
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
J. Math. Anal. Appl. 324 (2006) 491–503

www.elsevier.com/locate/jmaa

Covariant observables on a nonunimodular group

J. Kiukas

Department of Physics, University of Turku, FIN-20014 Turku, Finland

Received 26 October 2005

Available online 18 January 2006

Submitted by J. Diestel

Abstract

It is shown that the characterization of covariant positive operator measures on nonunimodular locally
compact groups can be obtained by using vector measure theoretic methods, without an application of
Mackey’s imprimitivity theorem.
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1. Introduction

Covariant positive operator measures have an important physical significance, as they rep-
resent phase space translation covariant quantum mechanical observables (see, e.g., [10]). On
the other hand, they can be used in quantization. Namely, in the context of a locally compact,
second countable topological group G with a Haar measure λ, each positive normal covariant
map Γ :L∞(G,λ) → L(H), with L(H) the set of bounded operators on some separable Hilbert
space H, is eligible to represent a quantization procedure [11,13]. The maps of this kind corre-
spond to covariant positive operator measures via the association B(G) � B �→ Γ (χB) ∈ L(H),
where B(G) is the Borel σ -algebra of G and χB the characteristic function of the set B .

Since covariant observables are essential in quantum mechanics, they have been studied quite
extensively. The canonical examples of covariant observables are constructed, e.g., in [4], and
there are (at least) two completely different ways to obtain their characterization: a group the-
oretical approach [3], and a direct approach [9,11,13] based on the theory of integration with
respect to vector measures. The latter approach was presented by Werner in [13] in the context
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where G = R
2n, and it was generalized to the case of a unimodular group in [11]. The assumption

of unimodularity was quite essential in the proof, and there is no trivial way of getting rid of it.
However, the group theoretical approach of [3], which is based on a generalization of Mackey’s
imprimitivity theorem, works also in the nonunimodular case, which raises a question of whether
there is something “essentially group theoretical” in the characterization.

The purpose of this paper is to show that with some modifications, the direct approach indeed
works also in the nonunimodular case. As in [13] and [11], the proof relies on the fact that the
Banach space of trace class operators on a separable Hilbert space has the Radon–Nikodým
property. The essential difference is that Lemma 3.1 of [13] and its generalization [11, Lemma 2]
no longer hold if G is not unimodular. That result must be replaced by a weaker version, which
is a consequence of the classical work of Duflo and Moore [6] concerning square integrable
representations.

In [13] and [11], the characterization of the positive normal covariant maps was obtained
first, and the characterization for covariant observables was then deduced from it. It this paper,
however, we find it convenient to use observables from the beginning.

2. Preliminaries

Let H be a separable Hilbert space with the inner product 〈·|·〉 linear in the second argument.
We let L(H), HS(H), and T (H) denote the Banach spaces of bounded, Hilbert–Schmidt, and
trace class operators on H, respectively. We use the symbols ‖ · ‖, ‖ · ‖HS and ‖ · ‖Tr for the norms
of these spaces. The symbol U(H) stands for the set of unitary operators on H, and T denotes
the group of complex numbers with modulus one.

For a linear, not necessarily bounded operator A on H, the symbol D(A) denotes the domain
of definition of A. If ϕ ∈H, we use the symbol |ϕ〉〈ϕ| for the operator ψ �→ 〈ϕ|ψ〉ϕ.

Let Aut(T (H)) denote the group of positive, trace-norm preserving linear bijections from
T (H) onto itself. The group Aut(T (H)) is equipped with the weak topology given by the set
of functionals u �→ Tr[Au(T )], where A ∈ L(H), T ∈ T (H). For u ∈ Aut(T (H)), the adjoint
map u∗ :L(H) → L(H) restricted to T (H) is equal to u−1. It follows from the Wigner theorem
that for each u ∈ Aut(T (H)) there is either a unitary or an antiunitary operator U , such that
u(T ) = UT U∗ for all T ∈ T (H). Clearly then u−1 is given by u−1(T ) = U∗T U .

Let G be a locally compact (not necessarily unimodular) second countable (Hausdorff) topo-
logical group, with a left Haar measure λ. Let λ̃ denote the right Haar measure B �→ λ(B−1), and
let Δ be the modular function so that λ̃(B) = ∫

B
Δ(g)−1 dλ(g) for all Borel sets B . Now λ and

λ̃ have the same null sets, and both of them are σ -finite. We let B(G) denote the Borel σ -algebra
of the subsets of G.

The following definition was used in [11] for the measurability of a vector valued function. It
is sometimes called strong measurability (see, e.g., [5, p. 41]).

A function f defined on G and having values in some Banach space is said to be λ-meas-
urable, if for each B ∈ B(G) of finite λ-measure there is a sequence of λ-simple functions
converging to χBf in λ-measure (or, equivalently, there is a sequence of λ-simple functions
which converges λ-almost everywhere to χBf ) [7, pp. 106, 150]. In the case where the value
space of f is separable (in particular, if f is scalar-valued), λ-measurability is equivalent to the
measurability with respect to the Lebesgue extension of the σ -algebra B(G) with respect to λ

[7, p. 148]. Measurability with respect to λ̃ is of course defined in the same way. Since G is
σ -compact, with λ and λ̃ having the same null sets and being finite on compact sets, it follows
that a vector valued function is λ-measurable if and only if it is λ̃-measurable.
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We let L∞(Ω,λ) denote the Banach space of (equivalence classes of) complex valued,
λ-measurable, λ-essentially bounded functions.

