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SUMMARY

Distinct histone lysine methylation marks are
involved in transcriptional repression linked to
the formation and maintenance of facultative
heterochromatin, although the underlying
mechanisms remain unclear. We demonstrate
that the malignant-brain-tumor (MBT) protein
L3MBTL1 is in a complex with core histones,
histone H1b, HP1g, and Rb. The MBT domain
is structurally related to protein domains that
directly bind methylated histone residues. Con-
sistent with this, we found that the L3MBTL1
MBT domains compact nucleosomal arrays de-
pendent on mono- and dimethylation of histone
H4 lysine 20 and of histone H1b lysine 26. The
MBT domains bind at least two nucleosomes
simultaneously, linking repression of transcrip-
tion to recognition of different histone marks by
L3MBTL1. Consistently, L3MBTL1 was found to
negatively regulate the expression of a subset
of genes regulated by E2F, a factor that inter-
acts with Rb.

INTRODUCTION

Chromatin, the organized assemblage of histones and

genomic DNA, is critical to the proper regulation of cellular

processes associated with DNA metabolism, including

transcription. Covalent histone modifications, chromatin

remodeling, and histone exchange contribute to dynamic

chromatin structure changes that impact transcriptional

regulation. Silencing of gene expression is partially

achieved by transient or stable condensation of the chro-

matin structure (facultative or constitutive heterochroma-
tin, respectively), which renders DNA inaccessible to the

transcription machinery. Histone lysine methyltrans-

ferases (HKMTs) that target H3K9, H3K27, and H4K20

are important for the establishment and maintenance of

heterochromatin, but the underlying mechanisms remain

elusive (Sims et al., 2003). These histone lysine methyla-

tion marks serve as recognition sites for chromatin-

binding proteins (‘‘readers’’), which may directly compact

chromatin structure or recruit other chromatin-effector

proteins.

The linker histone H1 is thought to be an important me-

diator of higher-order chromatin structure (Bednar et al.,

1995; Sato et al., 1999). Recently, lysine 26 was identified

as a target for acetylation and methylation within the

histone H1 variant H1b/H1.4/H1s-4 (H1bK26; Kuzmichev

et al., 2004; Vaquero et al., 2004); however, the biological

significance remains unknown.

Histone modifications such as H3K27 methylation,

H3K9 dimethylation (H3K9me2), and H4K20 monomethy-

lation (H4K20me1) are commonly found in facultative

heterochromatin (Sims et al., 2003). Methylated H3K27

is recognized by Polycomb, a component of Polycomb

repressive complex 1 (PRC1). However, recently PRC1

was shown to compact nucleosomal arrays in vitro inde-

pendent of H3K27 methylation or histone tails (Francis

et al., 2004). H3K9 di- and trimethylation are directly rec-

ognized by HP1 (Bannister et al., 2001; Jacobs et al.,

2001). HP1 localizes to facultative and constitutive hetero-

chromatin, associates with the H3K9-specific HKMT

SUV39H1 (Schotta et al., 2002), and can mediate the

spreading of H3K9 methylation by oligomerization (Hall

et al., 2002). HP1 binding to chromatin is highly dynamic

and in some instances is independent of H3K9 methyla-

tion (Meehan et al., 2003). Of the three mammalian HP1

isoforms, HP1a and -b are predominantly associated

with constitutive heterochromatin, and HP1g is found

in euchromatin and facultative heterochromatin (Minc
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et al., 2000). HP1 also binds to recombinant nucleosomes,

DNA, and RNA (Maison et al., 2002; Zhao et al., 2000). In

contrast, the functional significance of H4K20me1 medi-

ated by PR-SET7 (Nishioka et al., 2002) remains far less

understood.

L3MBTL1 is of great interest in this context. The

malignant-brain-tumor (MBT) domain was first described

in the Drosophila tumor-suppressor protein L(3)mbt (Wis-

mar et al., 1995). Recessive or temperature sensitive mu-

tations of the D-l(3)mbt gene cause malignant transforma-

tion in the larval brain. Various mutations were found to

impair synchronous cell division and mitotic progression

in the early stages of Drosophila embryonic development

(Yohn et al., 2003). Human L3MBTL1 is a known transcrip-

tional repressor (Boccuni et al., 2003), which requires

its three MBT domains for silencing. A screen for novel

chromatin-binding domains revealed that the second

and third MBT domain of L3MBTL1 bound to monomethyl

H3K4 and dimethyl H4K20 (Kim et al., 2006). Another

MBT family member, Drosophila Sfmbt, was recently

shown to bind to mono- and dimethylated H3K9 and to

dimethylated H4K20 peptides (Klymenko et al., 2006).

Yet, the functional implications of this binding event are

not known.

Using sucrose gradient sedimentation to reconstitute

L3MBTL1-histone complexes followed by electron mi-

croscopy (EM) analyses, we demonstrate that L3MBTL1

compacts nucleosomal arrays in a manner that requires

specific posttranslational modifications within core and/

or linker histones. The second MBT domain of L3MBTL1

exclusively recognizes the mono- and dimethyl versions

of both H4K20 and H1bK26, respectively. Our studies

identify a novel mechanism for the readout of multiple

lysine methylation marks within histones H1b, H3, and

H4 via a singular complex of L3MBTL1 and HP1g and

suggest that a combinatorial pattern of histone modifica-

tions results in a direct functional outcome—specifically,

chromatin condensation at Rb-regulated genes.

RESULTS

L3MBTL1 Associates with Core Histones,

Histone H1 and HP1g

The human L3MBTL1 (isoform 1) protein comprises 772

amino acids (�100 kDa) and contains three identifiable

domains (Figure 1A). To tackle the mechanistic aspects

of L3MBTL1-mediated transcriptional repression (Boc-

cuni et al., 2003), we generated a 293 cell line that consti-

tutively expresses full-length L3MBTL1 containing a FLAG

epitope at its C terminus (L3MBTL1-F). L3MBTL1-F and

its associated proteins were identified after affinity purifi-

cation from nuclear extracts (Figure 1A and see below).

