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Chapter 12

Cytokines and the early vein graft: Strategies to
enhance durability
C. Keith Ozaki, MD, Gainesville, Fla

This brief review focuses on experimental studies linking the proinflammatory cytokine tumor necrosis factor-� to
accelerated vein graft failure in the broader historical context of vein graft research. From some perspectives, the field
appears ripe for transfer of cytokine knowledge and therapeutic approaches that have evolved in other systems to vascular
surgery problems. However, the complexity of vein graft disease suggests that more robust research approaches, such as
broadening of the scope beyond focus on single mediators and neointimal hyperplasia, will be necessary to reach
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translatable strategies to prolong human vein graft durability. ( J Vasc Surg 2007;45:92A-98A.)
Surgical bypass with autologous vein remains an
evidence-based treatment of choice for selected patients
with infrainguinal lower extremity or coronary occlusive
disease. However, contemporary data show that almost
40% of lower extremity vein bypass grafts develop occlusive
lesions or fail within a year,1 and almost half of cardiac
bypass patients will lose (�75% stenosis) a vein graft within
a year.2 Because many technical avenues for improved
patency have been exhausted, the future of enhancing the
durability of these reconstructions lies in a better knowl-
edge of and interventions based on the biology of the vein
graft wall.

This article briefly reviews vein graft failure research to
date and then focuses on the proinflammatory cytokine
tumor necrosis factor-� (TNF-�) and the early vein graft.
Finally, the current status of the field is outlined in the
context of cytokine-based research, and challenges and
opportunities for the future are discussed. Certainly, a
multitude of biochemicals, including growth factors and
cell cycle regulators, have been linked to mechanisms of
vein graft failure, and the following is by no means com-
prehensive.

EVOLUTION OF CURRENT VEIN
GRAFT CONCEPTS

Vein grafts undergo a defined sequence of anatomic
adaptations after placement, although not all favor long-
term patency. The principal cause of failure is traditionally
cited as the development of neointimal hyperplasia that
leads to an obliterative stenosis.3-7 Early work in the vein
graft research field focused on mechanical factors.3-5,8 Like
arteries, vein graft wall structure adapts to the hemody-
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namic environment,9,10 although there may be some subtle
wall differences.5 Intimal hyperplasia has been noted to
occur at vein graft areas of low flow,3 probably areas of low
wall shear stress.4,8 Conversely, high flow appears to have
protective effects6,11 in association with decreased wall
inflammation.12 The early 1990s also brought a recogni-
tion of the importance of circumferential wall tension on
the adapting vein graft.5,13

The 1990s saw increased recognition in vascular biol-
ogy of the interplay between the inflammatory and cardio-
vascular systems. The arterial wall response to injury was
associated with early inflammatory events, including mono-
cyte and T-cell adhesion to vascular endothelial cells.14-16

Platelet activation and mural thrombus formation were also
implicated in this cascade, as well as cytokine and growth
factor elaboration, all leading to subsequent vascular re-
modeling17 through cellular migration, proliferation, and
matrix deposition.14-16,18,19 In the mid-1990s, these par-
adigms began to transfer to the vein graft arena.20 Works
specifically examined the role of inflammatory mediators in
vein graft failure.10,21-24 For instance, the macrophage was
identified as a pivotal cellular mediator of vein graft neoin-
timal hyperplasia, with macrophage depletion suppressing
this process.22

Despite incremental progress over these decades, spe-
cific cause-and-effect links between hemodynamic factors,
inflammatory biochemical mediators, cellular effectors, and
vein wall adaptations remain lacking. Thus, not surpris-
ingly, few therapeutic agents to improve vein graft durabil-
ity have been identified. Antiplatelet and anticoagulant
approaches show only a modest benefit under specific cir-
cumstances.25,26 Recent trials testing edifoligide (an oligo-
nucleotide decoy that binds to and inhibits E2F transcrip-
tion factors) failed to yield substantial clinical benefit.1,2