An observable is a positive normalized operator measure, i.e., a positive operator valued
map E :B(G) → L(H), which is weakly (or, equivalently, strongly) σ -additive, and such that
E(G) = I .

In [11], the starting point was to introduce a continuous homomorphism β :G → Aut(H),
with the property that

∫
Tr[P1β(g)(P2)]dλ(g) = d for all one-dimensional projections P1

and P2, with 0 < d < ∞ a fixed constant. If G is connected, and not unimodular, there are no
such homomorphisms (see Lemma 3 and Remark (c) following Lemma 1). Instead, we have to
start with the concept of projective unitary representation, which is used extensively in quantum
mechanics (see, e.g., [12, Chapter VII]). It is defined as follows:

A map U :G → U(H) is a projective unitary representation, if

(i) the map g �→ U(g) is weakly Borel, i.e., g �→ 〈ψ |U(g)ϕ〉 is a Borel function for all
ψ,ϕ ∈H;

(ii) U(e) = I , where e is the neutral element of G;
(iii) there is a Borel map m :G×G → T, such that U(gh) = m(g,h)U(g)U(h) for all g,h ∈ G.

The map m (clearly unique) is called the multiplier of U .

The irreducibility of a projective unitary representation is defined in the same way as in the
case of ordinary unitary representations. For each projective unitary representation U :G →
U(H), we let βU :G → Aut(T (H)) be the map given by βU(g)(S) = U(g)SU(g)∗.

We need the following simple result, which is, of course, well known.

Lemma 1. Let U :G → U(H) be a projective unitary representation. Then the map βU is a
group homomorphism, with the property that for each A ∈ L(H) and S ∈ T (H), the map g �→
Tr[AβU(g)(S)] is a Borel function.

Proof. It is obvious that βU is a group homomorphism. Since the map g �→ U(g) is weakly
Borel, all the maps g �→ 〈ψ |U(g)ϕ〉〈U(g)ϕ′|ψ ′〉, with ϕ,ϕ′,ψ,ψ ′ ∈ H, are Borel functions.
The separability of H implies that the function g �→ Tr[AβU(g)(S)] is a (pointwise) limit of
linear combinations of such maps, and hence it is Borel. �
Remark. The following remarks provide some additional, basically well-known facts on the map
βU associated with a projective unitary representation U . However, we do not need to use these
facts in this paper; they serve as a connection to the paper [11], where a continuous homomor-
phism β :G �→ Aut(T (H)) had a central role.

(a) Since H is separable, containing a countable dense set M , it follows that the whole topology
of Aut(T (H)) is given by the countable family of functionals

F = {
u �→ Tr

[|ψ〉〈ψ |u(|ϕ〉〈ϕ|)]: ψ,ϕ ∈ M
}
.

This is a consequence of the fact that while the Wigner isomorphism Σ � [U ] �→ βU ∈
Aut(T (H)) (see, e.g., [2, Chapter 2]) is continuous when Aut(T (H)) is equipped with the
usual topology, its inverse is continuous even when Aut(T (H)) is considered with the (a pri-
ori weaker) topology given by the family F ; see the proof of [2, Proposition 10]. Here Σ
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denotes the equivalence classes of all unitary and antiunitary operators on H, with the equiv-
alence relation being equality up to a phase factor. It follows that Aut(T (H)) is second
countable, and the βU of the preceding lemma is a Borel function (with respect to the Borel
structure given by the associated topologies).

(b) A classical theorem of von Neumann states that a Borel homomorphism from a second count-
able topological group to another is continuous, provided that the former group is locally
compact (see, e.g., [12, p. 181]). Hence, the βU of the preceding lemma is in fact continuous
(so that each map g �→ Tr[AβU(g)(T )], with A ∈ L(H) and T ∈ T (H), is such).

(c) As mentioned before, each u ∈ Aut(T (H)) is of the form u(T ) = UT U∗ for some unitary
or antiunitary operator U on H. It follows that, in the case where G is connected, each
continuous homomorphism β :G → Aut(T (H)) is of the form βU for some projective uni-
tary representation U :G → U(H). Moreover, it is easily seen that the irreducibility of U is
equivalent to the following condition:

for all one-dimensional projections P1,P2, there is g ∈ G,

with Tr
[
P1βU(g)(P2)

] �= 0. (1)

Thus, in the case where G is connected, the irreducible projective representations U :
G → U(H) are in a one-to-one correspondence with the continuous homomorphisms
β :G → Aut(T (H)) with the property (1).

The following result can be extracted from some of the proofs in [11]. We give the proof here
for clarity.

Lemma 2. Let U :G → U(H) be a projective unitary representation, and v :G → T (H)

a λ-measurable function. Then also the functions g �→ βU(g)(v(g)) and g �→ βU(g−1)(v(g))

are λ-measurable.

Proof. First we notice that for each S ∈ T (H), the map g �→ βU(g−1)(S) is λ-measurable.
Indeed, let S ∈ T (H). It follows from Lemma 1 that G � g �→ w∗(βU (g−1)(S)) ∈ C is a Borel
function, and hence λ-measurable for each w∗ ∈ T (H)∗ ∼= L(H). Since T (H) is separable (see,
e.g., [11, Lemma 5]), this implies by [7, p. 149] that the map g �→ βU(g−1)(S) is λ-measurable.