A cell line stably transfected with empty vector (mock)

served as control. Silver staining revealed a number of

polypeptides that specifically associate with L3MBTL1-

F. These polypeptides were found to be core histones,

histone H1b, HP1g, and the Retinoblastoma protein (Rb;

Figure 1A).
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The MBT Domains of L3MBTL1 Compact Chromatin

in a Core-Histone-Modification-Dependent Manner

To determine the functional relevance of core histones

present in a complex with L3MBTL1, we first investigated

whether their modifications contributed to this interaction.

Nucleosomal arrays were reconstituted with bacterially

expressed histones (recombinant chromatin) or histones

purified from HeLa cells (native chromatin) and then incu-

bated with a recombinant protein encompassing the three

MBT repeats of L3MBTL1 fused to GST (GST-3MBT;

Figure 1A). Initially the association of GST-3MBT with his-

tones was analyzed by sucrose gradient sedimentation

followed by EM. Fractions derived from the sucrose gradi-

ents were analyzed by western blot using anti-3MBT anti-

bodies (Figure 1B). The GST-3MBT protein migrated near

top of the gradient but shifted toward the bottom upon the

addition of native chromatin templates (Figure 1B). Impor-

tantly, this shift was not observed in the presence of

recombinant chromatin. A similar profile was observed

upon inspection of the sedimentation profile of nucleoso-

mal DNA (Figure 1C).

The peak fractions from the sucrose gradient (see

Figure 1C) were analyzed by EM to explore any visible

changes to the chromatin template upon GST-3MBT

binding. In the absence of GST-3MBT, recombinant and

native nucleosomal arrays displayed a typical ‘‘beads on

a string’’ configuration (11 nm fiber), confirming a proper

chromatin reconstitution in both cases (Figure 1D). The re-

combinant chromatin was treated with the HAT-p300 and

acetyl coenzyme A to allow acetylation and the establish-

ment of 11 nm fibers (Loyola et al., 2001). Since the native

and recombinant chromatin both contained acetylated

residues (data not shown), we concluded that acetylation

per se does not impair binding of MBT to chromatin

(see Experimental Procedures; Figures 1D, 2B, 5B, and

5C; Table 1).

Strikingly, the native chromatin particles became highly

compacted upon GST-3MBT addition (Figure 1D; magni-

fied image of one compacted particle in upper right panel).

Quantification of the observed structural changes re-

vealed that �70% of the molecules became fully com-

pacted by GST-3MBT (data not shown). In contrast, the

recombinant nucleosome arrays were unaffected and

remained in the 11 nm fiber configuration. Addition of

GST protein alone was ineffectual (data not shown).

L3MBTL1 can homodimerize via its SPM domain (Boccuni

et al., 2003), and GST-3MBT can do so through the GST

domain. To analyze if dimerization was a factor, we pro-

duced a hexahistidine-tagged 3MBT protein (His-3MBT).

Superdex-200 size-exclusion chromatography verified

that His-3MBT was monomeric (Figure S1). The mono-

meric His-3MBT polypeptide also compacts native chro-

matin but not recombinant chromatin (Figure S2). We con-

clude that the 3MBT not only binds modified core histones

in nucleosome arrays but also compacts these arrays in

a strictly histone-modification-dependent manner.

We next tested which, if any, of the six major histone-

methylation sites on core histones is/are responsible for



Figure 1. Purification of L3MBTL1-Associated Proteins and Chromatin Compaction by L3MBTL1 in a Histone-Modification-

Dependent Manner

(A) Left panel: Schematic of the L3MBTL1 domain organization and constructs used for eukaryotic expression (L3MBTL1-F) or prokaryotic expression

(GST-3MBT). Right panel: Silver staining of proteins purified from 293 cells expressing L3MBTL1-F or empty vector (Mock) using anti-FLAG (M2)

agarose. Proteins identified by mass spectrometry or western blot are indicated.

(B) Western blot of sucrose gradient fractions containing GST-3MBT or recombinant or native oligonucleosomes incubated with GST-3MBT using

anti-3MBT antibodies.

(C) Sucrose gradient fractions as in (B) analyzed by agarose gel electrophoresis and ethidium bromide staining.

(D) Sucrose gradient peak fractions as determined in (C) subjected to electron microscopy (EM) analysis. Scale bar is 100 nm, and bar in the insert is

25 nm.
L3MBTL1 binding and compaction using, initially, pep-

tide-affinity binding assays. GST-3MBT protein bound

specifically to H4K20me1/2 but not to unmodified

H4K20 or H4K20me3 (Figure 2A). GST-3MBT did not

bind to methylated H3K4, H3K9, and H3K27 peptides,

but HP1g bound to H3K9me2 (Figure S3), and hCHD1

bound to H3K4me (data not shown). Collectively these

results establish that in peptide pull-down assays, GST-

3MBT binds specifically to mono- and dimethylated

H4K20.

To address the chromatin-compaction potential of

GST-3MBT in the context of H4K20me1 and nucleosome

arrays, we employed PR-SET7, the enzyme that catalyzes

the addition of a single methyl group to H4K20 (Nishioka

et al., 2002). PR-SET7 was used to methylate recombinant

nucleosomal arrays in vitro, and subsequent addition of

GST-3MBT protein was analyzed by sucrose gradient
sedimentation. Only chromatin that was premethylated

(+S-adenosyl-methionine [SAM]) induced a migration shift

upon GST-3MBT addition (data not shown). Using EM, we

observed a number of compacted chromatin particles as

a function of GST-3MBT binding (Figure 2B; Table 1).

We repeated these experiments using monomeric His-

3MBT protein and observed a similar outcome, chromatin

compaction (Table 1). This compaction was dependent on

the presence of SAM, confirming that L3MBTL1 could

bind and compact nucleosome arrays containing

H4K20me1.

