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Abstract

In this research paper, numerical study of unsteady magnetohydrodynamic natural convective heat and mass transfer of a
viscous, rotating fluid, electrically conducting and incompressible fluid flow past an impulsively moving vertical plate embedded
in porous medium in the presence of ramped temperature, thermal radiation, hall current, thermal diffusion and diffusion thermo
is investigated. The fundamental governing dimensionless coupled boundary layer partial differential equations are solved by an
efficient Element Free Galerkin Method (EFGM). Computations were performed for a wide range of some important governing
flow parameters viz., Hall current, rotation, thermal diffusion (Soret) and diffusion thermo (Dufour). The effects of these flow
parameters on primary and secondary velocity, temperature and concentration fields for externally heating and cooling of the plate
are shown graphically. Finally, the effects of these flow parameters on the rate of heat, mass transfer and shear stress coefficients at
the wall are prepared through tabular forms for heating and cooling of the plate. Also, these are all discussed for ramped temperature
and isothermal plates. We have shown that some results are in good agreement with earlier reported studies.
c⃝ 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The Hall effect is the making of a voltage difference across an electrical conductor, transverse to an electric
current in the conductor and an electromagnetic field is perpendicular to the current. It is found by Edwin Hall [1].
The problems on magnetohydrodynamics viscous fluids with hall current has importance in engineering applications
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Nomenclature

List of Variables:

B0 Uniform applied magnetic field (T)
x ′, y′, z′ Co-ordinate system (m)
x, y, z Dimensionless coordinates (m)
u′ Fluid velocity along the x ′-axis (m s−1)

w′ Fluid velocity along the z′-axis (m s−1)

u Non-dimensional fluid velocity along the x ′-axis (m)
w Non-dimensional fluid velocity along the z′-axis (m)
t0 Characteristic time (s)
Nu Nusselt number or rate of heat transfer coefficient
Sh Sherwood number or rate of mass transfer coefficient
cp Specific heat at constant pressure (J kg−1K)

Gr Grashof number for heat transfer
Gm Grashof number for mass transfer
ḡ Acceleration due to gravity, 9.81 (m/s2)

g Acceleration due to gravity in magnitude (m/s2)

K1 Permeability parameter (K d−2)

kT Thermal diffusion ratio
Tm Mean fluid temperature (K)
Cs Concentration susceptibility (m mol−1)

k∗ Mean absorption coefficient (m−1)

B̄ Magnetic induction vector
M2 Magnetic parameter
Pr Prandtl number
p Fluid pressure (N m−2)

qr Radiative flux (kg/s3)

m Hall current parameter
N Radiation parameter
Sr Soret number
C ′ Species concentration (kg m−3)

C ′
∞ Species concentration of the fluid far away from the plate (kg m−3)

C ′
w Species concentration at the plate (kg m−3)

Dm Molecular mass diffusivity (m2 s−1)

DT Molecular diffusivity (m2 s−1)

E Electric field (S m−1)

Dr Dufour number
Sc Schmidt Number
T ′

w Temperature at the plate (K)
T ′

∞ Temperature of the fluid far away from the plate (K)
t ′ Time (s)
T ′ Fluid temperature (K)
U0 Plate velocity (m s−1)

T Non-dimensional temperature (K)
C Non-dimensional species concentration (kg m−3)

Greek symbols:

ρ Fluid density (kg m−3)
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κ Thermal conductivity (W m−1 K−1)

σ Electrical conductivity (S m−1)

ν Kinematic viscosity (m2 s−1)

β ′ Coefficient of volume expansion for heat transfer (K−1)

Ω Rotation parameter (degrees)
Ω ′ Uniform angular velocity (degrees)
β∗ Coefficient of volume expansion for mass transfer (m3 kg−1)

τx Skin-friction in x ′-direction (Pa)
τz Skin-friction in z′-direction (Pa)
σ ∗ Stefan–Boltzmann constant (W m−2 K−4)