Now let B ∈ B(G) be such that λ(B) < ∞. Since v is λ-measurable, there is a sequence
(ṽn) of λ-simple functions vanishing outside B and converging λ-a.e. to χBv. Since the map
g �→ βU(g−1)(S) is λ-measurable for each S ∈ T (H), also the functions g �→ βU(g−1)(ṽn(g)),
are λ-measurable. Now βU(g−1)(ṽn(g)) → χB(g)βU (g−1)(v(g)) for λ-almost all g, because
each βU(g−1) ∈ Aut(H) is continuous, so the limit is λ-measurable [7, p. 150]. Thus also g �→
βU(g−1)(v(g)) is λ-measurable.

The λ-measurability of g �→ βU(g)(v(g)) is established similarly. �
A projective representation U :G → U(H) is called square integrable, if there exist nonzero

vectors ϕ,ψ ∈ H such that the function g �→ |〈ψ |U(g)ϕ〉|2 is λ-integrable. The theory of square
integrable representations is usually presented only in the context of ordinary unitary represen-
tations. An essential result is that for an irreducible, square integrable representation U , there
exists a unique, densely defined, injective, positive selfadjoint operator K , called the formal
degree of U , such that U(g)K = Δ(g)−1KU(g) for all g ∈ G, and

∫ |〈ψ |U(g)ϕ〉|2 dλ(g) =
‖ψ‖2‖K−1/2ϕ‖2 for all ϕ,ψ ∈ H, with the understanding that ‖K−1/2ϕ‖ = ∞ whenever ϕ /∈
D(K−1/2) [6, Theorem 3]. However, this holds also in the case of square integrable projective



J. Kiukas / J. Math. Anal. Appl. 324 (2006) 491–503 495
representations (see, e.g., [1, Remark 2]), which is seen by using the well-known fact that the map
(t, g) �→ t−1U(g) is an ordinary representation of the group T ×m G, where m is the multiplier
of U . (Recall that the set T×G, equipped with the composition (t, g)(t ′, g′) = (m(g,g′)t t ′, gg′),
becomes a locally compact second countable topological group, denoted by T×mG, whose Borel
structure coincides with the product Borel structure on T×G; see, e.g., [12, p. 253]). In this case,
the formal degree of the projective unitary representation U is defined to be the formal degree of
the unitary representation (t, g) �→ t−1U(g), which is clearly square integrable if and only if U

is such.
If U :G → U(H) is an irreducible square integrable projective unitary representation, we let

CU denote the square root of the formal degree of U . The following lemma lists the properties
of this operator, in the form which is convenient for our purposes. It is a direct consequence of
[6, Theorem 3].

Lemma 3. Let U :G → U(H) be an irreducible square integrable projective unitary representa-
tion.

(a) Let S be a positive trace class operator, and ϕ ∈H. Then∫ 〈
ϕ|βU(g)(S)ϕ

〉
dλ̃(g) =

∫
Tr

[
SβU(g)

(|ϕ〉〈ϕ|)]dλ(g) = Tr[S]∥∥C−1
U ϕ

∥∥2
,

with the understanding that ‖C−1ϕ‖2 = ∞ whenever ϕ /∈ D(C−1
U ).

(b) CU and C−1
U are densely defined, selfadjoint, positive, and injective, and satisfy

U(g)CU = Δ(g)−1/2CUU(g), g ∈ G,

U(g)C−1
U = Δ(g)1/2C−1

U U(g), g ∈ G.

In particular, U leaves D(CU) and D(C−1
U ) invariant.

(c) CU is bounded if and only if G is unimodular. In that case, CU is a multiple of the identity.

Proof. Assume first that S = |ψ〉〈ψ | for some unit vector ψ ∈H. Now
∫ 〈

ϕ|βU(g)(S)ϕ
〉
dλ̃(g) =

∫
Tr

[
βU

(
g−1)(S)|ϕ〉〈ϕ|]dλ(g)

=
∫

Tr
[
SβU(g)

(|ϕ〉〈ϕ|)]dλ(g) =
∫ ∣∣〈ψ |U(g)ϕ

〉∣∣2
dλ(g).

It follows from Theorem 3 of [6] that the last integral is finite if and only if ϕ ∈ D(C−1
U ), and is

equal to ‖C−1
U ϕ‖2 in that case. This proves (a) for S = |ψ〉〈ψ |. Since the integrands above are all

positive, the general case follows by writing S = ∑
n tn|ψn〉〈ψn| and using the monotone con-

vergence theorem. This proves (a). Since the formal degree of U is densely defined, selfadjoint,
positive and injective, so are CU and C−1

U [8, p. 1189]. Since the formal degree of U is the formal
degree of the unitary representation (t, g) �→ t−1U(g), and the modular function of T ×m G is
(t, g) �→ Δ(g), Theorem 3 of [6] gives U(g)C2

U = Δ(g)−1C2
UU(g) for each g ∈ G. By using

the spectral representation of the formal degree C2
U , we see that the first of the equalities in (b)

holds. The second is a consequence of the first and the fact that U(g)−1 = m(g,g−1)−1U(g−1),
where m is the multiplier of U . For part (c), see the note following [6, Theorem 3]. �



496 J. Kiukas / J. Math. Anal. Appl. 324 (2006) 491–503
The following corollary is a generalization of [11, Lemma 2], which no longer holds in the
nonunimodular case.

