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Abstract. A new representation for recursively enumerable languages is presented. It uses a pair 
of homomorphisms and the left (or right) quotient: For each recursive!y enumerable language L 
one can find homomorphisms h, , h2 : 2% + Cz, such that w E 2;2: is a word in L if and only if 
r?’ = h,(ar)\h,(a) for some ar E 2:. (Or, each recursively enumerable language can be given by 
L = 0( h,\ h,) n Cz, where 0( b \ h,) is the so-called right overfiow language defined as 0( hl\ h2) = 
{h,(x)\h,(x); x E 221.) 

1. Introduction 

There exist many different representations for recursively enumerable sets. We 
should mention Turing machines, phrase-structure grammars, and many other 
different models of algorithms, which are capable of representing the recursively 
enumerable sets. (See [S, 6,7, 1 l] for the definitions of mathematical and language 
notions used in this paper.) It is of interest to have also a representation based on 
some simple algebraic operations. We shall present the representation using two 
homomorphisms, intersection with C t, and a quotient (an operation inverse to 
concatenation): For each recursively enumerable language L there exists a pair of 
homomorphisms hl , h2 : CA * + 2% (where &, ZB are some alphabets, & z &) such 
that 

L = O(h,\h,) n X”, 

=(WEs:;W= h,ja)\h,(a) for some Q! E Zt;), 

where O(h,\A,) is the so-called right overflow language of two homomorphisms 
hl, hZ:2:4 E, defined as O(h,\h,)={h,(x)\h,(x);xeZ~}. 

Section 2 deals with the proof of this main result. The proof is based on the 
notion of a g-system, originally introduced by Rovan [g] in order to unify the theory 
of grammars. Section 3 concerns the complexity of this form of representation, and 
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Section 4 discusses some extensions, for example, a modification of the above 
representation for con:ext-sensitive languages. The results of the paper should be 
compared with come older similar characterizations; for example, the result of [l] 
is that for every recursively enumerable language L . here exists an erasing ho (a 
homomorphism either preserving or erasing any symbol), and a pair of homomorph- 
isms h, , h2 such that L = h,( e( h, , h2)), where e( h, , h2) is so-called minimal equality 
set: e( hl, h2) = {w E 22; h,(w) = h,(w) and h,(u) f: h2( u) for each proper nonempty 
prefix u of w}. The time and space complexity questions concerning this 
characterization (similar to those in Section 3) can be found in [2]. In 13, 10) 
some other problems are presented concerning homomor&ism equivalence and 
equality sets (the sets of words on which h, and h2 agree, i.e., 

E(h,, hd = Iw E Zi; h,(w) = M4b 

2. The homomorphic representation 

Let us begin with the definition of a g-system [8], which is a generalization of 
the notion of a grammar. (The definitions of grammar, sentential form, rewriting 
relation, etc. can be found in [6,7,11].) Rewriting of the sentential form is performed 
by a 1-a-transducer [S;. The resulting word is obtained by an iterative rewriting by 
this transducer, starting from an initial symbol. Most of the known types of grammars 
can be naturally defined as special cases of g-systems. 

Definition. A generative system (g-system, for short) is a quadruple G = (N, T, P, S), 
where N and T are finite alphabets of nonterminal and terminal symbols (not 
necessarily disjoint), S in N is an initial symbol, and P is a finitely specified binary 
relation over V+ x V* (where V = N v T). 

P (the rewriting nelation) is given in the form of a l-a-transducer [S] (from V+ 
to V*), i.e., P = (K, V, V, H, ql, qF), where K is a finite set of states, ql, qF in K 
are initial and final states respectively, and H is a finite subset of K x V x V* x K 
(the set of transitions, or edges). 

We shall us2 the following notation: 
u-v means that P is able to rewrite u to v, i.e., there exists a path of transitions 

such that s1s2. . . s,, = u, and v1v2. . . v,, = v. 

+* denotes the reflexive and transitive closure of a. 
Finally, a language generated by G is 

L(G)={wE T*;S+* w}. 

Now we shall show informally 
recursively enumerable language, 

that g-systems are capable of generating any 
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Theorem 2.1 (Rovan [S]). Let G be a phrase-structure grammar, G = (IV,, T, P, S). 
l%en there exists a g-system G’ such that L(G) = L( G’). 