Superscript

/ Dimensionless properties

Subscripts

w Wall conditions
∞ Free stream conditions
p Plate

such as MHD generators and MHD accelerators, laboratory plasmas, the rotating flow of fluids in the presence
of magnetic field occurring in geophysical and cosmical fluid dynamics, the solar physics involved in the sunspot
development, solar cycle and structure of rotating magnetic stars. The effect of Hall current with rotating system on
MHD convection flows have been carried out by many researchers due to application of such studies as in the problems
of MHD generators and Hall accelerators. Ajay Kumar Singh et al. [2], Mbeledogu and Ogulu [3], Abuga et al. [4],
Jain and Singh [5] have studied rotation/Hall effects on various problems. Ahmed and Dutta [6] discussed transient
mass transfer flow past an impulsively started infinite vertical plate in ramped plate velocity and ramped temperature.
Seth et al. [7] studied the effects of hall current and rotation on natural convection radiative heat and mass transfer
MHD flow past a moving vertical plate for ramped and isothermal plate only in case of externally cooling of the
plate by Laplace transform technique with the absence of thermal diffusion and diffusion thermo. Chamkha et al. [8]
investigated the influence of hall current on unsteady MHD free convective heat and mass transfer on a vertical porous
plate with thermal radiation and chemical reaction. Sivaiah and Srinivasa Raju [9] studied the effects of Hall current
and Heat source on MHD heat and mass transfer free convective flow in the presence of viscous dissipation by applying
finite element technique. Siva Reddy and Srinivasa Raju [10] studied the effect of viscous dissipation on transient free
convection flow past an infinite vertical plate through porous medium in the presence of magnetic field using finite
element technique. Anand Rao et al. [11] demonstrated transient flow past an impulsively started infinite flat porous
plate in a rotating fluid in the presence of magnetic field with Hall current using finite element technique. Anand Rao
et al. [12] investigated the combined effects of heat and mass transfer on unsteady MHD flow past a vertical oscillatory
plate suction velocity using finite element method. The combined effects of heat and mass transfer on unsteady MHD
natural convective flow past an infinite vertical plate enclosed by porous medium in presence of thermal radiation
and Hall Current was investigated by Ramana Murthy et al. [13]. Jithender Reddy et al. [14]. Anand Rao [15] and
Srinivasa Raju et al. [16] studied MHD free convection fluid flow problems with various physical conditions using
Finite Element Technique. Sheikholeslami et al. [17] investigated the effect of space dependent magnetic field on free
convection Fe3O4–water nanofluid through control volume based finite element technique. Sheikholeslami et al. [18]
employed control volume-based finite element technique to simulate Fe3O4–water nanofluid mixed convection heat
transfer in a lid-driven semi annulus in the presence of a non-uniform magnetic field. Rashidi et al. [19] investigated the
numerical study of magnetic field impact on mixed convection heat transfer of nanofluid in a channel with sinusoidal
walls. Rashidi et al. [20] studied the combined heat and mass transfer of magnetohydrodynamic (MHD) convective
and slip flow due to a rotating disk with influence of viscous dissipation and Ohmic heating by using the combination
of the DTM and the Padé approximants.
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The heat and mass transfer simultaneously affect each other and these will cause the cross-diffusion effect. The
heat transfer caused by concentration (mass) gradient is called the diffusion-thermo (Dufour effect). On the other hand
mass transfer caused by the temperature gradient is called thermal-diffusion (Soret) effect. Alam and Rahman et al.
[21] investigated the Dufour (thermal-diffusion) and Soret (diffusion-thermo) effects on mixed convection flow past
a vertical porous flat plate with the presence of variable suction. El-Arabawy et al. [22] investigated the Soret and
Dufour effect on heat and mass transfer by natural convection from vertical surface embedded in a fluid-saturated
porous media considered with variable surface temperature and constant concentration. Kafoussias et al. [23] studied
thermal-diffusion and diffusion-thermo effects on mixed natural-forced convective and mass transfer boundary layer
flow with the temperature dependent viscosity. Nabil et al. [24] studied thermal diffusion and diffusion thermo effects
on the viscous fluid flow with heat and mass transfer through porous medium on a shrinking sheet. Srinivas et al. [25]
found thermal diffusion and diffusion thermo effects on MHD viscous fluid flow between expanding rotating porous
disks with viscous dissipation. Srinivasacharya et al. [26–28], Ram Reddy et al. [29] and Jithender Reddy et al. [30]
studied Soret and Dufour effects on MHD free convection problems with varied physical parameters. Ahmed et al. [31]
studied the effect of Soret (thermal diffusion) on unsteady free convective flow of an electrically conducting fluid over
an infinite vertical oscillating plate embedded in a porous medium in the presence of a uniform transverse magnetic
field. Srinivasa Raju [32] studied the combined effects of thermal-diffusion and diffusion-thermo on unsteady free
convection fluid flow past an infinite vertical porous plate in the presence of magnetic field and chemical reaction
using finite element technique. Srinivasa Raju et al. [33] found the numerical results for the effects of thermal radiation
and heat source on an unsteady free convective flow past an infinite vertical plate with transverse magnetic field in
the presence of thermal-diffusion and diffusion-thermo. Srinivasa Raju et al. [34] studied application of finite element
method to unsteady MHD free convection flow past a vertically inclined porous plate including thermal diffusion
and diffusion thermo effects. The influence of viscous dissipation on free convective flow past a semi-infinite vertical
plate in the presence of Soret and Magnetic field was studied by Siva Reddy Sheri et al. [35]. Abdelraheem et al. [36]
studied double-diffusive free convective flow over a vertical stretching surface embedded in a porous medium in the
presence of a homogeneous first-order chemical reaction, radiation and Soret and Dufour effects. A numerical model
was developed by Ahmed and Sibanda [37] for the effects of variable viscosity, and Soret and Dufour numbers on
MHD mixed convective flow, heat and mass transfer from an exponentially stretching vertical surface embedded in a
porous medium.

In this paper, we studied the hall current and rotation effects on MHD free convection flow past a moving vertical
plate with the presence of thermal diffusion and diffusion thermo for isothermal and ramped temperature in both cases
externally heating and cooling of the plate. The governing partial differential equations are solved by Element Free
Galerkin Method and shown the present results are in good agreement with the results of Seth et al. [7].

2. Mathematical modeling

Consider an unsteady MHD natural convection flow with heat and mass transfer of an optically thick radiating,
incompressible and electrically conducting viscous fluid past an infinite vertical plate is embedded in a uniform porous
medium with a rotating system taking Hall current into account. Consider x ′-axis is along the plate in upward direction
and y′-axis is normal to plane of the plate in the fluid. A uniform transverse magnetic field B0 is applied in a direction
which is parallel to y′-axis. The fluid and plate rotate with uniform angular velocity Ω ′ about the y′-axis. Initially
i.e. at time t ′ ≤ 0, both the fluid and plate are in rest and these are maintained at a uniform temperature T ′

∞. Also
species concentration is at the surface of the plate as well as at every point within the fluid and it is maintained at
uniform concentration C ′

∞. At time t ′ > 0, plate starts moving in x ′-direction with uniform velocity U0 in its own
plane. The temperature of the plate is raised or lowered to T ′

