(~* o ~) ' (~,~(~,~))  < 0 (22) 

Adding the inequalities (21) and (22), we obtain 

(~* o : ) '  (~, ~ (~, x)) + (~* o g)' (~, ~ (~, x))  < 0. 

This is a contradiction with (19), because x E ~'. 

Therefore, • is a weak efficient solution for (P). I 

REMARK 3.6. We observe that A* can be O, in this case the problem is called abnormal To 
guarantee A* ~ O, we must impose some conditions on the data. Usually, we assume the following. 

SLATER REGULARITY CONDITION. 3 x0 E .~, such that  g(xo) -~F O. 

COROLLARY 3.7. On the hypotheses of the Theorem 3.4, ff the Slater regularity condition is 
verified, then A* ¢ 0. 

PROOF. In fact, we assume that  the hypotheses of the Theorem 3.4 is verified and the Slater 
regularity conditions is true. If we consider A* -- 0, we will prove a contradiction. To do this, we 
observe that  there exists #* E K*\{0}, such that  

(~* og) ' (~ ,~(~,u))  > 0, v u c T ,  (23) 

and 

But, 

(#*, g (~)) = O. (24) 

( ,*  o 9)' (~, ~ (~, x0)) < ,*  o g(~o) - , *  o 9 (~) 
= ,*  o ~(~o) < 0 (25) 

(where the first inequality is consequence of Lemma 2.6, the equality is obtained (24) and the 
last inequality from g(xo) -<f 0 and #* ¢ 0). This is a contradiction with (23). Consequently, 
A*#o. I 
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4.  G L O B A L  W E A K  E F F I C I E N C Y  

In this section, we will consider the following optimization problem 

Minimize f ( x ) , 

subject to 

x • P ,  

(P1) 

where f : E -+ F, F C E, E and F are Banach spaces, F is ordered by the cone, closed, convex, 
pointed, and with interior nonempty Q. 

We will call Xo • F a global weak efficient solution for problem (P1) if it is a weak efficient 
solution of f on the set I ~, in the sense of Definition 2. 

Also, we will say that  x0 • P is local weak efficient solution for problem (P1) if there exists 
some neighborhood N of x0, such that x0 is a weak efficient solution of f on the set F N N. 

Now, we will prove that if f is a preinvex function in problem (P1), then local efficiency implies 
global efficiency. In fact, we have the following theorem. 

THEOREM 4.1. If  f is preinvex with respect to ~ and the set F is invex with respect to 7, then 
the solution weakly efficient local to (P1) is one solution weakly efficient global to (P1). 

PROOF. Assume that the function f is preinvex on F and that • • F is a local weak efficient 
solution of (P1), but that is not global. 

Then, there exist x'  • F such that 

f (2) - f (x') • int Q. (26) 

Since f is preinvex and P is invex (with respect to 7/), there exists a function rl : E x E -+ E 
such that 2 + a~(x', 2) • F, for each a • (0,1) and 

f (-~ + ~'O (x', ~)) ~F ~f (x') + (1 -- oe) f (5~), 

or equivalently, 
c~f (x') + (1 - c~) f (2) - f (~ + cz~? (x', ~)) • Q 

or 

c ~ ( f ( x ' ) - f ( ~ ) ) + f ( ~ , ) - f ( 5 ~ + c ~ ( x ' , ~ , ) )  • Q ,  Vc~• (0,1). 

Since Q is a pointed cone, from (26) and (27), we obtain y(x',  ~) ~ O. 
We observe 

(27) 

f (~) - f (2 + ~r/(x', ~)) = [~ ( f  (x') - f (~)) + f (~) - f (~ + c~r/(x', :~))] q- c~ ( f  (:~) - f (x')) 

E Q + i n t Q c i n t Q ,  y a  E (0,1) 

this is contradiction with the optimality of the point 2. 
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