Proof. We need to show, how a l-a-transducer can imitate a rewriting step in G 

by the rule A,...A,-+uEP. 
The transitions shown in Fig. 1 are nreded in H (they are given graphically, in 

the form usual in the theory of automata). (We use some new distinct states 

41, . . . . q”+ for each rule A,. . . A, + v E P, so only the initial and final states are 
shared by different paths for different rules.) 

Fig. 1. 

It is easily seen that this set of transitions rewrites Al. . . A, to v. Moreover, we 
shall add so-called copying cycles to H, i.e., transitions (q, x, x, q) E H, for each 
x E V = N u T, and q E {ql, qF}. This gives us u,Al . . . Anuz +,, u1 vu2, for each 
ut, U2E v”. Cl 

It is easy to see that for each g-system G there exists an equivalent g-system G’ 
(i.e., generating the same language) such that the initial and final states of its 
l-a-transducer are distinct. In what follows we shall therefore assume (for technical 
reasons) that in each g-system q1 # qF. We are now ready to establish the main 
result, namely, the representation of recursively enumerable languages by a pair of 
homomorphisms and the left quotient. As will be shown later, we can use the right 
quotient as well. The quotients are understood as operations inverse to concatenation, 
i.e., u\uv = v, uv/ v = u, for each u, v. This implies that v\ w is defined only if v is 
a prefix of w; an analogous condition holds for v/w. These operations can be 
extended to languages, for example, L,/ L2 = {u/v ; u E L, , v E L2}. Now we can 
define overflow languages of the homomorphisms ht, h2: 

O(h\h,) = {WM2W ; x E x;l, 

={h,(x)/h,(x);xdf;}. 
O(hl h2) 

The proof of the following theorem is relatively long and technical. But, to obtain 
an idea how the mechanism works, it is sufficient to read only part (i) at first reading. 

Theorem 2.2. For each eflectively given recursively enumerable language L9 one can 

effectively construct a pair of homomorphisms h, , h2: 2% + 2% such that 

L=O(h,\h,)nZt 

={wEJ$;w= hl(a)\h2(a) for some a! E .Cs}. 

(Here 2&, & are some alphabets, 2&. 5 .C,.) 

Thus, w E C z is a word in L if and only if therp :..&: some cy E 22 such that 

h2W = h(dw 
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proof. We may use Theorem 2.1 and assume that the recursively enumerable 
laiiguage L is given by some g-system. Let L = L(G) for some g-system G = 
(N, T, P, S), where P is a l-a-transducer, i.e., P = (K, V, F H, q1 9 qF). ( V = N v T, 
and T=&.) 

As mentioned above, we shall assume without loss of generality that qI # qFm (The 
proof could be done even without this assumption, but it would become more 
complicated.) We ~.a also assume that H, K, V, and K x V are pairwise disjoint 
sets. Define 

where clo, ul, u2, a3, b,, bz , b2 are new symbols. We now define h, and h2 as shown 
in Table 1. 

Table 1 

h,(x) h,(x) Remark 

QO 

a1 
Qt 

:;, Al 

(9, A, v, 9’) 

b0 

b, 
b29, 

h 

ii, Ah 

bow 
b2 

qFb, 

E 

da A) 

V 

for each xEKx V 
for each XE H 

(i) First, we are going to prove that if w E L(G), then w = hl(a)\h&r) for some 
LY E 22. This will also give us an idea how this system of homomorphisms can 
imitate the derivation in g-system G. 

Claim I. If S a$ w, then there exists an a E Et; such that 

h2(a) = h,(ar)b,w. (2-l) 

roof. We proceed by induction on the length of a derivation in G: 
(A) If w = S (the length of derivation is zero), then (2.1) holds for a = ao: 

Md: bo, 

h2W: b,b,S. 

) Now assume Claim 1 holds for derivation of length k Let S a2 u *G w be 
a derivation of length k + 1. We have, by the inducttgn hypothesis, a!‘~ ZA such that 

h2(d) = hl(a’)blu. (2.2) 

Since u*G w, there exists a sequence of transitions 



A new representation of recursively enumerable languages 239 

in Ii+ such that 

u=s s I-** 089 n>O,siEVfcri=l ,..., n, 

w =v1. ..t&, ViE V* for i= 9*=*9 % 

kl=qI, (2.3 

k: = ki+, for i=l,...,n-2, 

We shall now construct cy by successively appending certain letters to (Y’, thus 
obtaining a sequence of words cyI, a2, a3, a4, and cy5 = CU. First, let crl = LY’. By (2.2), 
the string hI(acI) is a prefix of /1*((~~), and kl(al)\h2(arl) = &u: 

Let us append ~1~ to QI~, i.e., cy2 = cy&. This is illustrated as follows: 

MWl9 
h&i?)b,s,. . .s,,b2. 