∞ +(T ′
w −T ′

∞)t ′/t0 when 0 < t ′ ≤ t0, and it is maintained
at uniform temperature T ′

w when t ′ > t0.
Also, at time t ′ > 0, species concentration is at the surface of the plate, it is raised to uniform species concentration

C ′
w and it is maintained thereafter. Geometry of the problem is shown in Fig. 1. Since plate is an infinite extent in

x ′ and z′ directions and it is electrically non-conducting, all physical quantities except pressure depends on y′ and t ′

only. Also, no applied or polarized voltages are assumed to exist, so that the effect of polarization of fluid is negligible.
The induced magnetic field generated by fluid motion is negligible in comparison to the applied one. This assumption
is justified because magnetic Reynolds number is very small for liquid metals and partially ionized fluids which are
commonly used in industrial applications (Cramer and Pai [38]). Keeping in view of these assumptions and under the
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Fig. 1. Geometry of the problem.

Boussinesq’s approximation, the governing equations are given by (Seth et al. [7])

∂u′

∂t ′
+ 2Ω ′w′

= ν
∂2u′

∂y′2 −
σ B2

o

ρ

1 + m2

 
u′

+ mw′

−

νu′

K1
+ gβ ′


T ′

− T ′
∞


+ gβ∗


C ′

− C ′
∞


(1)

∂w′

∂t ′
− 2Ω ′u′

= ν
∂2w′

∂y′2 −
σ B2

o

ρ

1 + m2

 
mu′

− w′

−

νw′

K1
(2)

∂T ′

∂t ′
=

κ

ρcp

∂2T ′

∂y′2 −
1

ρcp

∂qr

∂y′
+

DmkT

cscp

∂2C ′

∂y′2 (3)

∂C ′

∂t ′
= D

∂2C ′

∂y′2 +
DmkT

Tm

∂2T ′

∂y′2 . (4)

The boundary conditions for the primary and secondary velocity, temperature and concentration fields are (Seth
et al. [7])

∀t ′ ≤ 0 : u′
= w′

= 0, T ′
= T ′

∞, C ′
= C ′

∞ for y′
≥ 0 (5)

∀t ′ > 0 : u′
= U0, w′

= 0, C ′
= C ′

w at y′
= 0 (6)

T ′
= T ′

∞ + (T ′
w − T ′

∞)t ′/t0 at y′
= 0 for 0 < t ′ ≤ t0 (7)

∀t ′ > t0 : T ′
= T ′

w at y′
= 0 (8)

∀t ′ > 0 : u′
= 0, w′

= 0, T ′
→ T ′

∞, C ′
→ C ′

∞ at y′
→ ∞. (9)

The radiative heat flux term by using the Rosseland approximation (Sparrow and Cess [39]) is given by

q ′
r = −

4σ ∗

3k∗


∂T ′4

∂y′


y=0

. (10)



248 G. Jithender Reddy et al. / Transactions of A. Razmadze Mathematical Institute 170 (2016) 243–265

It should be noted that by using the Rosseland approximation, present analysis is limited to optically thick fluids. If
temperature differences within the flow are sufficiently very small then Eq. (10) can be linearized by expanding T ′

into the Taylor series about T ′
∞ which after neglecting higher order terms take the form

T ′4 ∼= 4T ′3
∞ − 3T ′4

∞. (11)

Substituting Eqs. (10) and (11), into Eq. (3), we obtain

∂T ′

∂t ′
=

κ

ρcp

∂2T ′

∂y′2 +
1

ρcp

16σ ∗T ′3
∞

3k∗

∂2T ′

∂y′2 +
DmkT

cscp

∂2C ′

∂y′2 . (12)

Introducing the following non-dimensional quantities into the Eqs. (1), (2), (4), (12) and (5)–(9)

u =
u′

U0
, w =

w′

U0
, y =

y′U0

ν
, t =

t ′U 2
0

ν
, T =

T ′
− T ′

∞

T ′
w − T ′

∞

, C =
C ′

− C ′
∞

C ′
w − C ′

∞

,

M2
=

σ B2
0ν

ρU 2
0

, Ω =
νΩ ′

U 2
0

, K1 =
K ′

1U 2
0

ν2 , Gr =
gβν(T ′

w − T ′
∞)

U 3
0

,

Gm = gβ∗ν
C ′

w − C ′
∞

U 3
0

, Pr =
νρcp

κ
, N =

16σ ∗T ′3
∞

3κk∗
, Sc =

ν

D
,

Sr =
DmkT (T ′

w − T ′
∞)

νTm(C ′
w − C ′

∞)
, Dr =

DmkT (C ′
w − C ′

∞)

νcscp(T ′
w − T ′

∞)

then the resultant non-dimensional equations are

∂u

∂t
+ 2Ωw =

∂2u

∂y2 − M∗ (u + mw) −
u

K1
+ GrT + GmC (13)

∂w

∂t
− 2Ωu =

∂2w

∂y2 + M∗ (mu − w) −
w

K1
(14)

∂T

∂t
= R

∂2T

∂y2 + Dr
∂2C

∂y2 (15)

∂C

∂t
=

1
Sc

∂2C

∂y2 + Sr
∂2T

∂y2 (16)

where M∗
=

M2

1+m2 , R =
1+N

Pr .
The non-dimensional initial and boundary conditions are

∀t ≤ 0 : u = w = 0, T = 0, C = 0 for y ≥ 0 (17)

∀t > 0 : u = 1, w = 0, C = 1 at y = 0 (18)

∀0 < t ≤ 1 : T = t at y = 0 (19)

∀t > 1 : T = 1 at y = 0 (20)

