A REPRESENTATION OF RECURSIVELY ENUMERABLE LANGUAGES BY TWO HOMOMORPHISMS AND A QUOTIENT*

Viliam GEFFERT
Department of Computer Science, University of P.J. S̆afárik, Jesenná 5, 04154 Košice, Czechoslovakia

Communicated by A. Salomaa
Received February 1987
Revised October 1987

Abstract

A new representation for recursively enumerable languages is presented. It uses a pair of homomorphisms and the left (or right) quotient: For each recursively enumerable language L one can find homomorphisms $h_{1}, h_{2}: \Sigma_{A}^{*} \rightarrow \Sigma_{B}^{*}$, such that $w \in \Sigma_{L}^{*}$ is a word in L if and only if $\mu^{\prime}=h_{1}(\alpha) \backslash h_{2}\left(a^{\prime}\right)$ for some $\alpha \in \Sigma_{A}^{+}$. (Or, each recursively enumerable language can be given by $L=O\left(h_{1} \backslash h_{2}\right) \cap \Sigma_{L}^{*}$, where $O\left(h \backslash h_{2}\right)$ is the so-called right overflow language defined as $O\left(h_{1} \backslash h_{2}\right)=$ $\left\{h_{1}(x) \backslash h_{2}(x) ; x \in \Sigma_{A}^{+}\right\}$.)

1. Introduction

There exist many different representations for recursively enumerable sets. We should mention Turing machines, phrase-structure grammars, and many other different models of algorithms, which are capable of representing the recursively enumerable sets. (See [5, 6, 7, 11] for the definitions of mathematical and language notions used in this paper.) It is of interest to have also a representation based on some simple algebraic operations. We shall present the representation using two homomorphisms, intersection with Σ_{L}^{*}, and a quotient (an operation inverse to concatenation): For each recursively enumerable language L there exists a pair of homomorphisms $h_{1}, h_{2}: \Sigma_{A}^{*} \rightarrow \Sigma_{B}^{*}$ (where Σ_{A}, Σ_{B} are some alphabets, $\Sigma_{B} \supseteq \Sigma_{L}$) such that

$$
\begin{aligned}
L & =O\left(h_{1} \backslash h_{2}\right) \cap \Sigma_{L}^{*} \\
& =\left\{w \in \Sigma_{L}^{*} ; w=h_{1}(\alpha) \backslash h_{2}(\alpha) \text { for some } \alpha \in \Sigma_{A}^{+}\right\}
\end{aligned}
$$

where $O\left(h_{1} \backslash h_{2}\right)$ is the so-called right overflow language of two homomorphisms $\dot{h}_{1}, h_{2}: \Sigma_{A}^{*} \rightarrow \Sigma_{i}^{*}$, defined as $O\left(h_{1} \backslash h_{2}\right)=\left\{h_{1}(x) \backslash h_{2}(x) ; x \in \Sigma_{A}^{+}\right\}$.

Section 2 deals with the proof of this main result. The proof is based on the notion of a g-system, originally introduced by Rovan [8] in order to unify the theory of grammars. Section 3 concerns the complexity of this form of representation, and

[^0]Section 4 discusses some extensions, for example, a modification of the above representation for con'ext-sensitive languages. The results of the paper should be compared with come older similar characterizations; for example, the result of [1] is that for every recursively enumerable language L here exists an erasing h_{0} (a homomorphism either preserving or erasing any symbol), and a pair of homomorphisms h_{1}, h_{2} such that $L=h_{0}\left(e\left(h_{1}, h_{2}\right)\right)$, where $e\left(h_{1}, h_{2}\right)$ is so-called minimal equality set: $e\left(h_{1}, h_{2}\right)=\left\{w \in \Sigma_{A}^{+} ; h_{1}(w)=h_{2}(w)\right.$ and $h_{1}(u) \neq h_{2}(u)$ for each proper nonempty prefix u of $w\}$. The time and space complexity questions concerning this characterization (similar to those in Section 3) can be found in [2]. In [3, 10] some other problems are presented concerning homomorphism equivalence and equality sets (the sets of words on which h_{1} and h_{2} agree, i.e., $\left.E\left(h_{1}, h_{2}\right)=\left\{w \in \Sigma_{A}^{*} ; h_{1}(w)=h_{2}(w)\right\}\right)$.

2. The homomorphic representation

Let us begin with the definition of a g-system [8], which is a generalization of the notion of a grammar. (The definitions of grammar, sentential form, rewriting relation, etc. can be found in $[6,7,11]$.) Rewriting of the sentential form is performed by a $1-a$-transducer $[5 \mathrm{j}$. The resulting word is obtained by an iterative rewriting by this transducer, starting from an initial symbol. Most of the known types of grammars can be naturally defined as special cases of g-systems.

Definition. A generative system (g-system, for short) is a quadruple $G=(N, T, P, S)$, where N and T are finite alphabets of nonterminal and terminal symbols (not necessarily disjoint), S in N is an initial symbol, and P is a finitely specified binary relation over $V^{+} \times V^{*}$ (where $V=N \cup T$).
P (the rewriting relation) is given in the form of a 1 - a-transducer [5] (from V^{+} to V^{*}), i.e., $P=\left(K, V, V, H, q_{1}, q_{F}\right)$, where K is a finite set of states, q_{1}, q_{F} in K are initial and final states respectively, and H is a finite subset of $K \times V \times V^{*} \times K$ (the set of transitions, or edges).

We shall use the following notation:
$u \Rightarrow v$ means that P is able to rewrite u to v, i.e., there exists a path of transitions

$$
\left(q_{1}, s_{1}, v_{1}, q_{1}\right)\left(q_{1}, s_{2}, v_{2}, q_{2}\right) \ldots\left(q_{n-1}, s_{n}, v_{n}, q_{\mathrm{F}}\right) \in H^{+}
$$

such that $s_{1} s_{2} \ldots s_{n}=u$, and $v_{1} v_{2} \ldots v_{n}=v$.
$\Rightarrow *$ denotes the reflexive and transitive closure of \Rightarrow.
Finally, a language generated by G is

$$
L(G)=\left\{w \in T^{*} ; S \Rightarrow^{*} w\right\}
$$

Now we shall show informally that g-systems are capable of generating any recursively enumerable language.

Theorem 2.1 (Rovan [8]). Let G be a phrase-structure grammar, $G=(N, T, P, S)$. Then there exists a g-system G^{\prime} such that $L(G)=L\left(G^{\prime}\right)$.

Proof. We need to show, how a 1 -a-transducer can imitate a rewriting step in G by the rule $A_{1} \ldots A_{n} \rightarrow v \in P$.

The transitions shown in Fig. 1 are nceded in H (they are given graphically, in the form usual in the theory of automata). (We use some new distinct states q_{1}, \ldots, q_{n-1} for each rule $A_{1} \ldots A_{n} \rightarrow v \in P$, so only the initial and final states are shared by different paths for different rules.)