PROINFLAMMATORY CYTOKINES AND VEIN
GRAFT FAILURE

Proinflammatory cytokines such as TNF-� and interleukin-

1� (IL-1�) were implicated in vein graft intimal hyperplasia
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almost a decade ago,10,23 although the initiating factors for
their expression and the biologic implications of these
inflammatory mediators in vein wall adaptations remained
largely unknown. Expanding knowledge in cytokine-driven
inflammatory pathways in other organ systems has led to
effective methods for treating pathologies such as rheuma-
toid arthritis and inflammatory bowel disease,27-35 and
several anti-inflammatory cytokine-based pharmacologic
compounds have emerged.36-38 Although anti-inflammatory
cytokine therapies have received recent attention as a means
to abrogate primary arterial occlusive disease,39 cytokine
manipulation strategies remain relatively unexplored with
regards to vein graft failure.

TNF-� is a pleiotropic proinflammatory cytokine.40,41

Its expression is controlled at the level of both gene tran-
scription and translation, and it can be synthesized by
several cell lines relevant to vascular biology, including
macrophages, T cells, endothelial cells, fibroblasts, and
smooth muscle cells.42,43 This potent proinflammatory
cytokine is initially synthesized and processed to a trans-
membrane form.44 TNF-�– converting enzyme (TACE), a
member of the matrix metalloproteinase superfamily, re-
leases TNF-� from the cell surface,45,46 and as a homotri-
mer, the soluble TNF-� elicits responses in distal target
cells.43 Since its description over three decades ago, several
related ligands have been described and are grouped in a
TNF superfamily of genes.47

The tissue response to TNF-� is mediated through two
distinct receptors, p55 (type 1 TNF receptor) and p75
(type 2 TNF receptor).40,48 These receptors belong to a
large TNF receptor superfamily that also includes nerve
growth factor receptor, CD95, and Apo2.47,49,50 Most cell
types coexpress both TNF receptors, although expression
of the two receptors appears to be differentially regulated
and shows tissue-specific prevalence. Of more importance is
that the two receptors differ markedly in their intracellular
structure and signaling pathways.40,43 Most of the proin-
flammatory responses classically attributed to TNF-� ap-
pear to be mediated by p55 signaling. Studies have shown
that administration of TNF-� muteins with specificity for
the p55 receptor are proinflammatory and shock inducing,
whereas p75 muteins lack any proinflammatory proper-
ties.51,52

The theory for a pivotal role for TNF-� in vein graft
neointima formation and the related pathologic process of
atherogenesis is founded on in vitro cell culture studies,
pathologic observations, and a limited number of in vivo
studies. In cell culture, TNF-� augments expression of
intercellular adhesion molecules in human vascular endo-
thelial cells53 and vascular smooth muscle cells,54 thus
increasing the possibility of interactions between mononu-
clear cells, endothelial cells, and smooth muscle cells in
neointimal lesions and atherosclerotic plaques. In addition,
TNF-� induces prostanoid synthesis, corticosteroids, and
other cytokines,41 and stimulates smooth muscle cell mi-
gration55 and proliferation after vascular injury.42 Through
receptors, TNF-� signaling activates caspases, leading to

apoptosis, mitogen-activated protein kinases and nuclear
factor-�B,40 which are intracellular mediators linked to
numerous fundamental vascular processes.

Few studies have extended these in vitro cell culture
and pathologic studies into the more complex in vivo
vascular setting. Pathologically, TNF-� co-localizes to
areas of occlusive lesions in human arteries56 and arteri-
alized vein grafts.23 In a rabbit heterotopic cardiac trans-
plantation model, in vivo blockade of TNF-� by way of
TNF soluble receptor suppressed the acute development
of neointima formation by selectively reducing the vas-
cular inflammatory reaction and accumulation of fi-
bronectin.57 Nonetheless, the mechanisms of transplant
atherosclerosis may be quite different from those of vein
graft neointimal hyperplasia. Another set of in vivo ex-
periments demonstrated that exogenous TNF-� causes
coronary arteriosclerosis-like cellular changes in a por-
cine model.58