Corollary 1. Let U be an irreducible square integrable projective representation, and let S ∈
T (H) and A ∈ L(H) be positive operators. Then∫

Tr
[
AβU(g)(S)

]
dλ(g) = Tr[A]∥∥C−1

U

√
S

∥∥2
HS.

(Here we have denoted ‖C−1
U

√
T ‖HS = ∞ whenever C−1

U

√
T /∈ HS(H), and used the con-

ventions 0 · ∞ = 0 and ∞ · ∞ = ∞.) In particular, if A �= 0 and S �= 0, the function g �→
Tr[AβU(g)(S)] is λ-integrable if and only if A ∈ T (H) and C−1

U

√
S ∈ HS(H).

Proof. Clearly the case where either A = 0 or S = 0 is trivial, so we can proceed by assuming
that both are nonzero.

(1) If A ∈ T (H) is positive and S = |η〉〈η|, with η ∈ H a unit vector, we are in the situation
of Lemma 3(a).

(2) Let A,S ∈ T (H) be positive and nonzero. Let (wn) be a sequence of nonnegative numbers
and (ηn) an orthonormal sequence of vectors such that S = ∑

n wn|ηn〉〈ηn|. Since each βU(g) is
trace norm continuous, it follows from Lemma 3(a) and the monotone convergence theorem that∫

Tr[AβU(g)(S)]dλ(g) = Tr[A]M , where M = ∑
n wn‖C−1

U ηn‖2 (with the understanding that
‖C−1

U ηn‖ = ∞ whenever ηn /∈ D(C−1
U )).

If M = ∞, then C−1
U

√
S cannot be a Hilbert–Schmidt operator, since otherwise

∥∥C−1
U

√
S
∥∥2

HS =
∑
ξ∈K

∥∥C−1
√

Sξ
∥∥2 = M < ∞,

where K is an orthonormal basis including all the ηn. Hence ‖C−1
U

√
S‖2

HS = ∞ = M .
Assume then that M < ∞, so that, in particular, ηn ∈ D(C−1

U ) for all those n ∈ N for which
wn > 0. Let ϕ ∈ H. Since the series

√
S = ∑

n

√
wn|ηn〉〈ηn| converges in the operator norm, the

vector series
∑

n

√
wn〈ηn|ϕ〉ηn converges to

√
Sϕ in the norm of H. Since (ηn) is orthonormal,

the Cauchy–Schwarz inequality gives
∑
n

√
wn

∣∣〈ηn|ϕ〉∣∣∥∥C−1
U ηn

∥∥ �
√

M‖ϕ‖ < ∞,

so also the series
∑

n

√
wn〈ηn|ϕ〉C−1

U ηn converges in H. Since C−1
U is closed by Lemma 3(b),

it follows that
√

Sϕ ∈ D(C−1
U ) and C−1

U

√
Sϕ equals the sum of the latter series. In partic-

ular, D(C−1
U

√
S) = H. Now the previous inequality shows that ‖C−1

U

√
Sϕ‖ �

√
M‖ϕ‖, so

C−1
U

√
S is bounded. Clearly ‖C−1

U

√
S‖2

HS = ∑
ξ∈K ‖C−1

U

√
Sξ‖2 = M < ∞ if K is an ortho-

normal basis of H which includes all the ηn, so C−1
U

√
S is a Hilbert–Schmidt operator, with

‖C−1
U

√
S‖2

HS = M .
(3) We are left with the general case, with A and S nonzero. By repeating the steps 3 and

4 in the proof of Lemma 2 of [11] (with obvious alterations), we see that the corollary is true
in this case also. (Notice that this includes the possibility that C−1

U

√
S is not a Hilbert–Schmidt

operator.) The proof is complete. �
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3. Covariant observables and normal covariant maps

Now we are ready to proceed to the actual setting. We fix U :G → U(H) to be an irreducible
projective unitary representation, and let β :G → Aut(T (H)) denote the associated map βU .
(According to the Remark following that lemma, in the case where G is connected, it would be
equivalent to start with a continuous group homomorphism β , with the property (1), as was done
in [11].) The projective representation U and the associated map β will remain fixed throughout
the rest of the paper.

The following definition for covariance was used in [11].

Definition.

(a) A linear map Γ :L∞(G,λ) → L(H) is β-covariant, if β(g)∗(Γ (f )) = Γ (f (g·)) for all
f ∈ L∞(G,λ), g ∈ G.

(b) An observable E :B(G) → L(H) is β-covariant if β(g)∗(E(B)) = E(g−1B) for all g ∈ G

and B ∈ B(G).

As mentioned in [11], each normal (i.e., weak-* continuous) linear positive β-covariant map
Γ :L∞(G,λ) → L(H), with Γ (g �→ 1) = I , defines a β-covariant observable B �→ Γ (χB).
Conversely, each β-covariant observable E gives rise to a normal linear map Γ :L∞(G,λ) →
L(H) via the ultraweak operator integrals Γ (f ) = ∫

f dE, where ϕ,ψ ∈ H. The proof of the
latter statement was given in [11] in the unimodular case, but it holds also in general. (See the
discussion preceding [11, Lemma 6], and notice that part (a) of the lemma does not use unimod-
ularity.)

