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Abstract

It is shown that the superradiance modes always exist in the radiation by the(4+ n)-dimensional rotating black holes. Usin
a Bekenstein argument the condition for the superradiance modes is shown to be 0< ω < mΩ for the scalar, electromagnet
and gravitational waves when the spacetime background has a single angular momentum parameter about an axis on
whereΩ is a rotational frequency of the black hole andm is an azimuthal quantum number of the radiated wave.
 2005 Elsevier B.V. Open access under CC BY license.
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Recent brane-world scenarios such as large e
dimensions[1,2] or compactified extra dimension
with warped factor[3] predict a TeV-scale gravity
The emergence for the TeV-scale gravity in the high
dimensional theories opens the possibility to make
black hole factories in the future high-energy coll
ers [4–7]. In this context it is of interest to examin
the various properties of the higher-dimensional bl
holes.

The absorption and emission for the different pa
cles by the (4+ n)-dimensional Schwarzschild bac
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ground have been studied analytically[8] and numer-
ically [9]. It was shown that the presence of the ex
dimensions in general decreases the absorptivity
increases the emission rate on the brane. The dec
of the absorptivity may be due to the decrease of
effective radius[10] rc ≡ √

σ∞/π , where σ∞ is a
high-energy limit of the total absorption cross secti
Although it may explain why the absorptivity is su
pressed in the high-energy regime, it does not see
provide a satisfactory physical reason for the supp
sion of the absorptivity in the full range of the partic
energy. The enhancement of the emission rate ma
caused by the increase of the Hawking tempera
in the presence of the extra dimensions. This me
that the Planck factor is more crucial than the gr
body factor in the Hawking radiation. For the case
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the minimally coupled massless scalar the low-ene
absorption cross section (LACS) always equals to
horizon area[11]. Thus, for the brane-localized scal
the LACS is always 4πr2

H while for the bulk scalar it
is equal toΩn+2r

n+2
H , where

Ωn+2 = 2π(n+3)/2

�[(n + 3)/2]
is the area of a unit(n + 2)-sphere. The ratio o
the LACS for the Dirac field to that for the scal
was shown to be 2(n−3)/(n+1) for the brane-localized
case[8] and 2−(n+3)/(n+1) for the bulk case[12].
Therefore, the ratio factor 1/8, which was obtained
by Unruh long ago[13], was recovered whenn = 0.
The dependence on the dimensionality in these r
factors may be used to prove the existence of the
tra dimensions in the future black hole experimen
The relative bulk-to-brane energy emissivity was a
calculated in Ref.[9] numerically, which confirmed
the main result of Ref.[10], i.e., black holes radiate
mainly on the brane.

For the higher-dimensional charged black holes
full absorption and emission spectra have been c
puted numerically in Ref.[14]. It has been shown
that contrary to the effect of the extra dimension
presence of the nonzero inner horizon parameter−
generally enhances the absorptivity and suppresse
emission rate. It has been shown also that the rela
bulk-to-brane emissivity decreases with increasing
inner horizon parameterr−. The LACS for the min-
imally coupled massless scalar always equals to
horizon area. For the Dirac fermion the LACS b
comes[12]

(1)σBL
F = 2− n+3

n+1

[
1−

(
r−
r+

)n+1] n+2
n+1

σBL
S

for the bulk case and

(2)σBR
F = 2

n−3
n+1

[
1−

(
r−
r+

)n+1] 2
n+1

σBR
S

for the brane-localized case. In Eqs.(1) and (2)σBL
S

and σBR
S are the LACSs for the bulk and bran

localized scalars, respectively.
The absorption and emission problems in

higher-dimensional rotating black holes were recen
discussed in Refs.[15–17], where the existence o
the superradiance modes[18,19] is predicted analyt
ically and numerically in the presence of the ex
dimensions. The existence of the superradiance is
important for the experimental signature in the
ture colliders because it may change[15,20,21] the
standard claim thatblack holes radiate mainly on the
brane. In this context it is important to derive a crite
rion for the existence of the superradiance. In this s
note we will derive this criterion using a Bekenstein
argument[22].

The gravitational background around a(4 + n)-
dimensional, rotating, uncharged black hole hav
single angular momentum parameter about an ax
the brane is given by[23]

ds2 = −
(

1− µ

Σrn−1

)
dt2 − 2aµsin2 θ

Σrn−1
dt dφ

+ Σ

∆
dr2 + Σ dθ2

+
(

r2 + a2 + a2µsin2 θ

Σrn−1

)
sin2 θ dφ2

(3)+ r2 cos2 θ dΩn,

where

∆ = r2 + a2 − µ

rn−1
,

(4)Σ = r2 + a2 cos2 θ,

anddΩn is a line-element on a unitn-sphere.
It is worthwhile noting that the(4+n)-dimensional

rotating black holes can have 1+n/2 angular momen
tum parameters for evenn and(3 + n)/2 parameters
for oddn maximally[23]. Although our following ar-
gument can be applicable to this general case, it se
to be complicated in the calculation. Thus, we wo
like to consider the simpler case by reducing the
gular momentum parameters. That is why we cho
a single angular momentum parameter in Eq.(3). The
detailed calculation for the spacetime background h
ing multiple angular momentum parameters will
reported elsewhere.