RECENT RESEARCH

For the last decade, our group has probed the role of
cytokines in vascular biology. We were initially interested in
the role of TNF-� in low shear stress–induced arterial
intimal hyperplasia. Using murine models and molecular
approaches, we documented induction of TNF-� by acute
lowering of arterial wall shear stress.59 We have also probed
the role of cytokine signaling in the arterial wall response to
high shear stress. TNF-� was shown to co-localize to areas
of active positive remodeling in response to increased wall
shear stress.60 Working with collaborators, we completed
experiments that used a novel murine model of arteriogen-
esis, a clinically relevant form of outward arterial remodel-
ing in response to increased wall shear stress. The results
showed that TNF-� positively modulated arteriogenesis,
probably signaling through the p55 receptor.61 Recent
experiments demonstrate that this process is blocked with
the administration of TNF-� inhibitors.62

From these findings linking vascular wall adaptations
with changes in hemodynamic environment through pro-
inflammatory and anti-inflammatory cytokine signaling, we
hypothesized similar mechanisms in the vein graft. The vein
graft is essentially an extreme example of acute hemody-
namic change, coupled with a local injury response, leading
to morphologic adaptations within the vascular wall. We
developed and validated a rabbit bilateral jugular vein into
carotid artery vein graft model with clinically relevant dif-
ferential hemodynamic environments.6,63-65 In this model,
unilateral reduction in carotid artery (and thus vein graft)
flow is accomplished by the placement of 8-0 silk suture
ligatures to completely occlude the internal carotid and
three of the four primary branches of the external carotid
artery. Distal branch ligation results in an immediate 90%
flow reduction (P � .001) in the vein graft on the ligated
side and 36% flow augmentation (P � .01) in the contralat-
eral vein graft. The vein grafts develop physiologically
relevant levels of wall shear and neointimal hyperplasia
volume that is inversely proportional to wall shear.

To initiate studies into molecular mediators of these

vein graft adaptations, quantitative real-time two-step poly-
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merase chain reaction (RT-PCR) was performed for TNF-�,
IL-1�, and IL-10 on the paired high and low wall shear
vein grafts in this rabbit model longitudinally. The results
revealed several shear and time-dependent cytokine expres-
sion signatures (Fig 1).66,67 TNF-� induction was maximal
at day 1 and gradually decreased over time, but was persis-
tently elevated even 4 weeks later (P � .001). Low shear
(associated with increased neointimal hyperplasia) resulted
in significantly higher TNF-� messenger RNA (mRNA)
expression (P � .03). TNF-� was induced 198-fold and
110-fold in low and high shear vein grafts, respectively, by
the first day after arterialization. This elevation gradually
decreased over time but was persistently elevated from
baseline even 4 weeks later (P � .001). Over the course of
the study, low shear resulted in significantly higher TNF-�
mRNA (P � .003) vein graft wall expression.

Although the general expression pattern of IL-1� ex-
pression mirrored that of TNF-�, several notable differ-
ences exist. At day 1, IL-1� was induced a striking 1188-

Fig 1. Time course of cytokine messenger RNA (mRNA) expres-
sion in a rabbit bilateral vein graft model with differential shear.
TNF�, Tumor necrosis factor-�; IL-1, interleukin. Data are com-
bined from two prior J Vasc Surg reports.66,67
fold and 366-fold in low and high shear vein grafts,
respectively, but the return toward baseline was more rapid.
Flow impacted IL-1� expression overall (P � .001), al-
though the differential was greatest at the 1-day (P � .002)
and 3-day (P � .0001) time points. Consistent with the
theory that proinflammatory cytokine mechanisms drive
downstream vein graft adaptations, these early quantitative
TNF-� and IL-1� mRNA level changes were temporally
distinct from the time course of later morphologic and
cellular changes in the vein graft wall. High proinflamma-
tory cytokine levels (as in the low-flow setting) correlated
positively with greater intimal hyperplasia. Immunohisto-
chemistry analysis shows that TNF-� and IL-1� protein
localize to the vein intima in the first 3 days after graft
placement.