L3MBTL1 Interacts with HP1g

We next explored the basis of HP1g association with

L3MBTL1. To score for specificity, we compared the

proteins present in the L3MBTL1-F fraction to those asso-

ciated with its two close homologs, L3MBTL2-F and
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Figure 2. H4K20 Monomethylation Is Sufficient to Recruit L3MBTL1 with Resultant Chromatin Compaction

(A) Immunoblotting (anti-GST antibody) of peptide affinity chromatography fractions (flow-through [FT]); bound fraction [Elu]) using crosslinked

histone H4 peptides, either unmodified, mono-, di-, or tri-methylated at K20 (H4K20me1/2/3) and GST-3MBT.

(B) EM analysis of sucrose gradient peak fractions performed similarly to the experiment shown in Figure 1C using recombinant reconstituted nucle-

osomal arrays monomethylated at H4K20 with PR-SET7. Scale bar is 100 nm.

(C) Western blot of polypeptides associated with L3MBTL1-F, L3MBTL2-F, and L3MBTL3-F using the antibodies indicated. Nuclear extract (NE) was

used as input, and anti-SNF2H antibody was used as negative control.

(D) 293 cells were transiently transfected with expression vectors encoding HP1g-HA and L3MBTL1-F. Extracts were subjected to anti-FLAG (M2)

agarose, and bound proteins were monitored by immunoblot with anti-FLAG and anti-HA antibodies.

(E) Top panel: Representation indicating the sizes of recombinant L3MBTL1 fragments used for GST pull-downs. Bottom panel: Recombinant

GST and GST-L3MBTL1 fragments and in-vitro-translated [35S]-labeled HP1g used for GST pull-downs. Precipitated proteins were monitored by

autoradiography.
L3MBTL3-F. We analyzed the association of HP1 using

specific antibodies that discriminate between the three

mammalian HP1 isoforms in western blot. Biochemical

fractionation of cellular extracts revealed that HP1g is

more abundant in nuclear extracts compared to the

a or b isoforms (Figure S4A; Nielsen et al., 2001). HP1a

and -b were not present, but HP1g was detected in the

L3MBTL1 and L3MBTL2 affinity-purified fractions

(Figure 2C), a result consistent with previous findings

(Ogawa et al., 2002). This interaction is specific, as the

L3MBTL3-F affinity-purified fraction was devoid of

HP1g. Using two antibodies from different sources, we

also detected the human Rb protein within the affinity-

purified L3MBTL1 and L3MBTL2 samples, but not in the

case of L3MBTL3 (Figure 3A and data not shown).

Anti-FLAG-immunoprecipitation of cotransfected cells

demonstrates that HA-tagged HP1g coimmunoprecipi-

tated only in the presence of L3MBTL1-F (Figure 2D). As
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well, in-vitro-translated full-length L3MBTL1 precipitated

with GST-HP1g (Figure S4B). The N terminus of

L3MBTL1 interacted with HP1g (Figure 2E), but since

these studies were performed using protein translated

in vitro, we cannot conclude that the interaction is direct;

however, we can rule out an indirect association mediated

through core histones as these interact exclusively with

the MBT domains and not the N-terminal region of

L3MBTL1 (data not shown).

L3MBTL1 Directly and Specifically Binds

to H1bK26me1/2

Given the presence of H1b in the affinity-purified prepara-

tion of L3MBTL1-F, we analyzed for their interaction

in vivo using cotransfection experiments in 293 cells with

either L3MBTL1-F or L3MBTL2-F and HA-tagged histone

H1b/H1.4 (H1b-HA). H1b coprecipitated with L3MBTL1-F

but not with L3MBTL2-F using anti-FLAG antibodies



Figure 3. L3MBTL1 Interacts with H1b In Vivo and In Vitro

(A) IP performed on extracts from 293 cells cotransfected with expression vectors encoding H1b-HA and either L3MBTL1-F or L3MBTL2-F.

(B) As in (A) but with L3MBTL1-F and either H1b-HA or H1.0-HA.

(C) As in (A) but with L3MBTL1-F and H1b-HA, either wild-type or with K26A point mutation.

(D) Peptides comprising amino acids 20–37 of histone H1b either unmodified, mono-, di-, or tri-methylated at K26 (H1K26me0/1/2/3) immobilized to

sulfolink resin and incubated with recombinant GST or GST-3MBT. Bound (Elu) and unbound (FT) proteins were monitored by silver staining.

(E) Silver stain of interactions between immobilized H1b-K26me2 peptides and recombinant GST-3MBT either wild-type or with point mutations P1a,

P2a, and P3a in the first, second, and third MBT domain, respectively.

(F) Autoradiography of interactions between immobilized H1b-K26me1 or H4-K20me1 peptides and full-length in-vitro-translated [35S]-labeled

L3MBTL1, either wild-type or with P1a or P1b, P2a or P2b, or P3a or P3b point mutants (see Supplemental Data for details) in the first, second,

and third MBT domain, respectively.
(Figure 3A). A similar result was obtained in reciprocal

immunoprecipitation assays (Figure S5). We analyzed if

L3MBTL1-F interacts with additional H1 isotypes. Co-

transfection experiments with the histone variants H1o/

H1.0 were performed. Histone H1b, but not H1o, inter-

acted with L3MBTL1-F (Figure 3B). Histone H1b can be

methylated at lysine 26 (H1bK26me; Kuzmichev et al.,

2005), and this residue is not present in H1o. Similar to

the H1o case, a mutant form of H1b containing a substitu-

tion of lysine-26 to alanine (H1b-K26A; Kuzmichev et al.,

2004) did not immunoprecipitate with L3MBTL1-F

(Figure 3C).

Since all HP1 isoforms recognize and bind dimethylated

H1b-K26 (Daujat et al., 2005), the observed interaction of

HP1g with L3MBTL1-F (Figure 1A) could be mediated

through its interaction with H1. However, the amount of en-

dogenous HP1g in the anti-FLAG immunoprecipitates was

relatively similar regardless of whether H1b was coprecipi-

tated or not (Figure 3C). Collectively, our data indicate that
L3MBTL1 is associated with HP1g, nucleosomes contain-

ing H4K20me1 and H1b and that the K26 residue of H1b is

important for its interaction with L3MBTL1. Moreover, the

presenceof Rb in theL3MBTL1complex suggests a means

of directing L3MBTL1 to target genes.