Fig. 1.
It is easily seen that this set of transitions rewrites $A_{1} \ldots A_{n}$ to v. Moreover, we shall add so-called copying cycles to H, i.e., transitions $(q, x, x, q) \in H$, for each $x \in V=N \cup T$, and $q \in\left\{q_{1}, q_{F}\right\}$. This gives us $u_{1} A_{1} \ldots A_{n} u_{2} \Rightarrow g_{G^{\prime}} u_{1} v u_{2}$, for each $u_{1}, u_{2} \in V^{*}$.

It is easy to see that for each g-system G there exists an equivalent g-system \boldsymbol{G}^{\prime} (i.e., generating the same language) such that the initial and final states of its 1-a-transducer are distinct. In what follows we shall therefore assume (for technical reasons) that in each g-system $q_{1} \neq q_{\mathrm{F}}$. We are now ready to establish the main result, namely, the representation of recursively enumerable languages by a pair of homomorphisms and the left quotient. As will be shown later, we can use the right quotient as well. The quotients are understood as operations inverse to concatenation, i.e., $u \backslash u v=v, u v / v=u$, for each u, v. This implies that $v \backslash w$ is defined only if v is a prefix of w; an analogous condition holds for v / w. These operations can be extended to languages, for example, $L_{1} / L_{2}=\left\{u / v ; u \in L_{1}, v \in L_{2}\right\}$. Now we can define overflow languages of the homomorphisms h_{1}, h_{2} :

$$
O\left(h_{1} \backslash h_{2}\right)=\left\{h_{1}(x) \backslash h_{2}(x) ; x \in \Sigma_{A}^{+}\right\}, \quad O\left(h_{1} / h_{2}\right)
$$

$=\left\{h_{1}(x) / h_{2}(x) ; x \in \Sigma_{A}^{+}\right\}$.
The proof of the following theorem is relatively long and technical. But, to obtain an idea how the mechanism works, it is sufficient to read only part (i) at first reading.

Theorem 2.2. For each effectively given recursively enumerable language L, one can effectively construct a pair of homomorphisms $h_{1}, h_{2}: \Sigma_{A}^{*} \rightarrow \Sigma_{B}^{*}$ such that

$$
\begin{aligned}
L & =O\left(h_{1} \backslash h_{2}\right) \cap \Sigma_{L}^{*} \\
& =\left\{w \in \Sigma_{L}^{*} ; w=h_{1}(\alpha) \backslash h_{2}(\alpha) \quad \text { for some } \alpha \in \Sigma_{A}^{+}\right\} .
\end{aligned}
$$

(Here Σ_{A}, Σ_{B} are some alphabets, $\Sigma_{L} \subseteq \Sigma_{B}$.)
Thus, $w \in \Sigma_{L}^{*}$ is a word in L if and only if there ;ist: some $\alpha \in \Sigma_{A}^{+}$such that $h_{2}(\alpha)=h_{1}(\alpha) w$

Proof. We may use Theorem 2.1 and assume that the recursively enumerable language L is given by some g-system. Let $L=L(G)$ for some g-system $G=$ (N, T, P, S), where P is a $1-a$-transducer, i.e., $P=\left(K, V, V, H, q_{I}, q_{F}\right) .(V=N \cup T$, and $T=\Sigma_{L}$.)

As mentioned above, we shall assume without loss of generality that $q_{\mathrm{I}} \neq \boldsymbol{q}_{\mathrm{F}}$. (The proof could be done even without this assumption, but it would become more complicated.) We can also assume that H, K, V, and $K \times V$ are pairwise disjoint sets. Define

$$
\begin{aligned}
& \Sigma_{A}=\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\} \cup K \times V \cup H, \\
& \Sigma_{B}=\left\{b_{0}, b_{1}, b_{2}\right\} \cup K \cup V \cup K \times V,
\end{aligned}
$$

where $a_{0}, a_{1}, a_{2}, a_{3}, b_{0}, b_{1}, b_{2}$ are new symbols. We now define h_{1} and h_{2} as shown in Table 1.

Table 1

$x \in \Sigma_{A}$	$h_{1}(x)$	$h_{2}(x)$	Remark
a_{0}	b_{0}	$b_{0} b_{1} S$	
a_{1}	b_{1}	b_{2}	
a_{2}	$b_{2} q_{1}$	$q_{F} b_{1}$	
a_{3}	b_{1}	ε	
(q, A)	A	$q(q, A)$	for each $x \in K \times V$
$\left(q, A, v, q^{\prime}\right)$	$(q, A) q^{\prime}$	v	for each $x \in H$

(i) First, we are going to prove that if $w \in L(G)$, then $w=h_{1}(\alpha) \backslash h_{2}(\alpha)$ for some $\alpha \in \Sigma_{A}^{+}$. This will also give us an idea how this system of homomorphisms can imitate the derivation in g-system \boldsymbol{G}.

Claim 1. If $S \Rightarrow_{G}^{*} w$, then there exists an $\alpha \in \Sigma_{A}^{+}$such that

$$
\begin{equation*}
h_{2}(\alpha)=h_{1}(\alpha) b_{1} w . \tag{2.1}
\end{equation*}
$$

Proof. We proceed by induction on the length of a derivation in G :
(A) If $w=S$ (the length of derivation is zero), then (2.1) holds for $\alpha=a_{0}$:

$$
\begin{array}{ll}
h_{1}(\alpha): & b_{0}, \\
h_{2}(\alpha): & b_{0} b_{1} S .
\end{array}
$$

(B) Now assume Claim 1 holds for derivation of length k. Let $S \Rightarrow_{G}^{*} u \Rightarrow_{G} w$ be a derivation of length $k+1$. We have, by the induct on hypothesis, $\alpha^{\prime} \in \Sigma_{A}^{+}$such that

$$
\begin{equation*}
h_{2}\left(\alpha^{\prime}\right)=h_{1}\left(\alpha^{\prime}\right) b_{1} u \tag{2.2}
\end{equation*}
$$

Since $u \Rightarrow_{G} w$, there exists a sequence of transitions

$$
\left(k_{1}, s_{1}, v_{1}, k_{1}^{\prime}\right), \ldots,\left(k_{n}, s_{n}, v_{n}, k_{n}^{\prime}\right)
$$

in Hi^{+}such that

$$
\begin{array}{ll}
u=s_{1} \ldots s_{n}, & n>0, s_{i} \in V \text { for } i=1, \ldots, n \\
w=v_{1} \ldots v_{n}, & v_{i} \in V^{*} \text { for } i=1, \ldots, n \\
k_{1}=q_{1}, & \tag{2.3}\\
k_{i}^{\prime}=k_{i+1} & \text { for } i=1, \ldots, n-1, \\
k_{n}^{\prime}=q_{\mathrm{F}} &
\end{array}
$$

We shall now construct α by successively appending certain letters to α^{\prime}, thus obtaining a sequence of words $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$, and $\alpha_{5}=\alpha$. First, let $\alpha_{1}=\alpha^{\prime}$. By (2.2), the string $h_{1}\left(\alpha_{1}\right)$ is a prefix of $h_{2}\left(\alpha_{1}\right)$, and $h_{1}\left(\alpha_{1}\right) \backslash h_{2}\left(\alpha_{1}\right)=b_{1} u$:

$$
\begin{array}{ll}
\alpha_{1}=\alpha^{\prime} & \\
h_{1}\left(\alpha_{1}\right): & h_{1}\left(\alpha^{\prime}\right), \\
h_{2}\left(\alpha_{1}\right): & h_{1}\left(\alpha^{\prime}\right) b_{1} \underbrace{s_{1} \ldots s_{n}}_{u} .
\end{array}
$$

