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The established, spectral characterisation of bipartite graphs with unweighted 
vertices (which are here termed homogeneous graphs) is extended to those bi- 
partite graphs (called heterogeneous) in which all of the vertices in one set are 
weighted h, , and each of those in the other set of the bigraph is weighted he . 
All the eigenvalues of a homogeneous bipartite graph occur in pairs, around 
zero, while some of the eigenvalues of an arbitrary, heterogeneous graph are 
paired around $(h, + he), the remainder having the value h, (or h,). The well- 
documented, explicit relations between the eigenvectors belonging to “paired” 
eigenvalues of homogeneous graphs are extended to relate the components of the 
eigenvectors associated with each couple of “paired” eigenvalues of the cor- 
responding heterogeneous graph. Details are also given of the relationships 
between the eigenvectors of an arbitrary, homogeneous, bipartite graph and 
those of its heterogeneous analogue. 

1. INTRODUCTION 

Consider a finite, bipartite graph, G, with vertex set V = V, u Vz , 

(V, and V, disjoint) and edge family, E, the elements (nit+) of which are such 
that exactly one vertex is drawn from each of V, and V, . The number of 
vertices, I I/ 1, in G is N. The number in V, will be denoted ( V, 1 = m, and, 
similarly, I V, / = m + p. (Hence, N = 2m + p). Let the weighting, p(V,), 
of each vertex in V, be h, , and of each vertex in V, be p(V,) = h, . Then we 
shall call such a graph homogeneous if h, = h, (both of which can then con- 
veniently, but arbitrarily, be put equal to zero). If h, # h, , the graph will be 
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termed heterogeneous. Further, let the ordered family of eigenvalues of the 
adjacency matrix, A(G), of G be 

A(G) = P, , h ,..., A,} with A, > AZ > *** 2 A, 

In 1940, Coulson and Rushbrooke [I] showed that for a homogeneous, 
bipartite graph in which h, = h, are set equal to zero, 

hi + A,-,+1 = 0 (1) 

for all i, 1 < i < N. This characterisation of homogeneous, bipartite graphs 
is a simple consequence of the Perron-Frobenius theorem on non-negative 
matrices, and was first proved in the chemical literature, where it is known as 
the Coulson-Rushbrooke “Pairing” theorem. Since then, however, there have 
been many graph-theoretical discussions and proofs of it (some of which are 
independent), both in the mathematical and chemical literature (for referen- 
ces, see [2]). Coulson and Rushbrooke further established a simple relation 
between the eigenvectors belonging to these “paired” eigenvalues. If 01 = 
(rl , r2 ,..., r, , sl , s2 ,..., h+J is the eigenvector associated with the eigen- 
value Ai, then OIP, the eigenvector giving rise to the paired eigenvalue, 
&w+~ , is 

cyp = (rl , r2 ,..., r, , -sl , -s2 ,..., -h+J. (2) 

One consequence of equation (1) is that, if N is odd, there is an i such that 

N+1 Xi = hN--i+l = 0; clearly, i = 2 . 

Schwenk, Trinajstic and one of the present authors [2] have recently 
established an analogous pairing-relation for a restricted class of hetero- 
geneous, bipartite graphs. They required that: 

(9 I vl I = I v2 I , 
(ii> f(V,) = h, 
(iii) p( V2) = 0. 

Then, 
x; + xv-i+1 = h. (3) 

(A’ denotes an eigenvalue of a heterogeneous graph, whereas h-unprimed- 
denotes an eigenvalue of a homogeneous graph.) However, these authors did 
not find any relation between the eigenvectors associated with each pair of 
eigenvalues disposed about h (equation (3)); in particular, no eigenvector- 
relation was found, analogous to the one pointed out by Coulson and 
Rushbrooke for homogeneous, bipartite graphs. 

58zb/zy/z-z 



124 RIGBY AND MALLION 

The object of the present paper, therefore, is to show that an eigenvalue 
“pairing” arises for any finite, heterogeneous, bipartite graph, to establish its 
form, and to indicate the relation which exists between the eigenvectors 
belonging to each couple of paired eigenvalues. In doing this in a graph- 
theoretical context, we draw freely and rely considerably on the arguments of 
Bochvar, Stankevich and Chistyakov, 13-51 who encountered and solved 
what is essentially the same problem (albeit in somewhat disguised form) 
during their chemical studies of what they termed “truly alternant hetero- 
conjugated molecules”. 