∀t > 0 : u → 0, w → 0, T → 0, C → 0 at y → ∞. (21)

3. Numerical solution by Element Free Galerkin Method (EFGM)

Element Free Galerkin Method (EFGM) is one of the computational method developed by Belytschko et al. [40].
This method is applicable to arbitrary shapes, and it requires only nodal data which is applied to elasticity and heat
conduction problems. This method shares essential characteristics with many other numerical methods such as Kernal
particle method (Liu et al. [41]), Finite point method (Onate et al. [42]) and Hp-clouds (Duarte and Oden et al. [43]).
Previously, the review of these numerical methods was reported by Belytschko et al. [44]. Recently, several authors
applied this EFGM in their research problems. In spite of that, Rajesh Sharma and Bhargava [45] found the numerical
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solutions of unsteady MHD convection heat and mass transfer past a semi-infinite vertical porous moving plate using
EFGM. Ryszard [46] applied an EFGM to water wave propagation problems. Very recently, Singh and Bhargava [47]
studied the characteristics of heat transfer flow of a phase transition in melting problem using FEM and EFGM, and the
results are shown closer to each other. Rajesh Sharma [48] found the numerical simulation of MHD Hiemenz flow of
a micropolar fluid on non linear stretching sheet embedded in porous Medium using EFGM. Srinivasa Raju et al. [49]
found the numerical and analytical solutions of unsteady MHD free convection on exponential accelerated vertical
plate with heat absorption using Element Free Galerkin Method and Laplace Transform Technique respectively. Also
they have shown the numerical solutions by FEM are in good agreement with the analytical solutions by LTT.

3.1. Review of Element Free Galerkin Method

The Element Free Galerkin Method (EFGM) requires moving least square (MLS) interpolation functions to
approximate an unknown function, which is made up of three components: a weight function associated with each
node, a basis function and a set of coefficients that depends on position. The weight function is non-zero over a
small neighborhood at a particular node, called support of the node. Using MLS approximation, the unknown velocity
component u is approximated over the domain [0, ∞] as

u (x) ∼= uh (x) =

m
j=1

p j (x) a j (x) = pT (x) a (x) (22)

where m is the number of terms in the basis, p j (x) the monomial basis function, a j (x) the non-constant coefficients
and pT (x) = [1x]. The coefficients a j (x) are determined by minimizing the functional J (x) given by

J (x) =

m
i=1

w (x − xi )


m

j=1

p j (xi ) a j (x) − ui

2

(23)

where w (x − xi ) is a weight function which is non-zero over a small domain, called domain of influence, n is the
number of nodes in the domain of influence. The minimization of J (x) w.r.t a (x) leads to the following set of
equation

a (x) = C−1 (x) D (x) U T (24)

where C and D are given as

C =

n
i=1

w (x − xi ) p (xi ) pT (xi ) (25)

D (x) = [w (x − x1) p (x1) , w (x − x2) p (x2) , w (x − x3) p (x3) , . . . , w (x − xn) p (xn)] (26)

U T
= [U1, U2, U3, . . . , Un] . (27)

Substituting Eq. (24) in Eq. (22), the MLS approximants are obtained as

u (x) ∼= uh (x) =

n
i=1

Φi (x) ui = Φ (x) u. (28)

Similarly θ (x) , φ (x) can be approximated by

θ (x) ∼= θh (x) =

n
i=1

Φi (x) θi = Φ (x) θ (29)

φ (x) ∼= φh (x) =

n
i=1

Φi (x) φi = Φ (x) φ (30)
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where the shape function Φi (x) is defined by

Φi (x) =

n
j=1

p j (x)


C−1 (x) D (x)


j i
= pT C−1 Di . (31)

3.2. Choice of weight function

The weight function is non-zero over a small neighborhood of xi , called the domain of the influence of node i .
The choice of weight function w (x − xi ) affects the resulting approximation in EFGM and other mesh less methods.
Singh et al. [50] studied these weight functions and found that cubicspline weight function gives more accurate results
as compared to others. Therefore, in the present work, a cubicspline weight function (Singh et al. [50]) has been used.

3.3. Cubic spline weight function

w (r − ri ) = w (r) =


2
3

− 4r2
+ 4r3 for r ≤

1
2

4
3

− 4r + 4r2
−

4
3

r3 for
1
2

≤ r ≤ 1

0 for r > 1

 (32)

where ri =
∥x−xi ∥

dml
, dml are the size of domain of influence which are calculated as dml = dmaxCi , where dmax is

a scaling parameter, and Ci is the distance to the nearest neighbors. The size of the domain of influence (dml) at
particular node i is only controlled by scaling parameter (dmax) since the distance between nearest neighbors for an
evaluation point remains unchanged for a given nodal data distribution. The minimum value of dmax should be greater
than 1 so that n > m, and the maximum value of dmax should be such that it preserves the local character of MLS
approximation. It has been shown in Singh [51] that 1 < dmax < 1.5 is the optimum range of scaling parameter for
heat transfer problem. Therefore dmax has been fixed as 1.01.