Now we extend 1y2 by (k, , sJ . . . (k,, s,): 

a3= h(kl, ~1). . .(k, sn) 

Next, we append the symbol a2: 

cu4= daI(kI, sl). . .(k,,, sn)a2 

h,( a4) still remains a prefix of h2( ar4), because Q[ = kl by (2.3). Finally, let us append 

(k, 3 ~1,~s k:). . .(k,, sn, an, K): 

h(a5): -. c ~2~l!ki, ,c;)‘~!k~, s2)k~. . .(k,, s”)k:, 

h2@5): . . .b2k,(k,,sl)k2(k2,~2).. gk,(ic,,s,)g,b,v,uz...u,= 

By (2.3) we have ki = ki+, for i = 1, . . . , n - 1, k ft = qF, and also I.+ . . . V,, = W. Then 

h,(a5) is still a prefix of h2(tv5). Note that the strings Q! = cy5 and w = vim . . t)n again 

satisfy (2.1) and Claina ]I is verifie 
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We are now ready to show that for each w E L(G) there exists an cy E .X2 such 
that w = h,(a)\h,(a): The existence of QI’E Zi such that I&r’) = h*(ar’)b, w follows 
from Claim 1. Let a! = cy’a3. Clearly, h,(a) = hl(a)w, i.e., w = h,(a)\h,(a). 

Moreover, we have also proved that having a derivation 

(Y can always be chosen in the form 

fi (a,( K X V)“iazHni) a3, 
i=l ) 

(2.4) 

where ni = IWilm This proves (i). 
): Now we need to show that the only way of forming an a! with the 
ies is as shown in (i), i.e., if h,(a)\h,(cu) = w E V*, then S +$ w. 

, we shall show that 
refix of hJar), then a! has to be a prefix of some word in a,(a,(K x 

if (Y E a,(a,(K x V)“a$P)*, then h,(ar)\h,(a) = 6,~ for some w deriv- 

- if ar terminates in a3, then h,(a)\h,(a) = w, for some w derivable from S. 
Otherwise, * h,( a)\h2( (u) ti C L- 
We have to prove some claims first. 

Claim 2. If h&z) is a prefix of h2(ar), a! E 22, then cw begins with ao. 

Proof. Since h,(a) is a prefix of h&), we have h2(a) = h,(cu)w for some w E Z$. 
We prove Claim 2 by elimination of all other possibilities (see also Table 1). 

Case 1: a does not begin with al, a2, or x E K x V. In this case, h2(a) and h,(a) w 
begin with different symbols. 

Case 2: Q[ cannot begin with x E H; h,( (q, A, u, q’)) = (q, A)q’. Since in this case 
h,(ar)w begins with (q, A) E K x x the string h2(a) must also begin with (q, A) E 
K x V, which is a contradiction since (q, A) E K x V must be preceded by q E K in 
h,(a) (see Table 1). 

Case 3: Similarly, ar cannot begin with a3: h,( a,) = b, , so h2(a) must also begin 
tradiction with Table 1. 

Claim 3. IJ ,a)\h,(cy ) = w, then there is no loss of generality in assuming that the 
only occurrence of a0 in ar is at the beginning, i.e., a! = aOa’, a’ does not contain any ao. 

roof. Given an cr’ such that h,(E) = h,(E) w, one can effectively find the shortest 
a! z Z 2 satisfying h2( a) = h,( (u) w (simply by testing all a! E C > such that Ia: 1 s 1~ I>. 

Suppose that cy contains the symbol a, at least twice, that is, Q! = ao/3aoy. (By 

rst a0 must occur at the beginning.) Suppose the two leftmost a03 
are displayed. Thus p does not contain a0 and hence neither of h,(P), h2(/3) contains 
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the symbol b,: 

h,(a): b,l h,(P) o lb I h,(r) 1 

Ma ): b,b,S( MP) p4Jb,Sl MY) I 

t t 

The two leftmost occurremes 
of bti in both h,(a) and h,(a) 

Then, also, h,( a0 y) = hl ( a0 y) w, which is a contradiction since a! is the shortest string 
with this property. 0 

Claim 4. If h&&h,(a) =wforsome wEC r, then CY is terminated by a3. 