2. PAIRING OF EIGENVALUES AND OTHER EIGENVALUE RELATIONS 

Consider a finite, heterogeneous, bipartite graph G with vertex set V = 
V, u V, , 1 V, / = m, / V, / = m + p, p( VJ = h, , p(VJ = h, . If G is appro- 
priately labelled, its adjacency matrix, A(G), can be partitioned as follows 
[31: 

dim(1,) = m x m 

din@,) = (~2 + P) x (m + P) 
dim(B) = m x (m + p). 

(4) 

The characteristic equation of G is thus: 

(h,-Ah’)Q,i B 
= 0. (5) 

BT j (h, - h’)Q, 

Bochvar, Stankevich and Chistyakov [3, 41 have shown that the determinant 
in equation (5) can be written 

1)). 
(Y’)P c b,(-Z’)i = 0, 

i-0 

where: 
Y’ = h, - h’, (X’ = h, - A’), 
2’ = X’y’, 

&>O,b,=l. 

(6) 
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Furthermore, 

f b,(-Z’)i = 0 has m solutions 
i=O 

Z’ 2 0. Of the (2m + p) eigenvalues of A(G), 

p are thus A’ = h, , and the remaining 2m can be found from 

(h, - A’)(hz - A’) = Z’ 

in which Z’ is a solution of (6) 

j ht = h, + h, I!C {(h, - W + 4.V” 
2 (7) 

We now observe that equation (6) has formally the same roots, {Z’}, in the 
heterogeneous case as the (2) which are its roots in the corresponding homo- 
geneous case (for the polynomial represented by the summation-sign in 
equation (6) has the same coefficients, bi , in both cases provided that the 
edge-weightings of G are held constant during transformation to the hetero- 
geneous graph). However, whereas, for the heterogeneous graph, Z’ = 
(h, - A’) (h, - A’), in the homogeneous case, h, = h, = 0, the eigenvalues 
are denoted by A, and hence, Z = AZ. The appropriate values for the {Z’}, 
therefore, in equation (7), are {X2}, where / h 1 is the modulus of a couple of 
paired eigenvalues of the parent homogeneous graph that map onto the 
two values of h’ given by equation (7) on transformation to the heterogeneous 
case. We may therefore write (7): 

x, = h, + h, i- {(h2 - h,)2 + 4h2)l!” 
2 

The spectrum of this general, finite, heterogeneous, bipartite graph is, there- 
fore, as follows: 

@ p eigenvalues lie at A’ = h,; (i.e., there are as many eigenvalues 
equal to the weighting of the vertices V, as there are excess of vertices in V, 
over the number in V,). 

@ The remaining 2m eigenvalues are paired about the arithmetic 
mean of the vertex weightings, (h, + h,)/2, lying $({(h2 - h,)2 + 4X2)1/2) 
above and below this mean, (where 1 X I is the modulus of a couple of paired 
eigenvalues of the corresponding homogeneous bipartite graph which are 
mapped onto the pair of A’ values given by equation (8) on transformation 
to the heterogeneous case). 
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It is readily seen that equation (1) (the Coulson-Rushbrooke theorem) is a 
special case of the above which occurs when h, = hz = 0, and equation (3) 
is the special case which arises when h, = h (non-zero, in general), h, = 0 
and p = 0. 

We have already drawn attention to the fact that in the case of a homo- 
geneous, bipartite graph (h, = h, = 0) for which N is odd there must arise 
at least one zero-eigenvalue; this can be rationalised in terms of (ij, above, 
for, if N is odd, there must be an excess of at least one in the number of 
vertices in one vertex subset of the bigraph over the number in the other 
subset. It will now be appreciated, however, from the general spectrum out- 
lined above, that an arbitrary, homogeneous, bipartite graph (where 
h, (=h,) = 0) in which there is an excess of p vertices in one vertex subset 
over the number in the other, will have at least p zero-eigenvalues. Such 
zero-eigenvalues of a homogeneous, bipartite graph that are predictable by 
inspection in this way we shall call predictable zero-eigenvalues. In certain 
instances, however, zero-eigenvalues may arise more capriciously in homo- 
geneous, bipartite graphs, even when such graphs have the same number of 
vertices in each set (1 V, 1 = 1 V, 1 , (p = 0)); (the well-known spectra of the 
cyclic graphs, C, , N an integral multiple of 4, are a case in point [6]). 
Following Longuet-Higgins [7] (who encountered them in a chemical 
context) we shall call zero-eigenvalues that do not owe their origin to 
unequal numbers of vertices in the two sets supernumerary zero-eigenvalues; 
from equation (I), it is evident that such supernumerary zeros, when they do 
arise, must occur in pairs [8]. 