The weighted integral forms of Eqs. (13)–(16) can be written as ymax

0
w1


∂2u

∂y2 −


∂u

∂t


− Nu − M∗mw − 2Ωw + GrT + GmC


dy = 0 (33) ymax

0
w2


∂2w

∂y2 −


∂w

∂t


− Nw +


M∗


(m) (u) + 2Ωu


dy = 0 (34) ymax

0
w3


R

∂2T

∂y2 −


∂T

∂t


+ (Dr)


∂2C

∂y2


dy = 0 (35) ymax

0
w4


1
Sc


∂2C

∂y2 −


∂C

∂t


+ (Sr)


∂2T

∂y2


dy = 0 (36)

where N = M∗
+

1
K1

and w1, w2, w3, w4 are arbitrary test functions and may be viewed as the variations in u, w, T
and C , respectively. After reducing the order of integration and non-linearity, the following system of equations are
obtained: ymax

0


∂w1

∂y

 
∂u

∂y


+ (w1)


∂u

∂t


+ N (w1) u + M∗m (w1) w + 2Ω (w1) w + (Gr) (w1) T

− (Gm) (w1) C] dy −


(w1)


∂u

∂y

ymax

0
= 0 (37) ymax

0


∂w2

∂y

 
∂w

∂y


+ (w2)


∂w

∂t


+ N (w2) w − M∗m (w2) u − 2Ω (w2) w


dy

−


(w2)


∂w

∂y

ymax

0
= 0 (38)
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0


R


∂w3

∂y

 
∂T

∂y


+ (w3)


∂T

∂t


+ (Dr) (w3)


∂w3

∂y

 
∂C

∂y


dy

−


R (w3)


∂T

∂y


+ (Dr) (w3)


∂C

∂y

ymax

0
= 0 (39) ymax

0


1
Sc

 
∂w4

∂y

 
∂C

∂y


+ (w4)


∂C

∂t


+ (Sr) (w4)


∂w4

∂y

 
∂T

∂y


dy

−


(w4)


1

SC

 
∂C

∂y


+ (Sr) (w4)


∂T

∂y

ymax

0
= 0. (40)

Using the essential boundary conditions on w1, w2, w3, w4 as homogeneous, Eqs. (37)–(40) become ymax

0


∂w1

∂y

 
∂u

∂y


+ (w1)


∂u

∂t


+ N


w1


u + M∗m (w1) w

+ 2Ω (w1) w − (Gr) (w1) T − (Gm) (w1) C


dy = 0 (41)

 ymax

0


∂w2

∂y

 
∂w

∂y


+ (w2)


∂w

∂t


+ N (w2) w − M∗m (w2) u − 2Ω (w2) w


dy = 0 (42)

 ymax

0


R


∂w3

∂y

 
∂T

∂y


+ (w3)


∂T

∂t


+ (Dr) (w3)


∂w3

∂y

 
∂C

∂y


dy = 0 (43)

 ymax

0


1
Sc

 
∂w4

∂y

 
∂C

∂y


+ (w4)


∂C

∂t


+ (Sr) (w4)


∂w4

∂y

 
∂T

∂y


dy = 0. (44)

3.4. Essential boundary conditions

Due to lack of Kronecker delta property in EFGM, the shape function Φi possesses some difficulty in the imposition
of essential boundary conditions. To remove this problem, different numerical techniques have been proposed to
enforce the essential boundary condition in EFGM such as Lagrange multiplier technique, modified variational
principle approach and penalty approach. The penalty method Zhu and Atluri [52] is applied which is discussed
as follows:

Penalty Method (PM): ymax

0


∂w1

∂y

 
∂u

∂y


+ (w1)


∂u

∂t


+ N (w1) u + M∗m (w1) w + 2Ω (w1) w − (Gr) (w1) T

− (Gm) (w1) C


dy − α (w1) (u − uo)|y=0 − α (w1) (u − u∞)|y→∞ = 0 (45)

 ymax

0


∂w2

∂y

 
∂w

∂y


+ (w2)


∂w

∂t


+ N (w2) w − M∗m (w2) u − 2Ω (w2) u


dy

− α (w2) (w − wo)|y=0 − α (w2) (w − w∞)|y→∞ = 0 (46) ymax

0


R


∂w3

∂y

 
∂T

∂y


+ (w3)


∂T

∂t


+ (Dr) (w3)


∂w3

∂y

 
∂C

∂y


dy

− α (w3) (T − To)|y=0 − α (w3) (T − T∞)|y→∞

− α (Dr) (w3) (C − Co)|y=0 − α (Dr) (w3) (C − C∞)|y→∞ = 0 (47)
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0


1

SC

 
∂w4

∂y

 
∂C

∂y


+ (w4)


∂C

∂t


+ (Sr) (w4)


∂w4

∂y

 
∂T

∂y


dy

− α
α

Sc
(w4) (C − Co)


y=0

− α
α

Sc
(w4) (C − C∞)


y→∞

−α (Sr) (w4) (T − To)|y=0 − α (Sr) (w4) (T − T∞)|y→∞ = 0 (48)

where
uo = 1, wo = 0, To = t at 0 < t ≤ 1,

To = 1 at t > 1
Co = 1, u∞ = 1, w∞ = 0, T∞ = 0, C∞ = 0


and w1 = w2 = w3 = w4 = Φi (i = 1, 2, . . . , n).