Let us append a_{1} to α_{1}, i.e., $\alpha_{2}=\alpha^{\prime} a_{1}$. This is illustrated as follows:

$$
\begin{array}{ll}
\alpha_{2}=\alpha^{\prime} a_{1} & \\
h_{1}\left(\alpha_{2}\right): & h_{1}\left(\alpha^{\prime}\right) b_{1} \\
h_{2}\left(\alpha_{2}\right): & h_{1}\left(\alpha^{\prime}\right) b_{1} s_{1} \ldots s_{n} b_{2}
\end{array}
$$

Now we extend α_{2} by $\left(k_{1}, s_{1}\right) \ldots\left(k_{n}, s_{n}\right)$:

$$
\begin{aligned}
& \alpha_{3}=\alpha^{\prime} a_{1}\left(k_{1}, s_{1}\right) \ldots\left(k_{n}, s_{n}\right) \\
& h_{1}\left(\alpha_{3}\right): \quad h_{1}\left(\alpha^{\prime}\right) b_{1} s_{1} \ldots s_{n}, \\
& h_{2}\left(\alpha_{3}\right): \quad h_{1}\left(\alpha^{\prime}\right) b_{1} s_{1} \ldots s_{n} b_{2} k_{1}\left(k_{1}, s_{1}\right) \ldots k_{n}\left(k_{n}, s_{n}\right) .
\end{aligned}
$$

Next, we append the symbol a_{2} :

$$
\begin{aligned}
& \alpha_{4}=\alpha^{\prime} a_{1}\left(k_{1}, s_{1}\right) \ldots\left(k_{n}, s_{n}\right) a_{2} \\
& h_{1}\left(\alpha_{4}\right): \quad \ldots b_{1} s_{1} \ldots s_{n} b_{2} q_{1}, \\
& h_{2}\left(\alpha_{4}\right): \quad \ldots \dot{b}_{1} s_{1} \ldots s_{n} b_{2} k_{1}\left(k_{1}, s_{1}\right) \ldots k_{n}\left(k_{n}, s_{n}\right) q_{F} b_{1} .
\end{aligned}
$$

$h_{1}\left(\alpha_{4}\right)$ still remains a prefix of $h_{2}\left(\alpha_{4}\right)$, because $q_{I}=k_{1}$ by (2.3). Finally, let us append $\left(k_{1}, s_{1}, v_{1}, k_{1}^{\prime}\right) \ldots\left(k_{n}, s_{n}, v_{n}, k_{n}^{\prime}\right):$

$$
\begin{aligned}
& \alpha_{5}=\alpha^{\prime} a_{1}\left(k_{1}, s_{1}\right) \ldots\left(k_{n}, s_{n}\right) a_{2}\left(k_{1}, s_{1}, v_{1}, k_{1}^{\prime}\right) \ldots\left(k_{n}, s_{n}, v_{n}, k_{n}^{\prime}\right) \\
& h_{1}\left(\alpha_{5}\right): \quad \ldots b_{2} a_{i}\left(k_{i}, s_{i}\right) k_{1}^{\prime}\left(k_{2}, s_{2}\right) k_{2}^{\prime} \ldots\left(k_{n}, s_{n}\right) k_{n}^{\prime} \\
& \dot{h}_{2}\left(\alpha_{5}\right): \quad \ldots b_{2} k_{1}\left(k_{1}, s_{1}\right) k_{2}\left(k_{2}, s_{2}\right) \ldots k_{n}\left(k_{n}, s_{n}\right) q_{F} b_{1} v_{1} v_{2} \ldots v_{n} .
\end{aligned}
$$

By (2.3) we have $k_{i}^{\prime}=k_{i+1}$ for $i=1, \ldots, n-1, k_{i=}^{\prime}=q_{F}$, and also $v_{1} \ldots v_{n}=w$. Then $h_{1}\left(\alpha_{5}\right)$ is still a prefix of $h_{2}\left(\alpha_{5}\right)$. Note that the strings $\alpha=\alpha_{5}$ and $w=v_{1} \ldots v_{n}$ again satisfy (2.1) and Claim 1 is verified.

We are now ready to show that for each $w \in L(G)$ there exists an $\alpha \in \Sigma_{A}^{+}$such that $w=h_{1}(\alpha) \backslash h_{2}(\alpha)$: The existence of $\alpha^{\prime} \in \Sigma_{A}^{+}$such that $h_{2}\left(\alpha^{\prime}\right)=h_{1}\left(\alpha^{\prime}\right) b_{1} w$ follows from Claim 1. Let $\alpha=\alpha^{\prime} a_{3}$. Clearly, $h_{2}(\alpha)=h_{1}(\alpha) w$, i.e., $w=h_{1}(\alpha) \backslash h_{2}(\alpha)$.

Moreover, we have also proved that having a derivation

$$
S=w_{0} \Rightarrow_{G} w_{1} \Rightarrow_{G} \cdots \Rightarrow_{G} w_{m} \Rightarrow_{G} w,
$$

α can always be chosen in the form

$$
\begin{equation*}
a_{0}\left(\prod_{i=1}^{m}\left(a_{1}(K \times V)^{n_{i}} a_{2} H^{n_{i}}\right)\right) a_{3} \tag{2.4}
\end{equation*}
$$

where $n_{i}=\left|w_{i}\right|$. This proves (i).
(ii) (Onily-if): Now we need to show that the only way of forming an α with the desired properties is as shown in (i), i.e., if $h_{1}(\alpha) \backslash h_{2}(\alpha)=w \in V^{*}$, then $S \Rightarrow_{G}^{*} w$. More exactly, we shall show that

- if $h_{1}(\alpha)$ is a prefix of $h_{2}(\alpha)$, then α has to be a prefix of some word in $a_{0}\left(a_{1}(K \times\right.$ $\left.V)^{n} a_{2} H^{n}\right)^{*} a_{3}$;
- moreover, if $\alpha \in a_{0}\left(a_{1}(K \times V)^{n} a_{2} H^{n}\right)^{*}$, then $h_{1}(\alpha) \backslash h_{2}(\alpha)=b_{1} w$ for some w derivable from S;
- if α terminates in a_{3}, then $h_{1}(\alpha) \backslash h_{2}(\alpha)=w$, for some w derivable from S. Otherwise, $h_{1}(\alpha) \backslash h_{2}(\alpha) \notin \Sigma_{L}^{*}$.
We have to prove some claims first.
Claim 2. If $h_{1}(\alpha)$ is a prefix of $h_{2}(\alpha), \alpha \in \Sigma_{A}^{+}$, then α begins with a_{0}.
Proof. Since $h_{1}(\alpha)$ is a prefix of $h_{2}(\alpha)$, we have $h_{2}(\alpha)=h_{1}(\alpha) w$ for some $w \in \sum_{B}^{*}$. We prove Claim 2 by elimination of all other possibilities (see also Table 1).