To determine if the interaction between L3MBTL1 and

H1b is direct and if methylation of K26 is required, we

initially used peptide-affinity chromatography. Affinity

columns were generated with H1b peptides comprising

residues 20–37 in which K26 was un-, mono-, di-, or trime-

thylated and incubated with GST-3MBT. GST-3MBT

binds to the mono- and dimethylated peptides but not to

the unmethylated or trimethylated versions (Figure 3D).

We next tested GST-3MBT proteins containing single

amino acid substitutions in each of the MBT domains

(P1a, P2a, and P3a; Figure S6) at residues which are pre-

dicted to be important for binding (Wang et al., 2003). The

P1a and P3a mutant proteins bound, but not the P2a mu-

tant (Figure 3E). We expanded the binding studies and
Cell 129, 915–928, June 1, 2007 ª2007 Elsevier Inc. 919



found that full-length in-vitro-translated L3MBTL1 protein

bound mono- and dimethylated H1 peptides exclusively

(Figure 3F and data not shown). Notably, the in-vitro-

translated full-length P2a mutant protein (but not the

recombinant GST-3MBT P2a mutant) migrates faster in

SDS-PAGE; the reason for this is not known. In this exper-

iment, we used a different set of mutant proteins, each

with a single amino acid substitution (P1b, P2b, and

P3b; Figure S6) and again observed that only mutation

in the second MBT domain abolished interaction

(Figure 3F). A point mutation in the third pocket led to

decreased binding, suggesting that both pockets might

cooperate in binding methylated histone lysines. Inter-

estingly, the P2a mutation also abolished binding to

H4K20me1, but the P2b mutant was unaffected

(Figure 3F). These data suggest that both H1K26 and

H4K20 are bound via the second MBT domain; however,

a different set of residues seems to be involved in

H1K26me versus H4K20me binding.

To validate these findings, interaction experiments were

performed using GST-3MBT and bacterially expressed

full-length histone H1b containing an HA tag. As expected,

bacterially produced (unmodified) H1b did not interact

with GST-3MBT (data not shown). It was shown previously

that G9a can dimethylate H3K9 and histone H1 in vitro

(Tachibana et al., 2001). When G9a was used to methylate

wild-type H1b and mutant H1bK26A proteins, GST-3MBT

bound to G9a-methylated H1b but not to the methylation-

deficient H1bK26A mutant. Kinetic and substrate-speci-

ficity studies determined that G9a is capable of mono-

and dimethylation in a time-dependent manner (Patnaik

et al., 2004). Indeed, using an antibody that specifically

recognizes H1bK26me2, we confirmed that G9a dimethy-

lates H1K26 and that H1b dimethylated at K26 binds to

GST-3MBT (Figure 4A).

Of note, the H1b sequence containing lysine-26 is

similar to the sequences surrounding H3K9 and H3K27

(ARKS). However, we did not observe binding of GST-

3MBT to the H3K9 and H3K27 peptides, regardless of

their methylation status (Figure S3). Collectively, our

results show that the MBT repeats of L3MBTL1 directly

interact with mono- or dimethylated histone H1bK26.

MBT Domains Compact Chromatin in an

H1bK26me1/2-Dependent Manner

Our results show that L3MBTL1 interacts with

H1bK26me1/2. Histone H1 is implicated in the formation

of higher-order chromatin and can function on its own

in compaction of chromatin templates in vitro (Bednar

et al., 1995). We next investigated the role of the MBT

domains in conjunction with H1 in this process. Recombi-

nant or native histone H1b was incorporated onto spaced

nucleosomes that were confirmed as such by MNase

digestion (data not shown). Chromatin compaction in the

presence or absence of GST-3MBT was analyzed by

sucrose gradient sedimentation followed by EM as

described above. Under the conditions used whereby

recombinant core histones are acetylated with p300,
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a preparation of human histone H1 by itself did not effi-

ciently compact the chromatin templates (Figure 4B, left

panel). Remarkably, and in contrast to its inability to do

so alone, GST-3MBT was observed to compact recombi-

nant nucleosome arrays upon the incorporation of native,

but not recombinant, H1 (Figure 4B, right panel; Table 1;

data not shown).

The native H1 preparation that successfully gave rise

to compacted molecules in a GST-3MBT-dependent

manner is presumably comprised of different H1 variants

with multiple posttranslational modifications. Thus, the

compaction assay was repeated using recombinant H1b

that was methylated by G9a before incorporation into

nucleosomes. GST-3MBT compacted a significant num-

ber of these particles (Figure 4C; Table 1). Two types of

molecules were generally observed. In one case, the mol-

ecules contained a loop, the other type of molecules did

not loop, but the array appeared to be compacted

(Figure 4C). Regardless, the increase in looping and/or

compaction was dependent on H1b methylation (Table 1).

These results provided further evidence that the MBT

domains bind H1K26me1/2 in the context of nucleosome

arrays and, more importantly, suggest that L3MBTL1

binding to H1bK26me1/2 yields a distinct functional out-

come, the compaction of chromatin fibers.

The MBT Domains of L3MBTL1 Can Bind Two

Nucleosomes Simultaneously

The specificity of binding of the three MBT domains to two

different methylated histone lysine residues, together with

the mutational analyses presented above (Figure 3), raised

an interesting question: Can a single 3MBT domain bind

simultaneously to two different histone lysine methylation

marks? To address this question we used the monomeric

His-3MBT protein, which was incubated with various

histone peptides. The peptide-protein complexes were

then loaded, either immediately or after a preincubation

step, onto a column conjugated with H4K20me1 pep-

tides (outlined in the left panels of Figures 4D and 4E).