Proof. Clearly, 

h*(a) =. h,(a)w, (2.5) 

By the same reasoning as in Claim 2, we are going to prove Claim 4 by elimination 
of all other possibilities: 

Case 1: a! is not terminated by ao: Let ay = daO. Thus, by CJsim 2 and 3, CY’ = E 
since the only a0 in ar is at the beginning. Then Q! = a0 and bo6,S = b,w. Then 
w = bl S e XE, a contradiction. 

Case 2: a! is not terminated by a,: By substitution into (2.9, we obtain . . . b2 = 
. . . b, w. Now, there are two possibilities: Either w # E; then the right-hand side is 
terminated by some s E &, or w = E and then it is terminated by bl . In either case, 
it terminates with a symbol different from b2, which is a contradiction. 

Case 3: The proof for a! terminated by a2 is similar: Using (2.5), we get 
. ..q&=...b2qIw. 

Case 4: ac is not terminated by (q, A) E K x V: . . . q(q, A) = . . . Aw. Since w E 22 
and A E &, the left- and right-hand sides end by different symbols, a contradiction. 

Case 5: Q! cannot be terminated by (q, A, v, q’) E H: By substitution into (2.5), 
we have . ..v=...(q.A)q ‘w. Thus, either w = E and then the rightmost symbol is 
qk K or w # E and then the right-hand side contains a substring q’s for some s E V. 
This gives a contradiction in either case since 4% K must always be followed by 
(q‘, B) E K x V, or by bl . (For the left-hand side of the equation is h2(cy).) 

This proves Claim 4. 0 

Claim 5. Ifh,(cY)\h,(a) = f w or some w E SE, then a! cannot contain a3 more than once. 

Proof. Define Nb( w) = N&(w) + Nbz( w) + Nbo( w). ( Nb( w) denotes the number of 
b’s in w.) Now, kt us count Nb( w): 

Nb(w) = N,(h,(a)\h,(a)) = Nb(hz(a)) - Nb(Ma)) 

= N%(a)-N,,(a) 

since Nb(hZ(x)) - Nb(h,(x)) = 0 for each x different from Q~, a3, and NO&J) - 
Nb(hl(aO)) = 1 and Nb(h2(a3))- Nb(h,(a3)) = -1. By Claims 2 and 3, cy contains 
exactly one ao; therefore, 

Nb( w) = I- N&u). 
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Since the number of b’s in w must be a nonnegative integer, we have 

In addition, we have also proved that if ac does not contain any a3, then 
w = hl(a)\hp( a) & V* since w contains exactly one Is-symbol. PI 

Now, let us present a brief summary of the claims: 
- QL begins with a0 and ends by a3. 
- No more so’s, 42;s are contained in cy. 
- If’ (Y does not contain u3, then hl((r )\hq( cu) ti St. 

Let us now consider the form of a! E 22, such that ?~~(a) is a prefix of h2( ar) and 
in a more detailed way. We shall do so by considering the form 

of all possible prefixes of such Q! and determining all possible ways of extending 
these prefixes to obtain again a prefix of CM. In doing so we shall show that there 
exists a prefix y4 satisfying 

h,( ~)\h~( Q) = blsl l . . s, and 
(2.6) 

s*“, Sl.. .s, 

for some sl. . . s,, E \< II > 0. Then we shall show that )Inving any prefix q~ satisfying 
(2.6) (for some sl. . . s, E V* derivable from S), it can only be extended so that 
another prefix rp’ satisfying (2.6) is obtained (for some s: . . . sLt E V* derivable 
from S). 

(A) ‘e know that (Y must begin with u o, so there is a prefix satisfying (2.6), 
namely Q = ao, since 

h(Q): b,, 
hz(Q): bobIS. 