Case 1: α does not begin with a_{1}, a_{2}, or $x \in K \times V$. In this case, $h_{2}(\alpha)$ and $h_{1}(\alpha) w$ begin with different symbols.

Case 2: α cannot begin with $x \in H ; h_{1}\left(\left(q, A, v, q^{\prime}\right)\right)=(q, A) q^{\prime}$. Since in this case $h_{1}(\alpha) w$ begins with $(q, A) \in K \times V$, the string $h_{2}(\alpha)$ must also begin with $(q, A) \in$ $K \times V$, which is a contradiction since $(q, A) \in K \times V$ must be preceded by $q \in K$ in $h_{2}(\alpha)$ (see Table 1).

Case 3: Similarly, α cannot begin with $a_{3}: h_{1}\left(a_{3}\right)=b_{1}$, so $h_{2}(\alpha)$ must also begin with b_{1}, a contradiction with Table 1.

This proves Claim 2.
Claim 3. If $\quad \alpha) \backslash h_{2}(\alpha)=w$, then there is no loss of generality in assuming that the only occurrence of a_{0} in α is at the beginning, i.e., $\alpha=a_{0} \alpha^{\prime}, \alpha^{\prime}$ does not contain any a_{0}.

Proof. Given an $\bar{\alpha}$ such that $h_{2}(\bar{\alpha})=h_{1}(\bar{\alpha}) w$, one can effectively find the shortest $\alpha \in \Sigma_{A}^{+}$satisfying $h_{2}(\alpha)=h_{1}(\alpha) w$ (simply by testing all $\alpha \in \Sigma_{A}^{+}$such that $|\alpha| \leqslant|\bar{\alpha}|$).

Suppose that α contains the symbol a_{0} at least twice, that is, $\alpha=a_{0} \beta a_{0} \gamma$. (By Claim 2, the first a_{0} must occur at the beginning.) Suppose the two leftmost a_{0} 's are displayed. Thus β does not contain a_{0} and hence neither of $h_{1}(\beta), h_{2}(\beta)$ contains
the symbol b_{0} :

Then, ailso, $h_{2}\left(a_{0} \gamma\right)=h_{1}\left(a_{0} \gamma\right) w$, which is a contradiction since α is the shortest string with this property.

Claim 4. If $h_{1}(\alpha) \backslash h_{2}(\alpha)=w$ for some $w \in \Sigma_{\Sigma}^{*}$, then α is terminated by a_{3}.
Proof. Clearly,

$$
\begin{equation*}
h_{2}(\alpha)=h_{1}(\alpha) w \tag{2.5}
\end{equation*}
$$

By the same reasoning as in Claim 2, we are going to prove Clain 4 by elimination of all other possibilities:

Case 1: α is not terminated by a_{0} : Let $\alpha=\alpha^{\prime} a_{0}$. Thus, by Claim 2 and 3, $\alpha^{\prime}=\varepsilon$ since the only a_{0} in α is at the beginning. Then $\alpha=a_{0}$ and $b_{0} b_{1} S=b_{0} w$. Then $w=b_{1} S \notin \Sigma_{L}^{*}$, a contradiction.

Case 2: α is not terminated by a_{1} : By substitution into (2.5), we obtain $\ldots b_{2}=$ $\ldots b_{1} w$. Now, there are two possibilities: Either $w \neq \varepsilon$; then the right-hand side is terminated by some $s \in \Sigma_{L}$, or $w=\varepsilon$ and then it is terminated by b_{1}. In either case, it terminates with a symbol different from b_{2}, which is a contradiction.

Case 3: The proof for α terminated by a_{2} is similar: Using (2.5), we get $\ldots q_{F} b_{1}=\ldots b_{2} q_{1} w$.

Case 4: α is not terminated by $(q, A) \in K \times V: \ldots q(q, A)=\ldots A w$. Since $w \in \Sigma_{L}^{*}$ and $A \in \Sigma_{L}$, the left- and right-hand sides end by different symbols, a contradiction.

Case 5: α cannot be terminated by $\left(q, A, v, q^{\prime}\right) \in H$: By substitution into (2.5), we have $\ldots v=\ldots(q, A) q^{\prime} w$. Thus, either $w=\varepsilon$ and then the rightmost symbol is $q^{\prime} \in K$, or $w \neq \varepsilon$ and then the right-hand side contains a substring $q^{\prime} s$ for some $s \in V$. This gives a contradiction in either case since $q^{\prime} \in K$ must always be followed by $\left(q^{\prime}, B\right) \in K \times V$, or by b_{1}. (For the left-hand side of the equation is $h_{2}(\alpha)$.)

This proves Claim 4.
Claim 5. If $h_{1}(\alpha) \backslash h_{2}(\alpha)=w$ for some $w \in \Sigma_{L}^{*}$, then α cannot contain a_{3} more than once.
Proof. Define $N_{b}(w)=\dot{N}_{b_{1}}(w)+N_{b_{2}}(w)+N_{b_{0}}(w) .\left(N_{b}(w)\right.$ denotes the number of b 's in w.) Now, iet us count $N_{b}(w)$:

$$
\begin{aligned}
N_{b}(w) & =N_{b}\left(h_{1}(\alpha) \backslash h_{2}(\alpha)\right)=N_{b}\left(h_{2}(\alpha)\right)-N_{b}\left(h_{1}(\alpha)\right) \\
& =N_{a_{0}}(\alpha)-N_{a_{3}}(\alpha)
\end{aligned}
$$

since $N_{b}\left(h_{2}(x)\right)-N_{b}\left(h_{1}(x)\right)=0$ for each x different from a_{0}, a_{3}, and $N_{b}\left(h_{2}\left(a_{0}\right)\right)$ $N_{b}\left(h_{1}\left(a_{0}\right)\right)=1$ and $N_{b}\left(h_{2}\left(a_{3}\right)\right)-N_{b}\left(h_{1}\left(a_{3}\right)\right)=-1$. By Claims 2 and 3, α contains exactly one a_{0}; therefore,

$$
N_{b}(w)=1-N_{a_{3}}(\alpha)
$$

Since the number of \boldsymbol{b} 's in \boldsymbol{w} must be a nonnegative integer, we have

$$
N_{a_{3}}(\alpha) \leqslant 1 .
$$

In addition, we have also proved that if α does not contain any a_{3}, then $w=h_{1}(\alpha) \backslash h_{2}(\alpha) \notin V^{*}$ since w contains exactly one b-symbol.

Now, let us present a brief summary of the claims:
$-\alpha$ begins with a_{0} and ends by a_{3}.

- No more a_{0} 's, a_{3} 's are contained in α.
- If α does not contain a_{3}, then $h_{1}(\alpha) \backslash h_{2}(\alpha) \notin \Sigma_{L}^{*}$.