Thus, Eqs. (45)–(48) can be written as:

[K ]

h̄


+

M̄

 
˙̄h


= {F} (49)

where [K ] =


K11 K12 K13 K14
K21 K22 K23 K24
K31 K32 K33 K34
K41 K42 K43 K44


,

M̄


=


Mooo
oMoo
ooMo
oooM


,

h̄


=


{u}

{w}

{T }

{C}


,


˙̄h


=


{u̇}

{ẇ}
Ṫ


Ċ




, {F} =


F1


F2


F3


F4




,

(K11)i j =

 ymax

0


ΦT

i
′
 

Φ′

j


dy + N

 ymax

0


ΦT

i

 
Φ j


dy

−


α


ΦT

i

 
Φ j


y=0

−


α


ΦT

i

 
Φ j


y→∞

,

(K12)i j =

M∗m + 2Ω

  ymax

0


ΦT

i

 
Φ j


dy, (K13)i j = − (Gr)

 ymax

0


ΦT

i

 
Φ j


dy,

(K14)i j = − (Gm)

 ymax

0


ΦT

i

 
Φ j


dy, (M)i j =

 ymax

0


ΦT

i

 
Φ j


dy, ∀i = j, (M)i j = 0, ∀i ≠ j

(K21)i j =

M∗m + 2Ω

  ymax

0


ΦT

i

 
Φ j


dy,

(K22)i j =

 ymax

0


ΦT

i
′
 

Φ′

j


dy + N

 ymax

0


ΦT

i

 
Φ j


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
α


ΦT

i

 
Φ j
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
α


ΦT

i

 
φ j


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,

(K23)i j = (K24)i j , (K31)i j = 0 = (K32)i j ,

(K33)i j = −R
 ymax

0


ΦT

i
′
 

Φ′

j


dy +
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
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i

 
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
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
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i

 
Φ j


y→∞

,

(K34)i j = (Dr)

 ymax

0


ΦT

i
′
 

Φ′

j


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
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
ΦT

i
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
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
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 
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
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,

(K41)i j = 0 = (K42)i j ,

(K43)i j = (Sr)
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
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 
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
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,

(K44)i j =
1
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 
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
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i

 
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
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,

(F1)i = uoαΦ′

j + u∞αΦ′

j , (F2)i = woαΦ′

j + w∞αΦ′

j ,

(F3)i = ToαΦ′

j + T∞αΦ′

j at 0 < t ≤ 1, (F3)i = ToαΦ′

j + T∞αΦ′

j at t > 1,

(F4)i = CoαΦ′

j + C∞αΦ′

j ,

Using unconditionally stable Crank–Nicholson scheme (Smith [53]), Eq. (49) at (s + 1)th level can be written as
K̂


s+1


h


s+1 =


K̂


s


h


s +


F̂


s,s+1

(50)
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Table 1
The numerical values of u, w, T and C for variation of mesh sizes.

Mesh size h = 0.1 Mesh size h = 0.2 Mesh size h = 0.3
u w T C u w T C u w T C

Time
t = 0.1

1.000000 0.000000 0.500000 1.000000 1.000000 0.000000 0.500000 1.000000 1.000000 0.000000 0.500000 1.000000
0.205745 0.364936 0.329594 0.472351 0.205628 0.364842 0.329485 0.472215 0.205631 0.364853 0.329494 0.472224
0.081102 0.102188 0.184112 0.158479 0.081852 0.102752 0.184256 0.158542 0.081851 0.102765 0.184264 0.158551
0.026275 0.024006 0.084624 0.037798 0.026138 0.024158 0.084745 0.037813 0.026145 0.024161 0.084759 0.037824
0.007119 0.004851 0.032037 0.006504 0.007015 0.004784 0.032183 0.006519 0.007019 0.004794 0.032194 0.006521
0.001639 0.000846 0.010157 0.000824 0.001631 0.000850 0.010161 0.000891 0.001642 0.000859 0.010174 0.000912
0.000324 0.000128 0.002747 7.86E−05 0.000324 0.000126 0.002747 7.86E−05 0.000324 0.000125 0.002758 7.86E−05
5.54E−05 1.69E−05 0.000644 5.76E−06 5.54E−05 1.69E−05 0.000644 5.76E−06 5.54E−05 1.69E−05 0.000654 5.76E−06
8.29E−06 1.97E−06 0.000132 3.3E−07 8.29E−06 1.97E−06 0.000132 3.3E−07 8.29E−06 1.97E−06 0.000132 3.3E−07
1.09E−06 2E−07 2.38E−05 2E−08 1.09E−06 2E−07 2.38E−05 2E−08 1.09E−06 2E−07 2.38E−05 2E−08

where
K̂


s+1

=

M


+

∆t [K ]s+1

2
,


K̂


s

=

M


−

∆t [K ]s

2
and


F̂


s,s+1

=
∆t

2


{F}s+1 + {F}s


. (51)

For computational purposes, the coordinate y is varied from 0 to ymax = 10, where ymax represents infinity i.e. external
to the momentum, energy and concentration boundary layers. The whole domain is divided into 101 nodes. One point
Gauss quadrature formula has been used to calculate the integral values. As the systems of equations are non-linear,
an iterative scheme is employed to solve the matrix system. This system is linearized by incorporating known function
u, which is solved using Gauss elimination method maintaining an accuracy of 0.0000005. The code of the algorithm
has been executed in MATLAB running on a PC. Excellent convergence was achieved for all the results.

3.5. Study of grid independence

In general, to study the grid independency/dependency, the mesh size should be varied in order to check the solution
at different mesh (grid) sizes and get a range at which there is no variation in the solution. We have shown the numerical
values of Primary velocity (u), Secondary velocity (w), temperature (T ) and concentration (C) for different values
of mesh (grid) size at time t = 1.0 in Table 1. From this table, we observed that there is no variation in the values
of Primary velocity (u), Secondary velocity (w), temperature (T ) and concentration (C) for different values of mesh
(grid) size at time t = 0.1. Hence, we conclude that the results are independent of mesh (grid) size.

4. Skin-friction, rate of heat and mass transfer coefficients

The skin-friction due to primary velocity at the wall along x ′-axis in dimensionless form is given by τx =


∂u
∂y


y=0

.

The skin-friction due to secondary velocity at the wall along z′-axis in dimensionless form is given by τz =
∂u
∂z


z=0

.
Rate of heat transfer (Nusselt number) due to temperature profiles in dimensionless form is given by

Nu = −


∂T
∂y


y=0

.