His-3MBT protein bound to H4K20me1 in the presence

of H1K26me3 peptides, but binding was completely in-

hibited by the presence of the H1K26me2 peptide (Figures

4D and 4E, right panels). This suggests that H1K26me2

and H4K20me1 bind to the same pocket within the three

MBT domains. Interestingly, if equimolar amounts of

H4K20me1 peptide were mixed with His-3MBT, competi-

tion was not complete, and a fraction of His-3MBT still

bound to the H4K20me1 peptide column (Figure 4D, see

lanes 2 and 3).

We next examined if the molecular basis of L3MBTL1-

mediated chromatin compaction involves simultaneous

binding to more than one nucleosome. A linearized DNA

template containing nucleosome-positioning sequences

exclusively at the 50- and 30-ends was generated. Native

octamers were added to cover both nucleosome-posi-

tioning regions at the DNA ends, leaving the intervening

DNA relatively naked (see Experimental Procedures). This

chromatin template is suitable to screen for intra- and



Figure 4. Reconstituted Nucleosomal Arrays with H1 Methylated at K26 Are Compacted by L3MBTL1

(A) GST pull-downs using GST or GST-3MBT with wild-type H1b or H1bK26A mutant protein premethylated by G9a analyzed by western blots.

(B) EM analysis shows that L3MBTL1 can compact recombinant reconstituted nucleosomal arrays with incorporated native H1. Scale bar is 100 nm.

(C) EM analysis shows that GST-3MBT caused looping and compaction of recombinant reconstituted nucleosomal arrays with G9a-methylated

recombinant H1b incorporated. Scale bar is 100 nm.

(D) Left panel: schematic of competition assay. His-3MBT protein was added to a column containing H4K20me1 peptides covalently conjugated to

agarose resin together with various free peptides (indicated in the right panel). Protein-peptide complexes were washed and eluted using 0.1 M

glycine, pH 3.0. Right panel: western blot probed with anti-His antibody detecting the fraction retained on the H4K20me1 column. Free peptides

are indicated above.

(E) Left panel: schematic of competition assay. His-3MBT protein was preincubated with either free H1K26me3 or H1K26me2 peptides, and the

peptide-protein complex was prepurified with nickel resin. Eluted His-3MBT-peptide complexes were added to a column containing H4K20me1

peptides covalently conjugated to agarose resin. Protein-peptide complexes were washed and eluted using 0.1 M glycine, pH 3.0. Right panel: west-

ern blot probed with anti-His antibody detecting the fraction retained on the H4K20me1 column. Free peptides are indicated above.

(F) EM analysis shows that addition of GST-3MBT results in internal looping or end-to-end looping of native nucleosomal arrays. Scale bar is 100 nm.
internucleosome binding, which in the latter case would

cause looping of the intervening DNA. Binding of GST-

3MBT or His-3MBT to this chromatin template was con-

firmed by sucrose gradient sedimentation (data not
shown), and fractions were examined by EM. As ex-

pected, nucleosomes were positioned at the DNA ends,

and the intervening DNA was predominantly naked. The

presence of GST-3MBT induced significant looping of
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Table 1. Quantification of Chromatin Compaction/Looping Experiments

Type of Assay Proteins Incubated with Nucleosomal Arrays

Total Molecules

Analyzed

Looping and

Compaction (%)

Compaction nH1 � GST-3MBT 800 21.0

+ GST-3MBT 900 45.0

rH1b/G9a � SAM � GST-3MBT 400 15.5

+ GST-3MBT 400 15.0

+ SAM � GST-3MBT 400 14.75

+ GST-3MBT 400 32.75

PR-SET7 � SAM � GST-3MBT 500 12.8

+ GST-3MBT 500 13.4

+ SAM � GST-3MBT 600 14.2

+ GST-3MBT 400 39.75

� His-3MBT 600 15.8

+ His-3MBT (WT) 600 50.8

+ His-3MBT (P2a) 600 26.1

+ His-3MBT (P2b) 600 33.3

Looping � GST-3MBT 1000 4.6

+ GST-3MBT 1000 35.6

+ GST-3MBT (P2) 400 15.75

+ GST-3MBT (P1, P2, P3) 400 6.5

+ His-3MBT-C2HC 500 35.2

+ His-3MBT 500 17.8

Compaction assays have been performed using recombinant reconstituted nucleosomes, and looping assays have been

performed with native nucleosomal arrays (subsaturating amounts of octamers). Percentage of compacted chromatin particles
or particles showing looping upon addition of recombinant MBT domains in comparison to total number of analyzed particles is

shown. The chromatin-compaction experiments carried out with monomeric His-3MBT protein are indicated in bold. All compac-

tion assays have been carried out three to four times, and the looping assays (� GST-3MBT, + GST-3MBT) have been carried out
four times or two times (all other looping experiments).
the DNA template with both nucleosomal regions being

brought in close vicinity to each other (Figure 4F; see Table

1 for quantification). His-3MBT did induce looping but did

so to a lesser extent than GST-3MBT (Figure S7; Table 1).

To analyze the putative contribution of the Zn-finger

domain of L3MBTL1 in looping, we generated a protein

that is comprised of the three MBT domains and the

Zn-finger domain (His-3MBT-C2HC; see Figure 1A). His-

3MBT-C2HC protein migrated as a monomer in size-

exclusion chromatography (Figure S1) but behaved in

the looping assay similarly to the GST-3MBT protein

(Figure S1; Table 1). Looping was reduced in the presence

of the GST-3MBT-P2 mutant protein and completely abol-

ished in the case of the triply mutated GST-3MBT protein

(single point mutation in each of the three MBT domains;

Table 1). Collectively, the results indicate that a monomeric

form of L3MBTL1 allows internucleosome binding but that

the C2HC domain or dimerization (via the SPM domain of

the native protein or GST of the bacterially produced pro-

tein) contributes to this process (Table 1).
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If monomeric His-3MBT is able to bind two nucleo-

somes simultaneously (Figure S7), then a single molecule

might accommodate two methylated histone lysine resi-

dues. We tested this using our chromatin-compaction

assay. Recombinant chromatin was monomethylated

at H4K20 by PR-SET7, incubated with His-3MBT, and

fractionated by sucrose gradient sedimentation (data not

shown). The fractions analyzed by EM confirmed that His-

3MBT indeed compacted chromatin solely dependent on

a single histone lysine methylation mark, H4K20me1

(Figure S8; Table 1). However, if we used mutant His-

3MBT containing a single amino acid substitution in the

second MBT domain that is completely defective in

binding to H4K20me1 (P2a), the number of compacted

molecules decreased substantially (Figure S8; Table 1).

