=

View metadata, citation and similar papers at core.ac.uk brought to you by . CORE

provided by Elsevier - Publisher Connector

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. |

www.sciencedirect.com

Partial differential equations

On uniqueness for a rough transport-diffusion equation @CmssMark

Sur l'unicité pour une équation de transport-diffusion irréguliére

Guillaume Lévy

Laboratoire Jacques-Louis-Lions, Université Pierre-et-Marie-Curie, bureau 15-16 301, 4, place Jussieu, 75005 Paris, France

ARTICLE INFO ABSTRACT
Artic{e history: In this Note, we study a transport-diffusion equation with rough coefficients, and we prove
Received 18 February 2016 that solutions are unique in a low-regularity class.
:ca'elpteld aftle'r revision 10 May 2016 © 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access
wailable online 24 May 2016 article under the CC BY-NC-ND license
Presented by Haim Brézis (http://creativecommons.org/licenses/by-nc-nd/4.0/).
RESUME

Dans cette Note, nous étudions une équation de transport-diffusion a coefficients irrégu-
liers, et nous prouvons I'unicité de sa solution dans une classe de fonctions peu réguliéres.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access
article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this note, we address the problem of uniqueness for a transport-diffusion equation with rough coefficients. Our
primary interest and motivation is a uniqueness result for an equation obeyed by the vorticity of a Leray-type solution of
the Navier-Stokes equation in the full, three-dimensional space [5]. The main theorem of this note is the following.

Theorem 1.1. Let v be a divergence free vector field in L%(R, H'(R?)) and a be a function in L*(Ry x R3). Assume that a is a
distributional solution of the Cauchy problem

(C){3¢G+V~(av)—Aa=0

a(0) =0, (1)

where the initial condition is understood in the distributional sense. Then a is identically zero on R, x R3.

As a preliminary remark, the assumptions on both v and a entail that d;a belongs to Llloc(ﬂh, H~2(R3)) and thus, in
particular, a is also in C(R,, D'(R3)). In Theorem 1.1, a is to be thought of as a scalar component of the vorticity of
v, which is in the original problem a Leray solution of the Navier-Stokes equation. In particular, we only know that a
belongs to L%(Ry x R3) and L®(R,, H~1(R?)), though we will not use the second assumption. The reader accustomed to
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three-dimensional fluid mechanics will notice that, comparing the above equation with the actual vorticity equations in 3D,
a term of the type ad;v is missing. In the original problem, where this Theorem first appeared, we actually rely on a double
application of Theorem 1.1. For some technical reasons, only the second application of Theorem 1.1 takes in account the
above-mentioned term.

As opposed to the standard DiPerna-Lions theory, we cannot assume that a is in L°° (R, LP(R?)) for some p > 1. How-
ever, our proof does bear a resemblance to the work of DiPerna and Lions; our result may thus be viewed as a generalization
of their techniques, see [1], [2], [3] and [4]. Because of the low regularity of both the vector field v and the scalar field a, the
use of energy-type estimates seems difficult. This is the main reason why we rely instead on a duality argument, embodied
by the following theorem.

Theorem 1.2. Given v a divergence free vector field in L2(R, H'(R3)) and a smooth ¢g in D(R3), there exists a distributional
solution of the Cauchy problem

o —v-Vo—Ap=0
cHy ™ 2
© i $(0) = o @
with the bounds
oo r3) < llPoll oo r3) (3)
and
t
19,0172 g5, + f 17350117 z3,d5 < 18600117 3y + 19010 3, 195V 1T e, 3, 4)
0

for j =1,2, 3 and any positive time t.

By reversing the arrow of time, this amounts to build, for any strictly positive T, a solution on [0, T] x R3 of the Cauchy
problem

[ —hp—v Vo—Ap=0
( C){ o(T) = g1, (5)

where we have set ¢r := @g for the reader’s convenience.
2. Proofs

We begin with the dual existence result.

Proof (of Theorem 1.2). Let us choose some mollifying kernel p = p(t,x) and denote v® := ps * v, where ps(t,x) :=

8‘4,0(§, fs—‘). Let (C§) be the Cauchy problem (C"), where we replaced v by v3. The existence of a (smooth) solution ¢°
to (Cg) is then easily obtained thanks to, for instance, a Friedrichs method combined with heat kernel estimates. We now
turn to estimates uniform in the regularization parameter §. The first one is a sequence of energy estimates done in LP with
p > 2, which yields the maximum principle in the limit. Multiplying the equation on ¢? by ¢?®|@%P=2 and integrating in
space and time, we get

t
1 p—2 1
E||<p5<t>||f,,(R3)+(p—1> / IV’ (5)lg’(s)] 2 ||52(R3)ds=Enwonfp(m (6)
0

Discarding the gradient term, taking the p-th root on both sides and letting p go to infinity gives
19° Ol o @3y < 190 100 &3)- 7)
To obtain the last estimate, let us derive for 1 < j <3 the equation satisfied by a j(,a‘S . We have
8t8j<p3—v5~V8j(p5—A8jg05:8jv8~V<p8. (8)