And rate of mass transfer (Sherwood number) due to concentration profiles in dimensionless form is given by

Sh = −


∂C
∂y


y=0

.

5. Code validation

5.1. Comparison with analytical solutions

Comparison of τx and τz with Seth et al. [7] is shown by the superscript star in Table 2. Ω is replaced by K 2 in Seth
et al. [7] with varied values of Hall current and rotation parameters and in the absence of Soret and Dufour number.
The present results are in good agreement with the results of Seth et al. [7] for both ramped temperature and isothermal
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Table 2
The skin-friction due to primary and secondary velocity with the effect of Hall current and rotation in case of cooling of the plate.

m Ω τx (Present results) τ∗
x (Seth et al. [7]) τz (Present results) τ∗

z (Seth et al. [7])
Ramped Isothermal Ramped Isothermal Ramped Isothermal Ramped Isothermal

0.5 5 2.87095 2.29039 2.87124 2.29044 2.35013 2.60663 2.35018 2.60816
1 5 2.49089 1.92395 2.49195 1.92406 2.85873 3.19315 2.85995 3.19048
1.5 5 2.13521 1.56012 2.13659 1.56425 3.40649 3.40037 3.06904 3.45031
0.5 3 2.61221 1.97075 2.61086 1.97001 1.86393 2.09214 1.86439 2.09575
0.5 7 3.14353 2.61096 3.14162 2.61276 2.77062 3.05629 2.77199 3.04199

Fig. 2. Comparison of present results with existed experimental results of temperature distribution with an influence of Pr = 0.71.

plate in case of externally cooling of the plate. Although it is possible to obtain the exact solution using the Laplace
Transform Technique (LTT), it seems to be a laborious process. The present method, EFGM is more economical and
flexible in the computational point of view. Therefore, this method is superior than the LTT and other appropriate
methods.

5.2. Comparison with experimental results

An experimental investigation of turbulent and laminar natural convection in air on a vertical plate is described
by Warner and Arpaci [54]. But this study did not explore the experimental results with the presence of Hall current,
rotation, radiation, thermal diffusion and diffusion thermo parameters. We compared the present results with the results
of Warner and Arpaci [54] in the absence of these parameters. Fig. 2 shows the comparison of present results with
existing experimental results of temperature distribution with an influence of Pr = 0.71 (Air). It is evident that the
present numerical solutions are in good agreement with experimental results of Warner and Arpaci [54] in the absence
of radiation and diffusion thermo parameters. These types of models are useful for validation purpose in view of lab
experimental results.

6. Results and discussions

The effects of hall current and rotation on an unsteady radiative MHD free convective heat and mass transfer of
an optically thick radiating, incompressible, electrically conducting and viscous fluid past an impulsively moving
vertical porous plate with ramped temperature and isothermal were studied taking into account the thermal diffusion
and diffusion thermo, and solved by Element Free Galerkin Method. Computations are performed for a wide range of
some important governing flow physical parameters viz., Hall current (m), Rotation (Ω), Soret (Sr) and Dufour (Dr).

The effects of these flow physical parameters on the primary and secondary velocity, temperature and concentration
fields for ramped temperature and isothermal plates in case of both externally cooling (Gr > 0) and heating (Gr < 0)

of the plate are illustrated graphically. We have shown some results are in good agreement with the results of Seth
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Fig. 3. Magnetic field effect M2 on primary velocity profiles.

Fig. 4. Magnetic field effect M2 on secondary velocity profiles.

et al. [7]. Some physical parameters are fixed at real constants with Gr = 6, Gm = 5, Gr = −6, Gm = −5, M2
= 0.5,

m = 0.5, Ω = 5, N = 5, Pr = 0.71, Dr = 1, Sc = 0.6 and Sr = 1, unless specifically indicated on the appropriate
graphs and tables. Figs. 3–12 display the effects of material parameters such as m,Ω, Sr and Dr on the primary and
secondary velocity field for both externally cooling (Gr > 0) and heating (Gr < 0) of the plate. Figs. 13–15 display
the effects of material parameters such as N , Pr , and Dr on the temperature profiles and Figs. 16 and 17 display the
effects of material parameters such as Sr and Sc on the concentration field.

6.1. Primary and secondary velocity profiles

Figs. 3 and 4 show the effect of Magnetic parameter on the primary and secondary velocity for both ramped
temperature and isothermal plate. The primary and secondary velocity decreases with the increase in the magnetic
parameter in entire positive quadrant for both ramped and isothermal temperature with externally cooling of the
plate while the effect is opposite in case of externally heating of the plate. Velocity profile decreases with increasing
Magnetic parameter due to the fact that applied transverse magnetic field produces a drag in the form of Lorentz
force thereby decreasing the magnitude of velocity. Figs. 5 and 6 show the effect of Hall current on the primary and
secondary velocity for both ramped temperature and isothermal plate. The primary velocity and secondary velocity
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Fig. 5. Hall effect m on primary velocity profiles.

Fig. 6. Hall effect m on secondary velocity profiles.

increases in the entire region with an increase of hall current for ramped temperature and isothermal plates in case of
cooling of the plate and the opposite effect in case of externally heating of the plate.