Let us now consider the form of $\alpha \in \Sigma_{A}^{+}$, such that $h_{1}(\alpha)$ is a prefix of $h_{2}(\alpha)$ and $h_{1}(\alpha) \backslash h_{2}(a) \in \Sigma_{L}^{*}$, in a more detailed way. We shall do so by considering the form of all possible prefixes of such α and determining all possible ways of extending these prefixes to obtain again a prefix of α. In doing so we shall show that there exists a prefix φ satisfying

$$
\begin{align*}
& h_{1}(\varphi) \backslash h_{2}(\varphi)=b_{1} s_{1} \ldots s_{n} \text { and } \tag{2.6}\\
& S \Rightarrow{ }_{G}^{*} s_{1} \ldots s_{n}
\end{align*}
$$

for some $s_{1} \ldots s_{n} \in V, n \geqslant 0$. Then we shall show that Raving any prefix φ satisfying (2.6) (for some $s_{1} \ldots s_{n} \in V^{*}$ derivable from S), it can only be extended so that another prefix φ^{\prime} satisfying (2.6) is obtained (for some $s_{1}^{\prime} \ldots s_{n^{\prime}}^{\prime} \in V^{*}$ derivable from S).
(A) We know that α must begin with a_{0}, so there is a prefix satisfying (2.6), namely $\varphi=a_{0}$, since

$$
\begin{array}{ll}
h_{1}(\varphi): & b_{0}, \\
h_{2}(\varphi): & b_{0} b_{1} S .
\end{array}
$$

(Clearly, $h_{1}(\varphi) \backslash h_{2}(\varphi)=b_{1} S$, and $S \Rightarrow{ }_{G}^{*} S$.)
(B) Let now φ be an arbitrary prefix of α satisfying condition (2.6). Then

$$
\begin{array}{ll}
h_{1}(\varphi): & y_{s} \\
\dot{h}_{2}(\varphi): & y b_{1} s_{1} \ldots s_{n}
\end{array}
$$

(for sonse $y \in \Sigma_{B}^{*}$). There are two possible ways of extending φ such that $h_{1}(\varphi)$ will remairi a prefix of $h_{2}(\varphi)$:

$$
\varphi_{1}=\varphi a_{1} \quad \text { or } \quad \varphi_{1}=\varphi a_{3}
$$

because only $h_{1}\left(a_{1}\right)$ and $h_{1}\left(a_{3}\right)$ begin with symbol b_{1}.
(Bi) Let us try to append a_{3} first, i.e., $\varphi_{1}=\varphi a_{3}$. Then

$$
\begin{array}{ll}
h_{1}\left(\varphi_{1}\right): & y b_{1}, \\
h_{2}\left(\varphi_{1}\right): & y b_{1} s_{1} \ldots s_{n} .
\end{array}
$$

In this case, we have $h_{1}\left(\varphi_{1}\right) \backslash h_{2}\left(\varphi_{1}\right)=s_{1} \ldots s_{n} \in V^{*}$. No further extension of φ_{1} is possible by Claims 4 and 5. a_{3} can be used only as the rightmost terminating character, which implies that $\alpha=\varphi_{1}$.

But, using (2.6), we have also $S \Rightarrow_{\sigma}^{*} s_{1} \ldots s_{n}$, and we are done.
(B2) Another possibility is to append a_{1}, that is, $\varphi_{1}=\varphi a_{1}$:

$$
\begin{array}{ll}
h_{1}\left(\varphi_{1}\right): & y b_{1}, \\
h_{2}\left(\varphi_{1}\right): & y b_{1} s_{1} \ldots s_{n} b_{2} .
\end{array}
$$

There are now two cases.
(B2.1) If $\boldsymbol{n}=0$, then we have

$$
\begin{array}{ll}
h_{1}\left(\varphi_{1}\right): & y b_{1}, \\
h_{2}\left(\varphi_{1}\right): & y b_{1} b_{2} .
\end{array}
$$

Now we are forced to append a_{2}, i.e., $\varphi_{2}=\varphi_{1} a_{2}$:

$$
\begin{array}{ll}
h_{1}\left(\varphi_{2}\right): & y b_{1} b_{2} q_{1} \\
h_{2}\left(\varphi_{2}\right): & y b_{1} b_{2} q_{F} b_{1} .
\end{array}
$$

But $h_{1}(\alpha)$ will remain a prefix of $h_{2}(\alpha)$ only if $q_{I}=q_{F}$, which contradicts one of the main initial assumptions of the theorem. Thus, this case has led up to a dead end, and we cannot extend φ by a_{1} if $n=0$.
(B2.2) Let $n>0$. Since for each $x \in \Sigma_{A}$ (except $x \in K \times V$) we have $h_{1}(x) \notin V^{*}$, the only possible extension is $\varphi_{2}=\varphi_{1}\left(q_{1}, s_{1}\right) \ldots\left(q_{n}, s_{n}\right)$ for some $q_{1} \ldots q_{n} \in K$. Then,

$$
\begin{array}{ll}
h_{1}\left(\varphi_{2}\right): & y b_{1} s_{1} \ldots s_{n}, \\
h_{2}\left(\varphi_{2}\right): & y b_{1} s_{1} \ldots s_{n} b_{2} q_{i}\left(q_{1}, s_{1}\right) \ldots q_{n}\left(q_{n}, s_{n}\right) .
\end{array}
$$

a_{2} is the only symbol for which $h_{1}(x)$ begins with $b_{2} ; h_{1}\left(a_{2}\right)=b_{2} q_{1}$. Clearly, further extension of φ_{2} is possible only if

$$
\begin{equation*}
q_{1}=q_{1} . \tag{2.7}
\end{equation*}
$$

For $\varphi_{3}=\varphi_{2} a_{2}$ we obtain

$$
\begin{array}{ll}
h_{1}\left(\varphi_{3}\right): & y b_{1} s_{1} \ldots s_{n} b_{2} q_{\mathrm{I}}, \\
h_{2}\left(\varphi_{3}\right): & y b_{1} s_{1} \ldots s_{n} b_{2} q_{1}\left(q_{1}, s_{1}\right) q_{2} \ldots\left(q_{n}, s_{n}\right) q_{\mathrm{F}} t
\end{array}
$$

Because $h_{1}\left(\varphi_{3}\right) \backslash h_{2}\left(\varphi_{3}\right) \in(K \times V . K)^{+} b_{1}$, we must extend φ_{3} by symbors from H. (If $x \notin H$, then $h_{1}(x)$ contains some symbols which are neithe• in $K \times V$, nor in K.)