Thus, normal covariant maps are essentially the same as covariant observables. In [11], normal
covariant maps were used in proving the characterization. Here we use observables.

Our main result, Theorem 2, has the following, easily proved converse.

Theorem 1. Assume that U is square integrable, and let S be a positive operator of trace one.
Then there is a β-covariant observable E :B(G) → L(H) such that

〈
ϕ|E(B)ψ

〉 =
∫
B

〈
CUϕ|β(g)(S)CUψ

〉
dλ̃(g), B ∈ B(G), ϕ,ψ ∈ D(CU).

Proof. It follows from Lemma 3(a) and the polarization identity that the integrals of the above
form exist. Let B ∈ B(G), and define a symmetric sesquilinear form ΦB :D(CU)×D(CU) → C

by

ΦB(ψ,ϕ) =
∫
B

〈
CUψ |β(g)(S)CUϕ

〉
dλ̃(g).

It follows from Lemma 3(a) that 0 � ΦB(ϕ,ϕ) � ‖ϕ‖2 for all ϕ ∈ D(CU). Hence, by using
the polarization identity and the density of D(CU), we can extend ΦB to a bounded symmetric
sesquilinear form defined on H × H. Thus, there is a selfadjoint operator E(B) ∈ L(H), such
that 〈ψ |E(B)ϕ〉 = ∫

B
〈CUϕ|β(g)(S)CUψ〉dλ̃(g) for all ψ,ϕ ∈ D(CU). Moreover, we have 0 �

E(B) � I , E(∅) = 0 and E(G) = I . It follows from the σ -additivity of the indefinite integral
that B �→ 〈ϕ|E(B)ϕ〉 is a positive measure for each ϕ ∈ D(CU). Since D(CU) is dense and
‖E(B)‖ � 1 for each B ∈ B(G), it follows that B �→ 〈ϕ|E(B)ϕ〉 is a positive measure for each
ϕ ∈H.
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Indeed, let ϕ ∈ H, and (ϕn) be a sequence of vectors in D(CU) converging to ϕ. It is clear
that B �→ 〈ϕ|E(B)ϕ〉 becomes additive. Let (Bk) a decreasing sequence of sets in B(G) with
empty intersection. Since ‖E(Bk)‖ � 1 for all k, the limit limn〈ϕn|E(Bk)ϕn〉 = 〈ϕ|E(Bk)ϕ〉
exists uniformly for k ∈ N, so that

lim
k

〈
ϕ|E(Bk)ϕ

〉 = lim
k

lim
n

〈
ϕn|E(Bk)ϕn

〉 = lim
n

lim
k

〈
ϕn|E(Bk)ϕn

〉 = 0,

implying that 〈ϕ|E(·)ϕ〉 is a positive measure.
Hence, B �→ E(B) is a positive normalized operator measure. We are left to prove that E is β-

covariant. Take h ∈ G, B ∈ B(G), and ϕ ∈ D(CU). By using Lemma 3(b) and the left invariance
of λ, we get

〈
ϕ|β(

h−1)∗(
E(B)

)
ϕ
〉 = 〈

U
(
h−1)ϕ|E(B)U

(
h−1)ϕ〉

=
∫
B

〈
CUU

(
h−1)ϕ|β(g)(S)CUU

(
h−1)ϕ〉

dλ̃(g)

=
∫
B

Δ
(
h−1)〈U(

h−1)CUϕ|β(g)(S)U
(
h−1)CUϕ

〉
dλ̃(g)

=
∫
B

Δ
(
h−1)〈CUϕ|β(

h−1)−1(
β(g)(S)

)
CUϕ

〉
dλ̃(g)

=
∫
B

〈
CUϕ|β(hg)(S)CUϕ

〉
Δ

(
(hg)−1)dλ(g)

=
∫
hB

〈
CUϕ|β(g)(S)CUϕ

〉
Δ

(
g−1)dλ(g)

=
∫
hB

〈
CUϕ|β(g)(S)CUϕ

〉
dλ̃(g) = 〈

ϕ|E(hB)ϕ
〉
,

proving the covariance of E. �
Theorem 1 states that when the projective representation U is square integrable, there exist

β-covariant observables. Part (b) of the following proposition gives the interesting fact that the
converse is also true: the existence of a β-covariant observable implies the square integrability
of U . This result is contained in [3, Theorem 2], proved using the generalized imprimitivity
theorem. Here we give a simple direct proof which uses only the properties of Haar measures
(and basic operator theory).

Proposition 1. Assume that there is a β-covariant observable E :B(G) → L(H).