The horizon radiusrH is determined from∆ = 0,
i.e.,

(5)r2
H + a2 − µ

rn−1
H

= 0.
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The horizon areaÃ, massM , angular momentumJ
and Hawking temperatureTH are given by

Ã = Ωnr
n
H

n + 1
A, M = (n + 2)Ωn+2

16π
µ,

J = 2

n + 2
Ma,

(6)TH = 2

A

[
rH + 8π(n − 1)M

(n + 2)Ωn+2r
n
H

]
,

whereΩN = 2π(N+1)/2/�[(N + 1)/2] is an area of
unit N -sphere andA = 4π(r2

H +a2). It is easy to show
that the various quantities in Eq.(6) are related to eac
other in the form

(7)ATH = 2rH + (n − 1)
µ

rn
H

= 2rH + (n − 1)A

4πrH
.

Now we assumeM andJ are independent variable
Then elementary mathematics gives

(8)dÃ = ∂Ã

∂M
dM + ∂Ã

∂J
dJ.

Firstly, let us calculate∂A/∂M , which is given by

(9)
∂A

∂M
= 8π

(
rH

∂rH

∂M
+ a

∂a

∂M

)
.

Differentiating Eq.(5) with respect toM and using
Eq.(7), it is easy to show

∂rH

∂M
= 1

ATH

[
16π

(n + 2)Ωn+2r
n−1
H

+ 2a2

M

]
,

(10)
∂a

∂M
= −n + 2

2M2
J = − a

M
,

which results in

(11)
∂A

∂M
= 2

MTH rH

[(
r2
H + a2) − na2].

Combining Eqs.(10) and (11), one can show

(12)
∂Ã

∂M
= (n + 2)Ωnr

n−1
H

(n + 1)MTH

(
r2
H + a2).

Differentiating Eq.(5) with respect toJ and following
the previous procedure, one also can show

∂A

∂J
= (n − 1)(n + 2)a

MTH rH
,

(13)
∂Ã

∂J
= − (n + 2)Ωnr

n−1
H a

(n + 1)MTH

.

Inserting Eqs.(12) and (13)into Eq. (8), Eq. (8) be-
comes in the following

(14)dÃ =
[
1− Ω

dJ

dM

]
∂Ã

∂M
dM,

where

(15)Ω = a

r2
H + a2

is a rotational frequency of the black hole. Bekenst
showed in Ref.[22] that for scalar, electromagnet
and gravitational wavesdJ/dM becomes

(16)
dJ

dM
= −T r

φ

T r
t

= m

ω
,

wherem and ω are azimuthal quantum number a
energy of the incident wave, respectively, andTµν is a
stress-energy tensor. Thus, Eq.(14)becomes

(17)dÃ =
[
1− m

ω
Ω

]
∂Ã

∂M
dM.

Since∂Ã/∂M is always positive from Eq.(12) and
dÃ > 0 becauseÃ/4 is a black hole entropy, Eq.(17)
gives a condition

(18)0< ω < mΩ

if dM < 0, which is a condition for the existence
the superradiance.

One may apply the same procedure to the bra
localized fields to derive a criterion for the existen
of the superradiance modes. In this case we should
the induced metric

ds2
BR = −

(
1− µ

Σrn−1

)
dt2 − 2aµsin2 θ

Σrn−1
dt dφ

+ Σ

∆
dr2 + Σ dθ2

(19)+
(

r2 + a2 + a2µsin2 θ

Σrn−1

)
sin2 θ dφ2.

However, the metric(19) is not exact black hole so
lution of the Einstein field equation. Thus it is o
scure whether we can identify the quarter of the h
zon area with a black hole entropy. Since, furth
more, the metric(19) is not a vacuum solution unlik
Kerr black hole, it generates its own stress-energy
sor and hence total energy–momentum tensor sh
be T tot = T

f + T m , where T
f and T m are the
µν µν µν µν µν
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stress-energy tensors contributed from field and m
ric, respectively. Thus, it is not evident for the bran
localized waves whether we can use−T

r,tot
φ /T

r,tot
t =

m/ω or not.
As commented earlier, our procedure is not

stricted to the rotating black hole with single angu
parameter. In 4+n dimensions the rotating black hole
can have(n+ 3)/2 angular momentum parameters
odd n and (n + 2)/2 parameters for evenn. So it is
interesting to apply our method to this black holes
derive a general condition for the existence of the
perradiance.
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