A mutation in the second pocket that still exhibited bind-

ing to H4K20me1 (P2b) showed a reduced number

of compacted particles compared to wild-type His-

3MBT, but significantly more compared to the P2a mutant

(Table 1).



Figure 5. ChIP Experiments Identify

L3MBTL1 Target Genes

(A) 293 cells stably expressing L3MBTL1-F in

ChIP experiments using anti-FLAG mono-

(M2) and polyclonal antibodies. Screening of

E2F target genes revealed that L3MBTL1-F oc-

cupies c-myc and ccne1 promoter regions. For

cdc25, c-myc, c-fos, and actin genes a region

around the transcriptional start site (+1) was

analyzed, and for cyclin E1 (ccne1) the regions

indicated were analyzed.

(B) HeLa cells were used for ChIP experiments

to screen for the presence of endogenous

L3MBTL1 on the c-myc promoter region.

(C) The �900 promoter region upstream of the

c-myc transcriptional start site is occupied by

L3MBTL1, H1, HP1g, H4K20me1, H3K9me2,

and H1K26me2. The �3000 region is not

occupied by L3MBTL1, but H3K9me2 and

H4K20me1 are present.

(D) ShRNA mediated decrease in L3MBTL1

protein levels. Lentiviral based stable knock-

down of L3MBTL1 using two different l3mbtl1

shRNA sequences (1 and 2) leads to increased

MYC protein levels as analyzed by immuno-

blotting of nuclear extracts. A 293 cell line sta-

bly expressing ectopic L3MBTL1 (L3MBTL1-F)

and a 293 cell line transduced with shRNA

against an unrelated protein (Control shRNA)

are also analyzed.
L3MBTL1 Occupies E2F Target Genes Together

with HP1g

Rb controls cell-cycle progression by binding to members

of the E2F family of transcription factors to prevent gene

activation. Since Rb copurified with L3MBTL1 (see Fig-

ure 1A) and the Drosophila L3MBTL1-homolog copurifies

with a E2F/RBF complex (Lewis et al., 2004), we tested if

L3MBTL1 also localizes to E2F-regulated genes such as

c-myc and cyclin E1 (ccne1). Chromatin immunoprecipita-

tion (ChIP) experiments using 293 cells stably expressing

L3MBTL1-F demonstrated binding of L3MBTL1-F to the

proximal promoter regions of c-myc and ccne1 genes

(Figure 5A). L3MBTL1-F was not detectable downstream

of the transcription start site of the cyclin E gene, nor at

the cdc25, c-fos, and actin promoters (Figure 5A), demon-

strating specificity of the assay.

To explore chromatin binding of the endogenous

L3MBTL1 protein, we generated a specific anti-L3MBTL1

antibody (Figure S9). ChIP experiments confirmed binding

of endogenous L3MBTL1 to the c-myc gene (Figure 5B).

The biochemical experiments (see above) strongly sug-

gested that H4K20me1 and H1K26me1/2 should be pres-

ent at these genes, and we found this to be the case for

c-myc using ChIP assays (Figure 5C). Importantly, within

the c-myc promoter region (�900 bp from the transcrip-

tional start site, TSS) the presence of H1bK26me1/2,

HP1g, and H4K20me1 correlates well with the presence

of L3MBTL1. Interestingly, H3K9me2 but not H3K9me3
was also present at these regions of the c-myc gene.

H3K9me2 likely serves as a site for HP1g binding. Se-

quences upstream (�3000) or downstream of the TSS

were devoid of L3MBTL1, H1b, or HP1g (Figures 5B and

5C; data not shown).

Our results suggest that L3MBTL1 functions as a tran-

scriptional repressor, at least in part, by compacting

chromatin. To analyze further whether L3MBTL1 impacts

c-myc gene expression, we used RNA interference. Short

hairpin RNAs (shRNA) against l3mbtl1 led to a decrease in

L3MBTL1 protein levels concomitant with a significant

increase in MYC protein levels (Figure 5D). These results

are consistent with our model that L3MBTL1 negatively

regulates c-myc gene expression. This is also consistent

with the finding that Drosophila L(3)MBT functions in tran-

scriptional repression (Lewis et al., 2004).

DISCUSSION

A Novel Facet of Facultative Chromatin Compaction

The transcriptional repressor L3MBTL1 compacts chroma-

tin in a manner that is strictly dependent on histone methyl-

ation marks—specifically H4K20me1/2 and H1K26me1/2

as shown in this report. The apparent exclusivity of

L3MBTL1 for mono- and dimethylated states supports

a model in which different degrees of methylation at a par-

ticular site can give rise to different readouts. The chromo-

domains (Fischle et al., 2003; Flanagan et al., 2005; Sims
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Figure 6. Alternate Models for L3MBTL1

Compaction of Nucleosomal Arrays

See text for details.

Bridging model. One L3MBTL1 monomer or di-

mer binds to two nucleosomes moving them

into close vicinity. In the monomeric case,

one molecule containing three MBT repeats

can accommodate either: (A) two H4K20me1

or (B) two H1K26me1/2 marks on the histone

tails of adjacent nucleosomes or chromato-

somes, respectively. For simplicity, in the

L3MBTL1-homodimer case only one of two

marks bound by each monomer is illustrated.

The homodimer could accommodate four of

one type of mark, (A) H4K20me1 or (B)

H1K26me1/2, or it could accommodate (C)

two of each type on adjacent nucleosomes.