So let

$$
\varphi_{4}=\varphi_{3}\left(q_{1}, s_{1}, w_{1}, q_{1}^{\prime}\right) \ldots\left(q_{n}, s_{n}, w_{n}, q_{n}^{\prime}\right)
$$

for some $w_{i} \in V^{*}, q_{i}^{\prime} \in K$, such that $\left(q_{i}, s_{i}, w_{i}, q_{i}^{\prime}\right) \in H$. This gives

$$
\begin{array}{ll}
h_{1}\left(\varphi_{4}\right): \ldots b_{2} q_{1}\left(q_{1}, s_{1}\right) q_{1}^{\prime} \ldots\left(q_{i}, s_{i}\right) q_{i}^{\prime} \ldots\left(q_{n}, s_{n}\right) q_{n}^{\prime} \\
h_{2}\left(\varphi_{4}\right): & \ldots b_{2} q_{1}\left(q_{1}, s_{1}\right) q_{2} \ldots\left(q_{i}, s_{i}\right) q_{i+1} \ldots\left(q_{n}, s_{n}\right) q_{F} b_{1} w_{1} \ldots w_{i} \ldots w_{n}
\end{array}
$$

But $h_{1}\left(\varphi_{4}\right)$ will remain a prefix of $\boldsymbol{h}_{2}\left(\varphi_{4}\right)$ only if we are able to pick and choose $\left(q_{i}, s_{i}, w_{i}, q_{i}^{\prime}\right) \in H$ such that

$$
\begin{align*}
& q_{i}^{\prime}=q_{i+1} \quad \text { for } i=1, \ldots, n-1, \tag{2.8}\\
& q_{n}^{\prime}=q_{\mathrm{F}} \tag{2.9}
\end{align*}
$$

Only under these conditions we have $h_{1}\left(\varphi_{4}\right) \backslash h_{2}\left(\varphi_{4}\right)$ defined. Then

$$
h_{1}\left(\varphi_{4}\right) \backslash h_{2}\left(\varphi_{4}\right)=b_{1} w_{1} \ldots w_{n}=b_{1} s_{1}^{\prime} \ldots s_{n^{\prime}}^{\prime}
$$

for some $s_{1}^{\prime} \ldots s_{n^{\prime}}^{\prime} \in V, n^{\prime} \geqslant 0$.
Now we need to show that $S \Rightarrow{ }_{G}^{*} s_{1}^{\prime} \ldots s_{n^{\prime}}^{\prime}$, and then $\varphi^{\prime}=\varphi_{4}$ will also satisfy (2.6). But we have

$$
s_{1}^{\prime} \ldots s_{n^{\prime}}^{\prime}=w_{1} \ldots w_{n}
$$

for some $\left(q_{1}, s_{1}, w_{1}, q_{1}^{\prime}\right) \ldots\left(q_{n}, s_{n}, w_{n}, q_{n}^{\prime}\right) \in H$. Moreover, by (2.7), (2.8), and (2.9), we have obtained

$$
\begin{aligned}
& q_{1}=q_{1}, \\
& q_{i}^{\prime}=q_{i+1} \quad \text { for } i=1, \ldots, n-1, \\
& q_{n}^{\prime}=q_{\mathrm{F}}
\end{aligned} \quad
$$

It is, as a matter of fact, just a slightly different formulation of the notion of the derivation step in g-systems. Thus,

$$
s_{1} \ldots s_{n} \Rightarrow_{G} s_{1}^{\prime} \ldots s_{n^{\prime}}^{\prime}
$$

Recall that φ satisfies (2.6), hence $S \Rightarrow{ }_{G}^{*} s_{1} \ldots s_{n}$. Combining these results gives $S \Rightarrow{ }_{G}^{*} s_{1}^{\prime} \ldots s_{n^{\prime}}^{\prime}$, hence it follows that $\varphi^{\prime}=\varphi_{4}$ again satisfies (2.6). (And we can continue our reasoning again from (B).)

Here we give a brief summary of (A) and (B).
(A) α must begin with a_{0}. (Otherwise, $h_{1}(\alpha)$ will not be a prefix of $h_{2}\left(c^{\prime}\right)$.) For $\varphi=a_{0}$ condition (2.6) holds, i.e.,

$$
\begin{align*}
& h_{1}(\varphi) \backslash h_{2}(\varphi)=b_{1} s_{1} \ldots s_{n} \text { and } \tag{2.6}\\
& S \Rightarrow_{G}^{*} s_{1} \ldots s_{n}
\end{align*}
$$

(for some $s_{1} \ldots s_{n} \in V^{*}, n \geqslant 0$).
(B) There are only two possibilities to extend φ satisfying (2.6):
(B1) $\varphi^{\prime}=\varphi a_{3}$; then $h_{1}\left(\varphi^{\prime}\right) \backslash h_{2}\left(\varphi^{\prime}\right)=s_{1} \ldots s_{n}$, and $S \Rightarrow_{G}^{*} s_{1} \ldots s_{n}$. No further extension is possible in this case, which implies that $\varphi^{\prime}=\alpha$.
(B2) $\varphi^{\prime}=\varphi \beta$, and φ^{\prime} again satisfies (2.6) for some string $s_{1}^{\prime} \ldots s_{n^{\prime}}^{\prime} \in V^{*}$ derivable from S. (β must be of the form $a_{1}(K \times V)^{+} a_{2} H^{+}$.)

Moreover, using Claim $5, h_{1}(\alpha) \backslash h_{2}(\alpha) \in V^{*}$ only if α is terminated by a_{3}.
Thus, if $h_{1}(\alpha) \backslash h_{2}(\alpha)=w \in \Sigma_{L}^{*} \subseteq V^{*}$, then $S \Rightarrow_{C}^{*} w$. Since $w \in \Sigma_{L}^{*}$, we have $w \in$ $L(G)$, which proves Theorem 2.2.

If we used Σ_{A}^{*} instead of Σ_{A}^{+}, then the pair of homomorphisms would characterize a language $L \cup\{\varepsilon\}$ since the empty word can al:ways be expressed in the form $\varepsilon=\dot{n}_{1}(\varepsilon) \backslash h_{2}(\varepsilon)$. (No matter how h_{1}, h_{2} are defined)

3. Complexity of the representation

The construction that we have given allows us to draw some further conclusions. We have shown not only a pair of homomerpinisms such inat $w \in \boldsymbol{\Sigma}_{L}^{*}$ is a word in L if and only if $w=h_{1}(\alpha) \backslash h_{2}(\alpha)$ for some $\alpha \in \Sigma_{A}^{+}$, but also, by (2.4), that α is of a special form: Let

$$
S=w_{0} \Rightarrow_{G} w_{1} \Rightarrow_{G} \cdots \Rightarrow_{G} w_{m} \Rightarrow_{G} w
$$

be a derivation of w in g-system G, then

$$
\alpha \in a_{0}\left(\prod_{i=i}^{m}\left(a_{1}(K \times V)^{n_{i}} a_{2} H^{n_{i}}\right)\right) a_{3}
$$

where $n_{i}=\left|w_{i}\right|$ (for $\left.i=0, \ldots, m\right)$. Now we shall introduce a measure of complexity for this homomorphic representation (which corresponds to measuring the time and/or space complexity of the known types of accepting and/or generating devices). The efficiency of representation will be characterized by the length of α for which $h_{1}(\alpha) \backslash h_{2}(\alpha)=w$.

Definition. For each pair of homomorphisms representing a recursively enumerable language L we define

$$
\mathrm{TS}_{h_{1} h_{2}}(w)=\min _{\alpha \in \Sigma_{A}^{+}}\left\{|\alpha| ; h_{1}(\alpha) \backslash h_{2}(\alpha)=w\right\}
$$

By Theorem 2.2, $\mathrm{TS}_{h_{1} h_{2}}(w)$ is defined for each $w \in L$. Next, we define

$$
\mathrm{TS}_{h_{1} h_{2}}(n)=\max \left\{\mathrm{TS}_{h_{1} h_{2}}(w) ; w \in L,|w| \leqslant n\right\}
$$

A pair of homomorphisms h_{1}, h_{2} is said to be of complexity $\operatorname{TS}_{h_{1} h_{2}}(n)$, if, for each word $w \in L$ of length n, there exists an $\alpha \in \Sigma_{A}^{+}$of length at most $\operatorname{TS}_{h_{1} h_{2}}(n)$ which satisfies $w=h_{1}(\alpha) \backslash h_{2}(\alpha)$.