(a) If B ∈ B(G), then

λ̃(B) =
∫

Tr
[
β
(
g−1)∗(

E(B)
)
S
]
dλ(g)

for all positive operators S of trace one.
(b) The irreducible projective representation U is square-integrable.
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Proof. Let B ∈ B(G), let S ∈ T (H) be positive and of trace one, and let μ denote the probability
measure B �→ Tr[E(B)S]. Now

λ̃(B) = λ
(
B−1)=

∫ (∫
χB−1(g) dλ(g)

)
dμ(g′)=

∫ (∫
χB−1

(
(g′)−1g

)
dλ(g)

)
dμ(g′)

=
∫ (∫

χB−1

(
(g′)−1g

)
dμ(g′)

)
dλ(g) =

∫ ( ∫
gB

dμ(g′)
)

dλ(g)

=
∫

Tr
[
E(gB)S

]
dλ(g) =

∫
Tr

[
β
(
g−1)∗(

E(B)
)
S
]
dλ(g),

where the left invariance of λ, Fubini’s theorem and the β-covariance of E have been used. This
proves (a). To prove (b), take any B ∈ B(G), such that 0 < λ̃(B) < ∞. Since (a) holds, we have
E(B) �= 0, so by the spectral theorem, there is a nonzero projection P , and a real number t > 0,
such that tP � E(B). Take any unit vector ϕ ∈ P(H). Now t |ϕ〉〈ϕ| � E(B), so by using (a) we
get

t

∫ ∣∣〈ϕ|U(g)ϕ
〉∣∣2

dλ(g) = t

∫
Tr

[|ϕ〉〈ϕ|β(
g−1)(|ϕ〉〈ϕ|)]dλ(g) � λ̃(B) < ∞,

proving (b). �
From now on, we assume that there exists a β-covariant observable, so U is square integrable

by Proposition 1(b). For simplicity, we let C denote the operator CU .

Lemma 4. Let E :B(G) → L(H) be a β-covariant observable. Then

λ̃(B) = ∥∥C−1E(B)1/2
∥∥2

HS, B ∈ B(G),

where it is understood that ‖C−1E(B)1/2‖HS = ∞ whenever C−1E(B)1/2 /∈HS(H).

Proof. Let ϕ ∈H be a unit vector, and {ϕn} an orthonormal basis of H containing ϕ. Let ψ ∈ H
be any unit vector. Now Proposition 1(a), the monotone convergence theorem, and Lemma 3(a)
give

λ̃(B) =
∫

Tr
[
β
(
g−1)∗(

E(B)
)|ψ〉〈ψ |]dλ(g) =

∫
Tr

[
E(B)β

(
g−1)(|ψ〉〈ψ |)]dλ(g)

=
∫

Tr
[
E(B)1/2β(g)

(|ψ〉〈ψ |)E(B)1/2]dλ̃(g)

=
∞∑

n=1

∫ 〈
E(B)1/2ϕn|β(g)

(|ψ〉〈ψ |)E(B)1/2ϕn

〉
dλ̃(g)

=
∞∑

n=1

∥∥C−1E(B)1/2ϕn

∥∥2
.

This holds regardless of whether λ̃(B) is finite or not, with the understanding that
‖C−1E(B)1/2ϕn‖ = ∞ if E(B)1/2ϕn /∈ D(C−1).

If λ̃(B) = ∞, the above calculation shows that C−1E(B)1/2 /∈ HS(H) (it need not even be
bounded). Thus then λ̃(B) = ∞ = ‖C−1E(B)1/2‖2 .
HS



500 J. Kiukas / J. Math. Anal. Appl. 324 (2006) 491–503
Assume now that λ̃(B) < ∞. It follows that the above series converges, so, in particular,
E(B)1/2ϕn ∈ D(C−1) for all n ∈ N. Since the basis was chosen to contain the arbitrarily picked
unit vector ϕ ∈ H, we get D(C−1E(B)1/2) = H. Since C−1 is selfadjoint, it is closed, so also
C−1E(B)1/2 is closed (because E(B)1/2 is bounded). Since the domain of C−1E(B)1/2 is all
of H, it follows by the closed graph theorem that C−1E(B)1/2 is bounded. The above calculation
now shows that it is of the Hilbert–Schmidt class, with λ̃(B) = ‖C−1E(B)1/2‖2

HS. The proof is
complete. �
Remark. Notice that this result generalizes the relation Tr[E(B)] = d−1λ(B), which holds in
the unimodular case, with d−1I the formal degree (see the proof of Lemma 6(b) of [11]).

The next theorem states that every β-covariant observable is of the form of Theorem 1 for
some positive operator S of trace one. This is analogous to Theorem 3 of [11], where the formal
degree is d−1I . By using Lemma 3(b) and the fact that “dλ(g) = Δ(g)dλ̃(g),” we see that this
characterization is indeed the same as that of [3, Theorem 2]. While the proof of [3, Theorem 2]
is based on the generalized imprimitivity theorem, the following proof relies on the fact that as a
separable dual space, T (H) has the Radon–Nikodým property [5, p. 79].

Theorem 2. Let E :B(G) → L(H) be a β-covariant observable. Then there is a unique positive
operator S ∈ T (H) of trace one, such that

〈
ϕ|E(B)ψ

〉 =
∫
B

〈
Cϕ|β(g)(S)Cψ

〉
dλ̃(g), B ∈ B(G), ϕ,ψ ∈ D(C). (2)

Proof. Let B ∈ B(G) be such that λ̃(B) < ∞, and let EB be the Hilbert–Schmidt operator
C−1E(B)1/2 (see Lemma 4). Now define A(B) = EBE∗

B , so that A(B) is a positive trace class
operator. If {ψn} is any orthonormal basis of H, we have

Tr
[
A(B)

] =
∑
n

〈
ψn|A(B)ψn

〉 = ∑
n

∥∥E∗
Bψn

∥∥2 = ∥∥E∗
B

∥∥2
HS = ‖EB‖2

HS = λ̃(B)

by Lemma 4. Thus

Tr
[
A(B)