Association model: Each homodimeric or

monomeric L3MBTL1 binds one nucleosome

and facilitates linker DNA bending or inter-

nucleosomal interactions. As shown in the

monomeric case, L3MBTL1 molecules would

be positioned on (D) the surface of the nucleo-

some or (E) the chromatosome by specific

binding to either H4K20me1 or H1K26me1/2,

respectively, leading to a compacted chroma-

tin state. The same is true for the L3MBTL1

homodimer except that (F) both marks could

be accommodated.
et al., 2005) and PHD-domains (Shi et al., 2006; Wysocka

et al., 2006; Li et al., 2006; Pena et al., 2006) found in sev-

eral proteins provide a paradigm for this model, given their

preference for di- and trimethylated lysines as compared

to the monomethyl state.

The binding specificities of L3MBTL1 raise an important

question. How do the MBT repeats bind specifically to two

different methylated lysine residues (H4K20me1/2 and

H1K26me1/2)? Even more intriguing is that the MBT

domains bind H1K26me1/2 but not H3K9me2/3 or

H3K27me1/2/3, yet these lysine residues are located

within a conserved consensus sequence (ARKS). The sim-

plest explanation would be that each one of the three MBT

domains binds a different ligand. However, our data and

that of others (Kim et al., 2006) suggest otherwise. The

second MBT domain is important for H1K26me1/2 as

well as for H4K20me1/2 binding (Figure 3F), as pre binding

with H1K26me2 peptides abolished 3MBT binding to

H4K20me1 (Figures 4D and 4E). Moreover, since we iden-

tified a mutant in the second MBT domain that abolishes

binding to both ligands and a second mutant that selec-

tively abolishes H1K26me, but not H4K20me, binding,

we suggest that both methylated residues are bound via

the second MBT domain but that different aromatic resi-

dues are involved in caging the methylated lysine residue.

Caging through aromatic residues is a property of all

proteins that specifically recognize methylated lysine

residues (Flanagan et al., 2005; Huang et al., 2006; Jacobs

and Khorasanizadeh, 2002; Li et al., 2006; Nielsen et al.,

2002; Pena et al., 2006).

With respect to chromatin compaction, we envision two

different scenarios, taking into account that the P2 domain
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of L3MBTL1 can bind H4K20me1 or H1K26me1/2 but

apparently not both modifications simultaneously. Impor-

tantly, monomeric 3MBT can still compact chromatin in

our assay conditions, suggesting that the P2 domain can

accommodate two modified histone marks on two nucle-

osomes. However, given that pre binding with H1K26me2

peptides abolished 3MBT binding to H4K20me1, the two

marks accommodated by the monomer must be identical.

Thus, in the case of the dimeric L3MBTL1, each of the

monomers would bind two identical marks such that

four H4K20me1, four H1K26me1/2, or two of each mark

are bound.

In the ‘‘bridging model’’ L3MBTL1 functions either as a

monomer or a dimer, and adjacent nucleosomes or chro-

matosomes are bound simultaneously, thereby bridging

the linker DNA and moving the nucleosomes closer to-

gether (Figure 6A). L3MBTL1 does exist as a homodimer

in vivo (Boccuni et al., 2003), and dimerization is one

mechanism by which two L3MBTL1 molecules bind to

H4K20me1 and H1K26me1/2 on adjacent nucleosomes/

chromatosomes. This is also supported by our looping

experiments (Figures 4F and S7). Yet, repression does

not depend on the SPM domain responsible for

L3MBTL1 homodimerization, and a monomeric 3MBT

molecule lacking the SPM domain still shows compaction

in our assays (Figures S2 and S7) and can repress tran-

scription when directed to a reporter (Boccuni et al.,

2003). Nonetheless, chromatin compaction by a single

3MBT molecule is still consistent with the bridging model.

A similar mechanism for binding and compacting of multi-

ple nucleosomes by a single molecule was reported re-

cently in the case of the PRC1 component PSC (Francis



et al., 2004), but the histone tails or histone lysine methyl-

ation marks were not required. In this case, the com-

pacted particles resembled the chromatin structures

that we observed in the presence of L3MBTL1.

In the ‘‘association model’’ a single L3MBTL1 molecule

(monomer or dimer) could compact chromatin by posi-

tioning itself on the surface of the nucleosome/chromato-

some in a fashion that promotes bending of the linker DNA

or facilitates histone-histone interactions (Figure 6B). In

this model, correct positioning of L3MBTL1 is accom-

plished by the specific recognition of H4K20me1 or

H1K26me1/2 on the nucleosome or chromatosome sur-

face, respectively. The linker histone itself functions in a

similar manner (Wollfe, 1998). Moreover, proteins contain-

ing HMG boxes, the transcription factor HNF3, the myeloid

and erythroid nuclear termination stage-specific protein

(MENT; Springhetti et al., 2003), or PARP-1 (Kim et al.,

2004) can also bind to nucleosomes and alter chromatin

conformation. In the case of L3MBTL1, compaction is

dependent on specific methylated lysine residues adding

a distinct regulatory parameter.

Concerted Actions of Histone H1b and L3MBTL1

during Chromatin Compaction

Linker histone H1 functions as a transcriptional repressor

in vitro (Cheung et al., 2002; Croston et al., 1991; Laybourn

and Kadonaga, 1991) and is important in chromatin fold-

ing in vitro (van Holde, 1989; Wolffe, 1997). The C-terminal

region of H1 is required for its binding to DNA between nu-

cleosomes (Bednar et al., 1998), and H1 phosphorylation

changes its ability to bind to chromatin (Dou et al.,

1999). Here we show that L3MBTL1 interacts with H1 in

a methylation-dependent manner and that H1bK26me1/2

is important for chromatin compaction by the MBT

domains (Figure 4C). H1 has been detected on both tran-

scriptionally active and inactive genes (reviewed by Parse-

ghian and Hamkalo, 2001), and its binding to chromatin is

dynamic in vivo (Lever et al., 2000; Misteli et al., 2000), yet

the number of factors affecting H1 mobility is unknown

(discussed in van Holde and Zlatanova, 2006). It is possible

that methylation of histone H1 at lysine-26 in the presence

of L3MBTL1 increases H1 residence time on chromatin,

thereby facilitating a compacted chromatin state.