(Clearly, hl((p)\h2(cp) = b,S, and S =32 S.) 
(B) Let now Q be an arbitrary prefix of ~1 satisfying condition (2.6). Then 

h(Q): Y, 
b(Q): yb,s,. . .s,, 

(for some y E 25). There are two possible ways of extending Q such that h,( (p) will 
remain; a prefix of h2( (9): 

because only h,(a,) zld h,( a3) begin with symbol b, . 
) Let us try to append a3 first, i.e., cpl = pa3. Tken 

h(Q& $1, 
hdQ& yb,s,. . .s,,. 
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In this case, we have hl(&\h2(q1) = sl.. . s, E V*. No further extension of pot is 
possible by Claims 4 and 5. ~1~ can be used only as the rightmost terminating 
character, which implies that cu = ql. 

But, using (2.6), we have also S G& s1 . . . s,, and we are done. 
(B2) Another possibility is to append ul, that is, q1 = cpal: 

h(Q*h Y&s 

h2(Q& yb,s,. . .snb2. 

There are now two cases. 
(B2.1) If n =O, then we have 

hh): Y&s 

h2h): YW2. 

Now we are forced to append a2, i.e., q2 = qla2: 

Yb, b2%9 

Yb, b24Fh l 

But h&x) will remain a prefix of h2(a) only if qI = qF, which contradicts one of 
the main initial assumptions of the theorem. Thus, this case has led up to a dead 
end, and we cannot extend cp by 4tl if n = 0. 

(B2.2) Let n > 0. Since for each x E ZA (except x E K x V) we have h,(x) e V*, 
the only possible extension is q2 = q,( ql, s,) . . . ( qn, s,,) for some qr . . . qn E K. Then, 

hb2): 

h2((P2): 

hs,...sn, 

Yb,S* l l .Snb2qdq*, &I. . .4nh3n, S”). 

u2 is the only symbol for which h,(x) begins with b,; h,(aJ = b2ql, Clearly, further 
extension of 50~ is possible only if 

For cp3 = 60~~2~ we obtain 

hiQ3h 

h2(Q3): 

YblSl l . l snb2qI, 
yblsl . . . s,b2q,bin, a2. l .(%a, %z)qd 

Because h,( Q3)\ h2( p3) E (K x V. K)'b, , we must extend 4p3 by symbols from H (If 
x& HO, then h,(x) contains some symbols which are neithe. in K x V, nor in K.) 

So let 

for some wi E V*, q: E K, 3uch that ( qi, si, H+, qi) E pi. This gives 

h(Q4): n l l b2ql(q, , sl)q:* l l (qi, si)qi* l l l (qnv Sn)qL, 
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But II&Q) will remain a prefix of h2( q4) only if we are able to pick and choose 
(qi, si, wi, qf) s H sl:ch that 

q:=qi+l for i= 1,. . . 9 n-1, ;2.8) 

qk = qF- (2.9; 

Only under these conditions we have hl(q4)\h2(& defined. Then 

hl&\hZ(p4) = b,wl.. . w, = b,s;. . .s;e 

for some s:. . .&E V, ~4’30. 
Now we need to show that S =$ s’, . . . &, and then 9’ = q4 will also satisfy (2.6). 

But we have 

s’,. . .&= w*. . .W”, 

for SOme (ql v s1 v WI v 4’1) l . l (qnv q,% w,,, qr) E H. Moreover, by (2.7), (2.8), and (2.9), 
we have obtained 

QI = qr , 
Si = @+I for i=l,...,n-1, 

!?; = qF= 

it is, as a matter of fact, just a slightly different formulation of the notion of the 
derivation step in g-systems. Thus, 

Recall that Q satisfies (2.6), hence S +g sl. . . s,,. Combining these results gives 
s** St s’ G I=** n’v hence it follows that q’= q4 again satisfies (2.6). (And we can 
continue our reasoning again from (B).) 

Mere we give a brief summary of (A) and (B). 
(A) a! must begin with a+ (Otherwise, kn(a) will not be a prefix of h2( c).) For 

Q = a0 condition (2.6) holds, i.e., 

(for some sl. e . s, E V*, n 2 0). 
(B) There are only two possibilities to extend cp satisfying (2.6): 
(Bl) cp’ = qa3; then hl((p’)\h2( cp’) = sl . . . s,, and S =+s sl. . . s,. No fulrher 

extension is possible in this case, which implies that q’ = cy. 
(B2) 6’ = (pp, and rp’ again satisfies (2.6) for some string si m . e sLs E V” derivable 

from S. (/3 must be of the form a,( K x V)+a2H+.) 
Moreover, using Claim 5, h,( (u)\ h2( a) E V* only if Q! is terminated by a3 - 
Thus, if hl(a)\5,(cr) = w E 22 c V*, then Sag w. Since w E Zf, we have w E 