] = λ̃(B), B ∈ B(G), λ̃(B) < ∞. (3)

Now E(B)1/2C−1 ⊂ E∗
B because C−1 is selfadjoint, so that

A(B)ϕ = EBE∗
Bϕ = C−1E(B)C−1ϕ for each ϕ ∈ D

(
C−1). (4)

Let B ∈ B(G), λ̃(B) < ∞. Let h ∈ G. Now also λ̃(hB) = Δ(h−1)λ̃(B) < ∞. Let ϕ ∈ D(C−1).
By Lemma 3(b), U(h)∗ϕ = m(h,h−1)U(h−1)ϕ ∈ D(C−1), where m is the multiplier of U .
Using covariance and Lemma 3(b), we get

A(hB)ϕ = C−1E(hB)C−1ϕ = C−1U(h)E(B)U(h)∗C−1

= Δ(h)−1U(h)C−1E(B)C−1U(h)∗ϕ
= Δ(h)−1U(h)A(B)U(h)∗ϕ = Δ(h)−1β(h)

(
A(B)

)
ϕ.

Since A(hB) and β(h)(A(B)) are bounded, and D(C−1) is dense, we get

A(hB) = Δ(h)−1β(h)
(
A(B)

)
, h ∈ G, B ∈ B(G), λ̃(B) < ∞. (5)
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Now we can proceed in much the same way as in the proof of Proposition 1 of [11]. For any
D ∈ B(G), we let B(D) denote the σ -algebra {B ∩ D: B ∈ B(G)}. If D ∈ B(G) is such that
λ̃(D) < ∞, then (3) implies that A(B) ∈ T (H) for each B ∈ B(D), so we have a set function
μD :B(D) → T (H), defined by B �→ A(B). This set function is additive, with μD(∅) = 0, since
E is an operator measure and (4) holds. Moreover, (3) implies that μD is σ -additive with respect
to the trace norm, i.e., μD is a T (H)-valued vector measure.

Since λ̃ is σ -finite, we can write G = ⋃
n∈N

Kn with (Kn) a sequence of disjoint sets in B(G)

of finite λ̃-measure. Denote by λ̃n the restriction of λ̃ to the σ -algebra B(Kn), and let μn = μKn

for each n ∈ N. Now (3) implies that the vector measure μn is a λ̃n-continuous, with the variation
|μn| bounded and given by

|μn|(B) := sup

{∑
D∈π

∥∥A(D)
∥∥

Tr

∣∣∣∣ π a finite disjoint partition of B

}
= λ̃(B)

for all B ∈ B(Kn). (See [5, pp. 1–2, 11] for the definitions.)
Since each μn is λ̃n-continuous and of bounded variation, and each measure λ̃n is finite, it

follows from the Radon–Nikodým property of T (H) [5, p. 79] that for each n ∈ N there is a λ̃n-
integrable function vn :Kn → T (H), such that A(B) = μn(B) = ∫

B
vn dλ̃n for all B ∈ B(Kn).

Moreover, λ̃(B) = |μn|(B) = ∫
B

‖vn(g)‖Tr dλ̃n(g) [5, p. 46], so that ‖vn(g)‖Tr = 1 for λ̃-almost
all g ∈ Kn [5, Corollary 5, p. 47]. Since A(B) is positive for all B ∈ B(Kn), we have that for each
ϕ ∈H, there is a null set Nϕ ⊂ Kn, such that 〈ϕ|vn(g)ϕ〉 � 0 for all g ∈ Kn \Nϕ . Since H, being
separable, contains a countable dense subset, it follows that for almost all g ∈ Kn, 〈ϕ|vn(g)ϕ〉 � 0
for all ϕ ∈H, which means that vn(g) is a positive operator for almost all g ∈ Kn. Thus vn(g) is
a positive operator of trace one for almost all g ∈ Kn.

The function vn in the representation μn(B) = ∫
B

vn dλ̃n is λ̃n-essentially unique by [5,
Corollary 5, p. 47].

For each n ∈ N, we denote by vn also the function defined on the whole of G which coincides
with vn in Kn and vanishes elsewhere. Let v = ∑∞

n=1 vn (pointwise). Since v is a pointwise
limit of λ̃-measurable functions, it is itself λ̃-measurable. (Note that since the Kn are disjoint,
v(g) = vn(g) for g ∈ Kn.) Clearly∥∥v(g)

∥∥
Tr = 1, v(g) � 0 for almost all g ∈ G. (6)

Consequently (see [5, Theorem 2, p. 45]), v is λ̃-integrable over any set B ∈ B(G) of finite
λ̃-measure. Now let B ∈ B(G) be such that λ̃(B) < ∞. For any k ∈ N, we have

∫
⋃k

n=1 Kn

χBv dλ̃ =
k∑

n=1

∫
B∩Kn

vn dλ̃n =
k∑

n=1

A(B ∩ Kn) =
k∑

n=1

μB(B ∩ Kn),

so by the σ -additivity of the indefinite integral of χBv, the series
∑∞

n=1 μB(Kn) (of trace class
operators) converges in the trace norm to (the trace class operator)

∫
B

v dλ̃. On the other hand,
also μB is σ -additive with respect to the trace norm, so this series converges to μB(B) = A(B).
Hence,