Multiplying this new equation by 9 j<p‘3 and integrating in space and time gives

t t
1 1
100" Oz g3, + / 199" )2 s, 45 = 519001172 g5, + / / 3j9°(s. )3V (5, X) - V' (5, x) dxds. 9)
0 0 R3
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Since v is divergence free, the gradient term in the left-hand side does not contribute to Equation (9). Denote by I(t) the
last integral written above. Integrating by parts and recalling that v is divergence free, we have

t
I(t) = —//<p5(s,x)ajv5(s, X) - Ve’ (s,x)dxds
0 R3

IA

t
90l oo (3 / 18;v2 ()l 23 V3 9° (9) Il 2 g3, ds
0

t t
1 8 2 1 2 § 2
<3 / 199507 (5) 22 55, 05 + 3 190l s, / 18}V (5) 122 g3, ds.
0 0

And finally, the energy estimate on ngo‘s reads

t
19;0° O 1172 s, + / 1V8;0° ()17 g3, A5 < 18600117 g3y + 190l e g3, 195V &, ey (10)
0

Thus, the family (¢%)s is bounded in L®(R,, H'(R3)) N L2(Ry, H2(R3)) N L°(R,; x R3). Up to some extraction, we have
the weak convergence of (¢?); in L2(Ry, H2(R3)) and its weak-x convergence in L®° (R, HI(R3)) N L®(R, x R3) to some
function ¢.

By interpolation, we also have Vg? —~ V¢ weakly in L*(R,, H3(R3)) as 8 — 0. As a consequence, because v
strongly in L2(Ry, H'(R?)) as § — 0, the following convergences hold:

S 5y
A@® —~ Agin L2(R; x R?);

s ) s - 23

VeV, 0® =~ v-Vg, dpin L3Ry, L7(R?)).

In particular, such a ¢ is a distributional solution of (C’) with the desired regularity. O
We now state a Lemma that will be useful in the final proof.

Lemma 2.1. Let v be a fixed, divergence-free vector field in L%(R, H'(R3)). Let (¢%)s be a bounded family in L® (R, x R3). Let

0 = p(x) be some smooth function supported inside the unit ball of R> and define p, := e 3p (g) Define the commutator C&-% by
Co0(5,) := (5, %) - (Ve % 9° () (0) = (Vpe  (V(5)9” (5)) (¥).

Then

1€ 2, xr3) < IVOIL @ IVVI2ER, i1 @3 197 Iy 1 &3 - a

This type of lemma is absolutely not new. Actually, it is strongly reminiscent of Lemma IL.1 in [2] and serves the same
purpose. We are now in position to prove the main theorem of this note.

Proof (of Theorem 1.1). Let p = p(x) be a radial mollifying kernel and define p.(x) := 8*3,0(%). Convolving the equation on
a by p. gives, denoting a. := p; *a,
(Ce) 0tas + V- (agv) — Aag =V - (agv) — pe * V - (av). (12)

Notice that even without any smoothing in time, ag, 8:a. are in L®(R,,C>®(R3)) and L' (R, ,C®(R?)) respectively, which
is enough to make the upcoming computations rigorous. In what follows, we let ¢® be a solution of the Cauchy problem
(—=C5), with (—Cj) being (—C’) with v replaced by v®. Let us now multiply, for §,& > 0 the equation (C¢) by ¢’ and
integrate in space and time. After integrating by parts (which is justified by the high regularity of the terms we have
written), we get

T T
//atag(s,xyp‘s(s, x)dxds = (a:(T), ¢1) pr(r3) DE®3) —f/ag(s,x)at(p‘s(s,x)dxds
0 R3 0 R3

and
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T T
/[[V-(v(s,x)ag(s,x))—,og(x)*V~(v(s, x)a(s,x))]¢5(s,x)dxds=//a(s,x)C8"S(s,x) dxds,

0 R3 0 R3

where the commutator C¢-% has been defined in the Lemma. From these two identities, it follows that

T
(as(T),§0T>D/(R3)YD(R3)=//a(s, X)CE9 (s, x) dxds
0 R3

T
- / / 065,20 (=00 (5, %) — V(5,0 - Vo (5, X) — AgP (5, 1)) dxds.
0 R3
From the Lemma, we know that (C%-%), 5 is bounded in L?(R* x R3). Because v-V¢® — v. Vg in L3 (R*, [2(R3)) as § — 0,

the only weak limit point in L>(Ry x R3?) of the family (C®%). 5 as § — 0 is C®-C. Thanks to the smoothness of a. for each
fixed e, we can take the limit § — O in the last equation, which leads to

T
(as(T),§0T)D/(R3),D(R3):ffa(ss x)C&9(s, x) dxds. (13)
0 R3
Again, the family (C¢9), is bounded in L?>(R, x R3) and its only limit point as & — 0 is 0, simply because v - Vg, — p; *
(v-V@)—0in L3 (R*, L2(R3)). Taking the limit & — 0, we finally obtain
(a(T), ¢T>D’(R3),D(R3) =0. (14)

This being true for any test function ¢r, a(T) is the zero distribution and finally a=0. O
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