L(G), which proves Theorem 2.2. Cl 
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If we used 2% instead of Xi, then the pair of homomorphisms would characterize 
a language L u {E} since ihe empty word can akvays be expressed in the form 
E = A,(E~\!z~(E). (No matter how h,, h2 are defined ) 

3. Compiexity of the represeatatioa 

l’be construction that we have given allows us to draw some further conclusions. 
We have shown not only a pair of homomctp?~isms such ihat w F Zt is a word in 
L if and only if w = hl(a)\h2(a) for so e LY E ?i, but also, by (24, that G is of a 
special form: Let 

be a derivation of w in g-system G, then 

a E o, z (a,(K x V)“ia2Hni) a3? 
i = ; 

where ni =IWil (for i=O,..., m). Now we shall introduce a mezure of complexity 
for this homomorphic representation (which corresponds to measuring the time 
and/or space complexity of the known types of accepting and/or generating devices). 
The efficiency of representation will be characterized by the length of ar for which 

WW,W = w. 

Definition. For each pair of homomorphisms representing a recursively enumerable 
language L we define 

TSh,hz(w) = min (Irul;h,(a)\h,(a) = w}. 
afEz; 

By Theorem 2.2, TSL,R2( w) is defined for each w E L. Next, we define 

T&,&9 = max{TSh,h,(w); w E L, I4 s 4. 
A pair of homomorphisms hl , h, is said to be of complexity T$& n), if, for each 
word w E L of length n, there exists an a E Xi of length at most TShbhz(n) which 
satisfies w = hl(cu j\h,(a). 

\Ve have the following relationship between the time and space complexity of 

the g-systems and the complexity of the homomorphic representation: If w E L(G) 
is gerlerated by the derivation 

then one can find an a! E 22 satisfying h,(a)\h&t) = w such that 

(Ck!lC2+ E (2+21Wil)s2+4 f Iwli 
i=O i=-0 
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(using (2.4)). Thus, the complexity measure TS corresponds to c 1 Wil of the derivation 
in the g-system. Our next development shows that constant factors do not matter 
in computing TS (the analogous result for Turing machines is known as “the speed-up 
theorem”). 

Theorem 3.6. Let h, , h2 be a pair of homomorphisms representing a language L with 
complexity ‘T’SLIIc2( n). Then, for each k > 0, there is a pair of homomorphisms h i9 hi 
representing the same language with complexity 

TS;h;(n) s [~~,~,(n)Ikl. 

roof. Let hl, h2 be homomorphisms from 2% to Xg, and &c &. Define 

Zb=_GB, &=; &. 
i = 1 

Since strings in C 2 are composed of characters, which can be also viewed as strings 
in 2% (of length at most k), we shall use the following notation: “abc de f” is a -- 
string in 22 consisting of three symbols; “&“, “&“, and “f “. The corresponding 
strings in 2% will be denoted by “abc”, “de”, and “f” respectively. 
Now, 

Finally, 

define an auxiliary homomorphism g from 22 to 2%: 

g(x Ime*Xj)=X1... xj for eachj=O ,..., k, and x1 ,..., X&Z,+ 

we define hi, hi: 

h:(a’) = h,(g(ar’)) for i = 1,2 and each ark ET. 

Let w = hi(cu’)\hi(ar’), for some CU’EZ~~+. Then 

w = K(Q’)\M4 = hM4)\Mg(~‘)), 

so we were able to find Q! = g( a’) E 22 such that w = h,(a!)\hZ( a). 
Conversely, let w = h,(a)\h,(cY) for some cy E Zf;, Q’ = x1. . .x,. Define 

cy’=x 1 c ’ *&&+I l l l -T2k l l l Jqt/kjk-k+l’ . +/kpcqr/kJk+l l . l xr. 