MBT Domain Proteins and Gene Expression

The specificity of the proteins involved in establishing

a type of facultative heterochromatin is likely dictated by

the interaction of regulators (E2F) with other regulators

(Rb) and factors that function in compacting chromatin.

L3MBTL1 is a member of a large family of mammalian

MBT proteins that contain variable numbers of MBT do-

mains. These domains are not identical in sequence, as

is also the case with the chromo- and bromo-domains.

Given this, the different members of the MBT family might

recognize different patterns of histone methyl marks to

establish repression of specific genes through the formation

of facultative heterochromatin.
One of the L3MBTL1 targets shown here is c-myc, the

expression of which is tightly regulated, with increased

myc expression often correlated with cancer (for review

see Nilsson and Cleveland, 2003). We found that reduc-

tion of L3MBTL1 levels significantly increases MYC pro-

tein levels. Ectopic expression of L3MBTL1, however,

does not affect MYC protein levels (Figure 5D). This is

perhaps not surprising given that our in vitro data show

a specific requirement for histone methylation marks in

binding; thus, increased expression of L3MBTL1 would

not necessarily lead to its increased chromatin binding.

It remains to be investigated if overexpression of myc in

cancer correlates with aberrant L3mbtl1 gene expression

and/or localization. The human L3MBTL1 gene is located

on chromosome 20q within the region commonly deleted

in patients with myeloproliferative disorders (MacGrogan

et al., 2001). It is also possible that the chromatin signature

(e.g., histone methylation marks) of the c-myc promoter

region is abnormal in malignant cells, thereby altering

L3MBTL1 binding and the regulated expression of c-myc.

EXPERIMENTAL PROCEDURES

Biochemical Purification of L3MBTL1-F and Associated

Polypeptides

Full-length l3mbtl1 cDNA was inserted into pCMV-Tag4A and trans-

fected in 293 cells using FuGENE (Roche), and clones were selected

that stably expressed the L3MBTL1-FLAG fusion protein. Nuclear ex-

tracts (�300 mg) were prepared from 45 liters of culture following the

Dignam protocol (Dignam et al., 1983) and subjected to anti-FLAG (M2)

agarose (Sigma). Bound proteins were eluted with 200 mg/ml FLAG

peptide (Sigma). Affinity-purified L3MBTL1-F fractions were resolved

by SDS-PAGE and analyzed by silver staining, western blotting, and

mass spectrometry. Gel-resolved proteins were digested with trypsin,

the mixtures fractionated on a Poros 50 R2 RP microtip, and the

resulting peptide pools analyzed by matrix-assisted laser-desorption/

ionization reflectron time-of-flight (MALDI-reTOF) MS using a BRUKER

UltraFlex TOF/TOF instrument (Bruker; Bremen, Germany) as de-

scribed (Devroe et al., 2004).

Peptide Affinity Chromatography

Peptide-affinity columns were generated using SulfoLink coupling gel

(Pierce). Histone H1b peptides comprised residues 20–37 with K26

either unmodified, mono-, di-, or trimethylated. Additional peptides

include H3K4 (residues 1–8), H3K9 (residues 5–13), H3K27 (20–33),

and H4K20 (residues 16–25). Peptide-bound proteins (either in-vitro-

translated or 10 ug of recombinant protein) were washed extensively

(60 column volumes of 25 mM Tris, pH 8, 150 mM NaCl, 2 mM

EDTA, and 0.5% NP40) and eluted with either 0.5 mg/ml peptide or

low pH buffer (100 mM glycine, pH 3.0; Sims et al., 2006).

Chromatin-Compaction Assay

Two micrograms of nucleosome arrays were reconstituted as previ-

ously described (Nishioka and Reinberg, 2003) and incubated with re-

combinant 3MBT proteins in HE buffer containing 25 mM KCl at a molar

ratio of 1:4 at RT for 60 min. The protein-nucleosome complexes were

loaded onto a 5%–30% sucrose gradient in HE buffer containing

25 mM KCl and centrifugated for 6.5–15 hr at 25,000 RPM, and the

fractions were analyzed by 1.0% agarose gel electrophoresis. Peak

fractions of the protein-nucleosome complexes were analyzed by EM.
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EM

Protein-nucleosome complexes were fixed with 0.6% glutaraldehyde,

and DNA-protein complexes were purified by gravity-flow gel filtration

(2 ml of BIO-GEL A-5M resin or Sepharose CL-4B, BioRad) using TE

buffer. Purified protein-nucleosome complexes were mixed with

a buffer containing spermidine to a final concentration of 2 mM, ad-

sorbed to glow-charged carbon-coated grids, washed with a water/

graded ethanol series, and rotary shadow cast with tungsten (Griffith

and Christiansen, 1978). Samples were examined using a JEOL 1200

EX transmission electron microscope. Micrographs are shown in

reverse contrast. A Cohu CCD camera attached to a Macintosh

computer programmed with National Institute of Health (NIH) IMAGE

software was used to prepare the images.

ChIP and RNAi

ChIP assays were performed as described (Lewis et al., 2005; Vaquero

et al., 2004). ChIP samples were prepared from 293 cells stably

expressing L3MBTL1-F and from HeLa cells. Primer sets were chosen

to amplify approximately 200 bp around the indicated region. Primer

sequences are available upon request. Five different l3mbtl1 short hair-

pin (sh) RNA constructs were obtained from the MISSION TRC-Hs 1.0

(Human) shRNA library (SIGMA) and used as described previously

(Zufferey et al., 1998).

Supplemental Data

Supplemental Data include nine figures and can be found with this

article online at http://www.cell.com/cgi/content/full/129/5/915/DC1/.
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