We have the following relationship between the time and space complexity of the g-systems and the complexity of the hemomorphic representativa: If $w \in L(G)$ is generated by the derivation

$$
S=w_{0} \Rightarrow_{G} w_{1} \Rightarrow_{G} \cdots \Rightarrow_{G} w_{m} \Rightarrow_{G} w
$$

then one can find an $\alpha \in \Sigma_{A}^{+}$satisfying $h_{1}(\alpha) \backslash h_{2}(\alpha)=w$ such that

$$
\left|c^{\prime}\right| \leqslant 2+\sum_{i=0}^{m}\left(2+2\left|w_{i}\right|\right) \leqslant 2+4 \sum_{i=0}^{m}\left|w_{i}\right|
$$

(using (2.4)). Thus, the complexity measure TS corresponds to $\sum\left|w_{i}\right|$ of the derivation in the g-system. Our next development shows that constant factors do not matter in computing TS (the analogous result for Turing machines is known as "the speed-up theorem").

Theorem 3.1. Let h_{1}, h_{2} be a pair of homomorphisms representing a ianguage L with complexity $\mathrm{TS}_{h_{1} h_{2}}(n)$. Then, for each $k>0$, there is a pair of homoinorphisms $h_{1}^{\prime}, h_{2}^{\prime}$ representing the same language with complexity

$$
\mathrm{TS}_{h_{1} h_{2}}(n) \leqslant\left\lceil\mathrm{TS}_{h_{1} h_{2}}(n) / k\right\rceil
$$

Proof. Let h_{1}, h_{2} be homomorphisms from Σ_{A}^{*} to Σ_{B}^{*}, and $\Sigma_{L} \subseteq \Sigma_{B}$. Define

$$
\Sigma_{B}^{\prime}=\Sigma_{B}, \quad \Sigma_{A}^{\prime}=\bigcup_{i=1}^{k} \Sigma_{A}^{i}
$$

Since strings in $\Sigma_{A}^{* *}$ are composed of characters, which can be also viewed as strings in Σ_{A}^{*} (of length at most k), we shall use the following notation: "abc de f " is a string in $\Sigma_{A}^{* *}$ consisting of three symbols; "abc", "de", and " \underline{f} ". The corresponding strings in Σ_{A}^{*} will be denoted by " $a b c$ ", " $d e$ ", and " f " respectively.

Now, define an auxiliary homomorphism g from $\Sigma_{A}^{* *}$ to Σ_{A}^{*} :

$$
g\left(\underline{x_{1} \ldots x_{j}}\right)=x_{1} \ldots x_{j} \text { for each } j=0, \ldots, k, \text { and } x_{1}, \ldots, x_{j} \in \Sigma_{A} .
$$

Finally, we define $\boldsymbol{h}_{1}^{\prime}, \boldsymbol{h}_{2}^{\prime}$:

$$
h_{i}^{\prime}\left(\alpha^{\prime}\right)=h_{i}\left(g\left(\alpha^{\prime}\right)\right) \quad \text { for } i=1,2 \text { and each } \alpha^{\prime} \in \Sigma_{A}^{\prime *}
$$

Let $w=h_{1}^{\prime}\left(\alpha^{\prime}\right) \backslash h_{2}^{\prime}\left(\alpha^{\prime}\right)$, for some $\alpha^{\prime} \in \Sigma_{A}^{\prime+}$. Then

$$
w=h_{1}^{\prime}\left(\alpha^{\prime}\right) \backslash h_{2}^{\prime}\left(\alpha^{\prime}\right)=h_{1}\left(g\left(\alpha^{\prime}\right)\right) \backslash h_{2}\left(g\left(\alpha^{\prime}\right)\right),
$$

so we were able to find $\alpha=g\left(\alpha^{\prime}\right) \in \Sigma_{A}^{+}$such that $w=h_{1}(\alpha) \backslash h_{2}(\alpha)$.
Conversely, let $w=h_{1}(\alpha) \backslash h_{2}(\alpha)$ for some $\alpha \in \Sigma_{A}^{+}, \alpha=x_{1} \ldots x_{i}$. Define

$$
\alpha^{\prime}=x_{1 \ldots} \ldots x_{k} x_{k+1} \ldots x_{2 k} \cdots x_{l t / k] k-k+1} \ldots x_{[t / k] k} x_{\underline{1 t / k] k+1}} \ldots x_{t} .
$$

Clearly, $\left|\alpha^{\prime}\right|=\lceil|\alpha| / k\rceil$, and also $g\left(\alpha^{\prime}\right)=\alpha$. Now

$$
w=h_{1}(\alpha) \backslash h_{2}(\alpha)=h_{1}\left(g\left(\alpha^{\prime}\right)\right) \backslash h_{2}\left(g\left(\alpha^{\prime}\right)\right)=h_{1}^{\prime}\left(\alpha^{\prime}\right) \backslash h_{2}^{\prime}\left(\alpha^{\prime}\right),
$$

and we are done.
Example. We shall show that each regular set can be represented by a pair of homomorphisms with linear complexity. The idea of the proof is to construct a g-system G generating a regular set L "very fast", i.e., there exists a $c>0$ such that, for each $w \in L$, we have

$$
\begin{aligned}
& S=w_{0} \Rightarrow_{G} w_{1} \Rightarrow_{G} \cdots \Rightarrow_{G} w_{m} \Rightarrow_{G} w \text { and } \\
& \sum_{i=0}^{m}\left|w_{i}\right| \leqslant c|w| .
\end{aligned}
$$

The derivation will be of the form

$$
\begin{aligned}
S & \Rightarrow A X B \Rightarrow A X X B \Rightarrow \cdots \Rightarrow A X^{2^{i}} B \Rightarrow A X^{2^{i+1}} B \Rightarrow \cdots \\
& \Rightarrow A X^{2^{l \operatorname{logn]}} B \Rightarrow A X^{n} B \Rightarrow w}
\end{aligned}
$$