A(B) =
∫
B

v dλ̃ for all B ∈ B(G) with λ̃(B) < ∞. (7)

The function v in this representation is clearly λ̃-essentially uniquely determined.
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Next, let B ∈ B(G) be such that λ̃(B) < ∞, and h ∈ G. Now also λ̃(hB) = Δ(h−1)λ̃(B) < ∞.
By the left invariance of λ, (7), (5), and the fact that β(h) is a trace norm continuous linear map,
we get

Δ
(
h−1)∫

B

v(hg)dλ̃(g) =
∫
B

v(hg)Δ
(
g−1)Δ(

h−1)dλ(g)

=
∫

χB(g)v(hg)Δ
(
(hg)−1)dλ(g)

=
∫

χB

(
h−1g

)
v(g)Δ

(
g−1)dλ(g) =

∫
hB

v dλ̃ = A(hB)

= Δ
(
h−1)β(h)

(
A(B)

) = Δ
(
h−1)∫

B

β(h)
(
v(g)

)
dλ̃(g).

Since λ̃ is σ -finite, this implies (by [5, Corollary 5, p. 47]) that

for each h ∈ G, β(h)
(
v(g)

) = v(hg) for λ-almost all g ∈ G. (8)

Here we have used also the fact that λ̃ and λ have the same null sets. Define the function v0 :G →
T (H) by v0(g) = β(g−1)(v(g)). Then v0 is λ-measurable by Lemma 2. Let h ∈ G. Now v(g) =
β(g)(v0(g)) for each g, so using (8), we get

β(h)
(
β(g)

(
v0(g)

)) = β(h)
(
v(g)

) = v(hg) = β(hg)
(
v0(hg)

)
,

for λ-almost all g, from which it follows (since β is a homomorphism) that

for each h ∈ G, v0(g) = v0(hg) for λ-almost all g ∈ G. (9)

In addition, since each β(g−1) preserves the trace norm, it follows from (6) that v0 is a λ̃-
essentially bounded function, so Lemma 4 of [11] can be applied to get an S ∈ T (H), such that
v0(g) = S for λ-almost all g ∈ G, i.e., v(g) = β(g)(S) for λ-almost all g ∈ G. It now follows
from (7) that

A(B) =
∫
B

β(g)(S) dλ̃(g) for all B ∈ B(G) with λ̃(B) < ∞. (10)

Since the function v was λ̃-essentially unique in the representation (7), it follows by [5, Corol-
lary 5, p. 47] that S in the representation (10) is uniquely determined. Since v(g) is positive and
of trace one for almost all g ∈ G, and each β(g−1) preserves positivity and the trace norm, we
see that S must be a positive operator of trace one.

Next, let B ∈ B(G) be arbitrary, and let ϕ ∈ D(C−1). Denote T = |ϕ〉〈ϕ|. We have

〈
C−1ϕ|E(B)C−1ψ

〉 =
∞∑

n=1

Tr
[
T A(B ∩ Kn)

] =
∞∑

n=1

∫
B∩Kn

Tr
[
Tβ(g)(S)

]
dλ̃(g)

=
∫
B

Tr
[
Tβ(g)(S)

]
dλ̃(g),

where the first equality follows since 〈C−1ϕ|E(·)C−1ϕ〉 is a measure, the second is given by
(10) and the fact that T (H) � V �→ Tr[T V ] ∈ C is trace norm continuous, and the last is due to
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the σ -additivity of the indefinite integral. Note that to get the last equality, we need the fact that
the function g �→ Tr[Tβ(g)(S)] is λ̃-integrable by Lemma 3(a). The relation (2) now follows by
polarization.

We are left to show that S is unique in the representation (2). Assume that also S′ ∈ T (H)

is positive and of trace one, and satisfies (2). Let B ∈ B(G) be of finite λ̃-measure. Since
‖β(g)(S′)‖Tr = ‖S′‖Tr = 1 for all g, the function G � g �→ χBβ(g)(S′) ∈ T (H) (which is λ-,
and hence λ̃-measurable by Lemma 2) is λ̃-integrable by [5, Theorem 2, p. 45]. Hence, for each
ϕ ∈ D(C−1), we get

〈
ϕ|A(B)ϕ

〉 = 〈
C−1ϕ|E(B)C−1ϕ

〉 =
∫
B

〈
ϕ|β(g)(S′)ϕ

〉
dλ̃(g)

= Tr

[
|ϕ〉〈ϕ|

(∫
B

β(g)(S′) dλ̃(g)

)]

(by using also the fact that the functional T (H) � V �→ Tr[|ϕ〉〈ϕ|V ] ∈ C is trace norm contin-
uous), so A(B) = ∫

B
β(g)(S′) dλ̃(g). Now by the uniqueness of S in the representation (10) it

follows that S = S′. The proof is complete. �
Remark. According to the discussion in the beginning of the present section, Theorem 2 gives
the following characterization for normal covariant maps: Let Γ :L∞(G,λ) → L(H) be linear,
positive, normal, and β-covariant, with Γ (g �→ 1) = I . Then there is a unique positive operator
S of trace one, such that

〈
ϕ|Γ (f )ψ

〉 =
∫

f (g)
〈
Cϕ|β(g)(S)Cψ

〉
dλ̃(g), ϕ,ψ ∈ D(C), f ∈ L∞(G,λ).

This should be compared with [11, Theorem 2].
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