Finally, vein graft arterialization more slowly and mod-
estly induced IL-10 mRNA expression. Overall, this oc-
curred independent of shear (P � .152), although there
was a statistically significant higher expression for high
shear grafts at the 14-day time point (P � .001). IL-10 is an
immunosuppressive and anti-inflammatory cytokine pro-
duced by T cells, B cells, natural killer cells, and monocyte/
macrophage cell lines.12,68 It has been shown to suppress
the production of numerous inflammatory cytokines, in-
cluding TNF-�.41 Conversely, TNF-� is a principal inducer
of IL-10 biosynthesis.69 This acts in a negative feedback
loop to suppress TNF-� production and processing.

IL-10 is believed to exert its anti-inflammatory effects
on the vascular system through inhibition of leukocyte-
endothelial cell interactions and inhibition of proinflamma-
tory cytokine and chemokine production.12,68 In support
of the hypothesis that the anti-inflammatory cytokine
IL-10 downregulates vein graft neointimal hyperplasia,
researchers have demonstrated an effect of IL-10 on vascu-
lar smooth muscle cell proliferation. Physiologic doses of
IL-10 inhibited TNF-� and basic fibroblast growth factor–
stimulated DNA synthesis and cell proliferation,70 suggest-
ing that endogenous IL-10 not only suppresses proinflam-
matory cytokine expression, but also may antagonize
pathologic vascular remodeling induced by cytokines such
as TNF-�.70

These results66,67 in the context of the medical litera-
ture10,23,71-75 led our group to formulate the general hy-
pothesis outlined in Fig 2. As an initial step to test this
hypothesis, we used a pharmacologic approach to abrogate
TNF-� signaling in the early vein graft of our validated
rabbit model.66 Animals received pegylated soluble TNF-�
type I receptor (PEG sTNF-RI; Amgen, Thousand Oaks,
Calif) or vehicle with either short-term or long-term dos-
ing. PEG sTNF-RI is a 20-kd molecule containing a ho-
modimer of human p55 covalently linked to a polyethylene
glycerol backbone.76 Molecular modification of these pe-
gylated receptors through deletion of 1.4 intracellular do-
mains reduces immunogenicity but has no impact on ligand
binding.77 Because of a conserved sequence homology, the
compound has been demonstrated to abrogate the adaptive
immune response across a range of species, including rab-
bits.76,78 After 14 to 28 days, grafts were analyzed. PEG

sTNF-R1 was found in high concentrations in the serum
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and localized to neointimal hyperplasia microscopically.
Both high-flow and low-flow vein grafts from treated ani-
mals demonstrated similar volumes of neointimal hyperpla-
sia compared with controls. PEG sTNF-R1 had minimal
impact on vascular wall cell turnover, as reflected by termi-
nal deoxynucleotide transferase-mediated deoxy uridine
triphosphate nick-end labeling (TUNEL) and anti-Ki-67
assays.66

Thus, although placement of a vein into the arterial
circulation acutely upregulates TNF-�23,66,75 (whose ex-
pression level correlates with the degree of subsequent
neointimal hyperplasia), pharmacologic interruption of this
signaling pathway has no significant impact on neointimal
hyperplasia or smooth muscle cell proliferation and apopto-
sis.66 These data suggest that early vein graft adaptations
can proceed by TNF-� independent mechanisms. Recent
work by other investigators, however, supports a differing
conclusion. In a study that used p55 receptor knockout
animals, functional TNF-� inhibition was shown to atten-
uate vein graft neointimal hyperplasia.71 Further investiga-
tion is required to elucidate these apparently contrasting
observations.

Interesting comparisons can be drawn with observed
challenges in application of anti-inflammatory approaches
in other pathologies. Early anti-TNF-� clinical trials in
acute inflammatory processes, such as sepsis, have had
disappointing results79-82 and may be attributed to an
over-simplistic view of these disease processes and TNF-�–