(where $n=|w|$, and S, A, B, X are nonterminals).
We shall now design a g-system for L. Let L be given by a finite-state automaton $M=\left(K, \Sigma_{L}, \delta, q_{1}, F\right)$, where K is a finite set of states, Σ_{L} an alphabet, δ a transition function, q_{1} in K an initial state, and $F \subseteq K$ a subset of final states. Then we define $G=\left(\{S, A, B, X\}, \Sigma_{L}, P, S\right)$, where $P(1-a$-transducer for rewriting relation) is given by $P=\left(K \cup\left\{q_{\mathrm{I}}^{\prime}, q_{\mathrm{F}}^{\prime}, q^{\prime}\right\}, V, V, H, q_{1}^{\prime}, q_{\mathrm{F}}^{\prime}\right) . q_{\mathrm{I}}^{\prime}, q_{\mathrm{F}}^{\prime}$, and q^{\prime} are some new states, and H (the set of transitions) will be defined as follows:
(i) The first step of a derivation $S \Rightarrow A X B$ will be done by $\left(q_{1}^{\prime}, S, A X B, q_{F}^{\prime}\right) \in H$.
(ii) Rewriting $A X^{i} B \Rightarrow A X^{j} B$ for $i \leqslant j \leqslant 2 i$ will be performed by edges $\left(q_{\mathrm{I}}^{\prime}, A, A, q^{\prime}\right),\left(q^{\prime}, X, X X, q^{\prime}\right),\left(q^{\prime}, X, X, q^{\prime}\right)$, and $\left(q^{\prime}, B, B, q_{\mathrm{F}}^{\prime}\right) \in H$.
(iii) For the last step of a derivation $A X^{n} B \Rightarrow w$, the following transitions are needed:

$$
\begin{aligned}
& \left(q_{1}^{\prime}, A, \varepsilon, q_{1}\right) \in H \\
& \left(q_{1}, X, a, q_{2}\right) \in H \text { iff } \delta\left(q_{1}, a\right)=q_{2} \quad \text { for each } q_{1}, q_{2} \in K, a \in \Sigma_{L} \\
& \left(q, B, \varepsilon, q_{F}^{\prime}\right) \in H \quad \text { for each } q \in F .
\end{aligned}
$$

The following will hold for the most efficient derivation of w in G :

$$
\begin{aligned}
\sum_{i=0}^{m}\left|w_{i}\right| & =1+\sum_{i=0}^{\lfloor\log n\rfloor}\left(2+2^{i}\right)+(2+n) \\
& \leqslant 3 n+2 \log n+4 \leqslant 9 n
\end{aligned}
$$

Thus, by Theorems 2.2 and 3.1, for each regular set L and arbitrarily large $k>0$, we can construct a pair of homomorphisms h_{1}, h_{2} such that $w \in \Sigma_{L}^{*}$ is a word in L if and only if there exists an α of length at most $\lceil|w| / k\rceil$ satisfying $w=h_{1}(\alpha) \backslash h_{2}(\alpha)$.

4. Some extensions

To characterize languages by homomorphisms we can use the right quotient as well, as expressed in the following theorem.

Theorem 4.1. For each recursively enumerable language L there exists a pair of homomorphisms $h_{1}, h_{2}: \Sigma_{A}^{*} \rightarrow \Sigma_{B}^{*}$ such that

$$
L=\left\{w \in \Sigma_{L}^{*} ; w=h_{2}(\alpha) / h_{1}(\alpha) \text { for some } \alpha \in \Sigma_{A}^{+}\right\}=O\left(h_{2} / h_{1}\right) \cap \Sigma_{L}^{*} .
$$

Table 2

$x \in \Sigma_{\mathrm{A}}$	$h_{1}(x)$	$h_{2}(x)$	Remark
a_{0}	b_{0}	$S b_{1} b_{0}$	
a_{1}	b_{1}	b_{2}	
a_{2}	$q_{\mathrm{F}} b_{2}$	$b_{1} q_{1}$	
a_{3}	b_{1}	ε	
(q, A)	A	$(A, q) q$	for each $x \in K \times V$
$\left(q, A, v, q^{\prime}\right)$	$q\left(A, q^{\prime}\right)$	v	for each $x \in H$

(Similarly as in Theorem 2.2, Σ_{A} and Σ_{B} are some alphabets, $\Sigma_{L} \subseteq \Sigma_{B}$.) The proofs of Theorems 2.2 and 4.1 are so similar that we will present only a modification of Table 1 (definition of h_{1}, h_{2}) (cf. Table 2). All the rest of the proof is merely a "mirror image" of the proof of Theorem 2.2.

A more important modification of Theorem 2.2 concerns the family of contextsensitive languages.

Theorem 4.2. For each context-sensitive language L there exists a pair of homomorphisms $h_{1}, h_{2}: \Sigma_{A}^{*} \rightarrow \Sigma_{B}^{*}$ such that

$$
L=\left\{w \in \Sigma_{L}^{*} ; w=h_{1}(\alpha) \backslash h_{2}(\alpha) \text { for some } \alpha \in \Sigma_{A}^{+}\right\}=O\left(h_{1} \backslash h_{2}\right) \cap \Sigma_{L}^{*}
$$

and

$$
\left|h_{1}(x)\right| \leqslant\left|h_{2}(x)\right| \quad \text { for each } x \in \Sigma_{A} .
$$

(The last condition plays the same role as monotony for the phrase-structure granimars.)

The proof is based on the fact (Rovan [8]) that the context-sensitive languages correspond to so-called ε-free, nonerasing g-systems (i.e., for each $\left(q, s, v, q^{\prime}\right) \in H$ we have $v \neq \varepsilon$). Some additional packing together of symbols in Σ_{A} and Σ_{B} is needed (by the method similar to that in Theorem 3.1).

The converse is also true since one can easily construct a nondeterministic linear-bounded Turing machine to a given "monotonic" pair of homomorphisms.

We can make one step further in this analogy and consider pairs of homomorphisms such that $\left|h_{1}(x)\right|=1$ for each x. However, here is a difference with the Chomsky hierarchy since this class of pairs of homomorphisms is capable of representing an arbitrary PE0L language. (See [9] for the definition of PE0L.) The exact identification of the corresponding language family is an open problem.

References

[1] K. Culik II, A purely homomoryhic representation of recursively enumerable sets, J. ACM 26 (1979) 345-350.
[2] K. Culik II and N.D. Diamond, A homomorphic characterization of time and space complexity classes of languages, Internat. J. Comput. Math. 8 (1980) 207-222.
[3] J. Engelfriet and G. Rozenberg, Fixed point languages, equality languages and representation of recursively enumerable languages, J. ACM 27 (1980) 499-518.
[4] V. Geffert, Grammars with context dependency restricted to synchronization, in: Proc. MFCS'86, Lecture Notes in Computer Science 233 (Springer, Berlin, 1986) 370-378.
[5] S. Ginsburg, Algebraic and Automata-theoretic Properties of Formal Languages (North-Holland, Amsterdam, 1975).
[6] M. Harrison, Introduction to Formal Language Theory (Addison-Wesley, Reading, MA, 1978).
[7] J.E. Hopcroft and J.D. Ullman, Formal Languages and their Relation to Automata (Addison-Wesley, Reading, MA, 1969).
[8] B. Rovan, A framework for study grammars in: Proc. MFCS'\%1, Lecture Notes in Computer Science 118 (Springer, Berlin, 1981) 473-482.
[9] G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems (Academic Press, New York, 1980).
[10] A. Salomaa, Equality sets of homomorphisms of free monoids, Acta Cybernet. 4 (1978) 127-139.
[11] A. Salomaa, Formal Languages (Academic Press, New York, 1973).

[^0]: * This research was supported in part by Research Grant SPZV 1-i-5/08.