Clearly, la’l= [lal/kl, and also g(a’)=cu. Now 

w = h,W\h2W = Mgb’))\h2(gb’)) = Ma’)\Wa’), 

and we are done. Cl 

le. We shall show that each regular set can be represented by a pair of 
homomorphisms with linear complexity. The idea of the proof is to construct a 
g-system G generating a regular set L “very fast”, i.e., there exists a c > 0 such that, 
for each w E L, we have 

S=w()*GW+& l *aGwm+w and 

f IWil s ClWl* 
i=O 
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The derivation will be of the form 

S*AXB*AxXB* . . .*AJ(2iB+m2i+‘B+ . . 

*Ax2L’ogn’ B*AX*Baw 

(where n = 1 WI, and S, A, B, X are nonterminals). 
We shall now design a g-system for L. Let L be given by a finite-state automaton 

M = (Iw, &, 6, qr, F), where K is a finite set of states, Z; an alphabet, S a transition 
function, qI in K an initial state, and F c_ K a subset of final states. Then we define 
G = ({S, A, B, X}, &, P, S), where P (I-a-transducer for rewriting relation) is given 
by P = (K u {4f, qk, q’}, V, V, H, qf, qb). qf, qb, and q’ are some new states, and H 
(the set of transitions) will be defined as follows: 

0 i 
( ) ii 

. . . 
( ) 111 

The first step of a derivation S*AXB will be done by (af, S, &) E H 
Rewriting AX’B*AXjB for I”ajs2i will be performed by edges 

M, A, A, 4% (4’9 x-9 X-X 4% (4’9 K K 4% and (4’9 B, B, 48 E If. 
For the last step of a derivation AX”B* w, the following transitions are 
needed: 

(!A A, E, 4r) E H, 

h,Xq2kH ifi S(qdd=q2 for each qbq2EK aE&., 

(q, B, E, qb) E H for each 4 E E 

The following will hold for the most efficient derivation of w in 6: 

~~ol,~=l+L’~’ (2+2’)+(2+n) 
i=O 

s3n+2logn+469n. 

Thus, by Theorems 2.2 and 3.1, for each regular set L and arbitrarily large k > 0, 
we can construct a pair of homomorphisms h,, h2 such that w E Zf is a word in L 
if and only if there exists an cy of length at most [I WI/ kl satisfying w = h,( a)\h2( a). 

4. Ssme extensions 

To characterize languages by homomorphisms we can use the right quotient as 
well, as expressed in the following theorem. 

li%xmmR For each recursively enumerable language L there exists a pair of 
homomorphikns h,, h2:Zz+Z2; such that 

L=(wd~;w=h2(cu)/h,(a) forsome~~Z~}=O(h2/hl)n~~. 
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Table 2 

a0 

Ql 
a2 

7;s 4 

(4, A, v, 4’) 

60 

6, 
q&2 

h 

A 
4(A, 4’) 

Sb, 60 
62 
b.h 

E 

(A, dq 
V 

for each xEKx V 
for each XE H 

(Similarly as in Theorem 2.2, & and & are some alphabets, & c &.) The proofs 
of Theorems 2.2 and 4.1 are so similar that we will present only a modification of 
Table 1 (definition of h, , h2) (cf. Table 2). All the rest of the proof is merely a 
“mirror image” of the proof of Theorem 2.2. 

A more important modification of Theorem 2.2 concerns the family of context- 
sensitive languages. 

Theorem 4.2. For each context-sensitive language L there exists a pair of homo- 
morphisms hl, h2:Zz+ Z”, such that 

and 
L={w~2$;w=h,(cu)\h,(a!) forsomecxEZ~}=O(hl\h2)nC~ 

IhI s [h,(x)1 for each x E &. 

(The last condition plays the same role as monotony for the phrase-structure 
grakizmars.) 

The proof is based on the fact (Rovan [8]) that the context-sensitive languages 
correspond to so-called E-free, nonerasing g-systems (i.e., for each (4, s, v, 4’) E H 
we have v f: E). Some additional packing together of symbols in & and -Z;, 3s needed 
(by the method similar to that in Theorem 3.1). 

The converse is also true since one can easily construct a nondeterministic 
linear-bounded Turing machine to a given “monotonic” pair of homomorphisms. 

We can make one step further in this analogy and consider pairs of homomorph- 
isms such that IhI = 1 for each X. However, here is a difference with the Chomsky 
hierarchy since this class of pairs of homomorphisms is capable of representing an 
arbitrary PEOL language. (See [9] for the definition of PEOL.) The exact identification 
of the corresponding language family is an open problem. 
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