Fig 2. Hypothetic mechanisms by which proinflammatory and
anti-inflammatory cytokines may interplay with wall shear to mod-
ulate vein graft wall adaptations. TNF�, Tumor necrosis factor-�;
TACE, TNF-�–converting enzyme; IL, interleukin; SMC, smooth
muscle cell.
mediated cytotoxicity.41 A similar situation arose in the
setting of anti-TNF-� trials for heart failure.83 These expe-
riences may have lessons for work with the vein graft. We
have recently completed microarray analyses of vein graft
wall in both mice and rabbits (both high flow and low
flow).84 The results reveal a large number of gene pertur-
bations across multiple families of mediators. These results
show that the overwhelming determinant of the wall’s
transcriptome is the temporal relationship with the opera-
tive graft placement; that is, the trauma of the operation
itself, rather than the details (eg, neointimal volume) of the
wall adaption. Thus, it may be naive to believe that abro-
gation of a single mediator would have substantial lasting
impact on the final morphology of the wall. Perhaps strat-
egies that block central signaling molecules that control
numerous genes for various cytokines and adhesion mole-
cules will be effective (eg, nuclear factor-�B),85 although
targets such as TNF-� seem to meet this criteria.

FUTURE CONSIDERATIONS AND
DIRECTIONS

To date, several lessons have become apparent, and
some considerations for future progress are summarized:

● Single-agent vs multiagent strategies. Narrowly focused
molecular targets hold the appeal of limited unwanted
side effects. However, in view of the large number of
mediators implicated in the vein graft wall adaptation,
perturbation of several pathways may be necessary to
consistently achieve substantial and durable effect. For
example, multimodality approaches stand as a main-
stay of antineoplastic therapies. The multitude of pro-
cesses involved in vein graft failure support the use of
such strategies, yet the rationale and safety of each
component must be confirmed, and substantial inves-
tigative work will be required to define the composi-
tion of this synergistic cocktail.

● Understanding the interplay of systems (eg, inflamma-
tory, thrombotic), including genetic factors. Large
amounts of information (eg, biologic and genetic) can
now be rapidly acquired and analyzed by use of high
throughput experimental and statistical techniques.
Vascular biologists must embrace contemporary infor-
mation management and modeling approaches to un-
derstand the interplay of these factors in vein graft
failure.

● Broadening focus to the entire conduit wall. Vein graft
researchers must broaden their observations to the
behavior of the entire conduit wall, not just the neo-
intima. Adventitial events leading to fibrosis probably
contribute substantially to vein graft failure.86

● Consideration of the injured host patient. Simple har-
vest dramatically changes the vein wall cellular pheno-
type.87 Furthermore, surgical trauma globally impacts
the phenotype of pivotal cells such as the leuko-
cyte,88,89 and these effects may all biologically modu-
late local processes such as vein graft wall adaptations.

● Delivery strategies—local vs systemic. Although vein

grafts offer the unique situation of ability to treat the
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conduit wall,1,85,90 more systemic approaches may be
needed in view of the extra-wall mediators (eg, circu-
lating cells) that participate in occlusive adaptations.91

● Optimization of trial designs to insure gain of new
knowledge regardless of outcome. Animal models of vein
graft disease hold substantial biologic relevance limita-
tions, and clinical trials are expensive. Although they
certainly broke new ground, as designed, the Project of
Ex Vivo Vein Graft Engineering via Transfection
(PREVENT) trials1,2 failed to generate substantial
new biologic insights despite substantial work and
fiscal investments. The thoughtful addition of mecha-
nistic end points, when feasible, will ensure some
progress independent of human trial outcome.

● Translation into other arterial occlusive adaptations (eg,
primary atherosclerosis, angioplasty restenosis). Emerging
endovascular approaches bring into question the rele-
vance of vein graft research. However, contemporary
evidence-based guidelines confirm that a substantial por-
tion of our aging population will require vein conduits for
arterial revascularization. In addition, basic biologic
mechanisms delineated in the vein graft field hold a
strong likelihood of relevance for other vascular re-
sponses to injury.

CONCLUSION

Understanding the cytokine-mediated molecular
mechanisms of vein graft arterialization may suggest clinical
interventions that will alter the conduit’s natural history.
The field appears especially ripe for transfer of knowledge
and therapeutic approaches that have evolved in the arterial
system as well as inflammatory mediated processes such as
inflammatory bowel disease and arthritis. However, more
robust research approaches such as broadening of the scope
beyond focus on single mediators and neointimal hyperpla-
sia will be necessary to reach translatable strategies to
prolong human vein graft durability.

I gratefully acknowledge the editorial assistance of Dr
Scott A. Berceli and Dr Zhihua Jiang.
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