We may summarise this discussion by using the general spectrum outlined 
above to consider the eigenvalue mappings that occur on transformation 
from an arbitrary, homogeneous, bipartite graph (with I I’, I - I V, / = p) to 
the corresponding heterogeneous one: 

(a) The ppredictable zero-eigenvalues in the homogeneous case will map 
onto p similarly predictable eigenvalues at h’ = h, in the heterogeneous case. 

(b) Each pair of non-zero eigenvalues of the homogeneous bipartite 
graph will map onto two distinct eigenvalues in the heterogeneous case, 
neither of which is itself h, or h, , but which are paired around the arithmetic 
mean of h, and h, . 

(c) Any pairs of supernumerary zeros that are present will map onto 
two distinct eigenvalues of the heterogeneous graph, one lying at h’ = h, and 
the other at h’ = h, . (This is seen by considering the two roots obtained on 
substituting / h / = 0 into equation (8)). This therefore confirms that, in one 
important respect, a pair of supernumerary zeros in the homogeneous case 
behaves no differently from any pair of non-zero eigenvalues in that they 
both map, on transformation to the heterogeneous case, onto a pair of distinct 
eigenvalues equally disposed about the mean of h, and h2 . By analogy with 
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our previous terminology, any eigenvalues A’ = h, that arise in this way 
(as opposed to those which are predictable) may appropriately be termed 
“supernumerary h,-eigenvalues”. 

3. EIGENVECTOR RELATIONS 

From Section 2 it is clear that all eigenvectors of a homogeneous, bi- 
partite graph (hereafter called “horn0-eigenvectors”) that belong to 
predictable zero-eigenvalues’are simultaneously hetero-eigenvectors with the 
associated eigenvalue h, . The remaining eigenvalues and eigenvectors are 
paired. Each pair satisfies the relation noted by Coulson and Rushbrooke [l], 
namely that 

(in which we have denoted the (2m + p)-component vector 01 = (rl , r2 ,..., 
rm , s, , s2 ,..., s~+~)~ by (r, s)=, with: 

dim(r) = m 
dim(s) = m + p). 

We now form the plausible hypothesis that the pair of corresponding 
eigenvectors in the heterogeneous graph also lies in the two-dimensional 
subspace generated by r and s. The eigenvalue equation then takes the form: 

If r and s are individually normalised, we may normalise our presumed 
eigenvector by setting a2 + b2 = 1. Thus, we need to solve the system: 

a2 + b2 = 1 
X’a = h,a + hb 
A’b = Au + h,b 

(11) 

for a, b, and the new eigenvalue, A’. Now whenever A = 0 (resulting from a 
pair of supernumerary zeros in the homogeneous graph), two independent 
solutions are given by: a = 1, b = 0, A’ = hl (eigenvector r) and a = 0, 
b = 1, A’ = h, (eigenvector s). Otherwise h may be taken as positive. This 
gives two solutions with A’ having either value given in (8), a and b then 
satisfying 

A’ - hz 
a2 = 2)(’ - h, - h, (>‘I and b2 = A’ - h, 

2h’ - h, - hz (>O). 
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The sign of a may be taken to be positive while the sign of b will match the 
signofX’-hh,. 

In this way, each pair of non-predictable eigenvalues and their two eigen- 
vectors have been used to generate a two-dimensional subspace in which we 
were able to identify a pair of hetero-eigenvectors. These, together with the 
original predictable eigenvectors, form a complete set of eigenvectors for the 
heterogeneous graph. 

4. CONCLUDING REMARKS 

It should be observed that no step in the present argument has depended 
on the actual magnitudes of the elements of the sub-matrix B of the adjacency 
matrix A(G). The generalised eigenvalue-pairing theorem for finite, hetero- 
geneous, bipartite graphs reported in this paper (Sect. 2), as well as the 
explicit relations that have been detailed between the corresponding 
eigenvectors (Sect. 3), therefore apply equally to arbitrarily edge-weighted 
graphs of this type, in which off-diagonal elements of A(G) may take any 
value, and not merely either 0 or l-provided that such edge-weightings are 
held constant during the transformation from the homogeneous bipartite 
graph to its corresponding heterogeneous analogue. 
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