Figs. 7 and 8 show the effect of rotation on the primary and secondary velocity profiles for both ramped temperature
and isothermal plate. The primary velocity exponentially decreases in the entire region where as the secondary
velocity increases near to the plate and decreases away from the plate with increase of rotational parameter for
ramped temperature and isothermal plate in case of cooling of the plate, the opposite effect in case of heating of
the plate. Figs. 9 and 10 show the effect of Soret number on primary velocity and secondary velocity for both ramped
temperature and isothermal plate. The primary and secondary velocity distribution exponentially increases in the entire
region as an increase of Soret number for both ramped temperature and isothermal plate in case of cooling of the plate,
and the opposite effect in case of heating of the plate. Figs. 11 and 12 show the effect of Dufour number on primary
and secondary velocity distribution for both ramped temperature and isothermal plate. The primary and secondary
velocity of the fluid exponentially increases in the entire region with an increase of Dufour number for both ramped
temperature and isothermal plate in case of cooling of the plate, and the opposite effect in case of externally heating
of the plate.
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Fig. 7. Rotation effect Ω on primary velocity profiles.

Fig. 8. Rotation effect Ω on secondary velocity profiles.

Tables 3–5 show variation of skin friction coefficient with the various values of Hall current, rotation parameter,
Dufour and Soret number. The local skin friction coefficient due to primary velocity decreases with the increase in
Hall current, Dufour and Soret number and decreases with increasing of rotation parameter. The local skin friction
coefficient due to secondary velocity decreases with increasing of Dufour and Soret number while decreases with
increasing of Hall current and rotation parameter for both ramped temperature and isothermal plate in case of cooling
of the plate and the opposite effect in case of heating of the plate, it is observed from Tables 3–5.

6.2. Temperature profiles

Figs. 13(a), 13(b) show the effect of thermal radiation on temperature profiles with the absence and presence of
Dufour number. The temperature increases in the entire boundary region with an increase of thermal radiation in the
absence and presence of Dufour number for ramped temperature and isothermal plate. Figs. 14(a), Fig. 14(b) show the
effect of Prandtl number on temperature profiles with the absence and presence of Dufour number. The temperature
decreases in the entire boundary region with an increase of Prandtl number with the absence and presence of Dufour
number for ramped temperature and isothermal plate. Fig. 15 shows the effect of Dufour number on temperature
profiles, the temperature increases in the entire boundary region with an increase of Dufour number for both ramped
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Fig. 9. Soret effect Sr on primary velocity profiles.

Fig. 10. Soret effect Sr on secondary velocity profiles.

Table 3
The skin-friction due to primary and secondary velocity with the effect of Dufour and Soret number in case of cooling and heating of the plate.

Dr Sr τx (cooling) τz (cooling) τx (heating) τz (heating)
Ramped Isothermal Ramped Isothermal Ramped Isothermal Ramped Isothermal

1 0 2.91033 2.35922 2.35311 2.63045 5.87581 6.42691 0.84429 0.56695
2 0 2.88051 2.32939 2.38692 2.66426 5.90564 6.45675 0.81048 0.53313
3 0 2.85066 2.29955 2.42074 2.69807 5.93547 6.48658 0.77667 0.49932
0 1 2.91676 2.36565 2.33259 2.62323 5.85768 6.42005 0.86481 0.57417
0 2 2.90506 2.34225 2.34589 2.64983 5.86938 6.44389 0.85151 0.54758
0 3 2.36565 2.31885 2.35918 2.67642 5.88109 6.46733 0.83822 0.52098

temperature and isothermal plate. Table 4 shows the variation of Nusselt number. The rate of heat transfer decreases
with increase of thermal radiation and Dufour number and the opposite effect is observed for an increase of Prandtl
number.
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Fig. 11. Dufour effect Dr on primary velocity profiles.

Fig. 12. Dufour effect Dr on secondary velocity profiles.

Table 4
The skin friction due to primary and secondary velocity with the effect of hall current and rotation in
case of heating of the plate.

m Ω −τx (heating) τz (heating)
Ramped Isothermal Ramped Isothermal

0.5 5 −.5.8459 −6.39708 −0.8781 −0.60077
1 5 −5.6173 −6.17274 −0.1574 −0.80637
1.5 5 −5.3605 −5.93414 −1.2705 −0.87509
0.5 3 −5.7324 −6.33896 −1.6526 −0.41375
0.5 7 −6.0063 −6.50614 −1.0776 −0.77461

6.3. Concentration profiles

Fig. 16 shows the effect of Soret number on concentration field, the concentration profile increases in the entire
region with an increase of Soret number. Figs. 17(a), 17(b) show the effect of Schmidt number on the concentration
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Fig. 13(a). Radiation effect N on temperature profiles with absence of Dufour.

Fig. 13(b). Radiation effect N on temperature profiles with presence of Dufour.

Table 5
Rate of heat transfer near to the plate with the effect of radiation parameter, Prandtl
number and Dufour number.

N Pr Dr Nu
Ramped Isothermal

0.2 0.71 0 0.17778 0.35556
0.5 0.71 0 0.16048 0.32096
0.2 0.71 1 0.83946 0.66168
0.5 0.71 1 0.67066 0.51018
5.0 0.71 0 0.12510 0.25021
5 7 0 0.24875 0.49752
5 0.71 1 0.04488 0.16999
5 7 1 0.61451 0.36577
5 0.71 2 0.19577 0.07068
5 0.71 3 0.35621 0.23110
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Fig. 14(a). Prandtl number Pr on temperature profiles with absence of Dufour.

Fig. 14(b). Prandtl number Pr on temperature profiles with presence of Dufour.

profiles with the absence and presence of Soret number. The concentration linearly decreases for small values of
Schmidt number and exponentially decreases for large values of Schmidt number in the entire boundary region in the
absence of Soret number whereas exponentially decreases with increase of Schmidt number in the presence of Soret
number. Table 6 shows that the rate of mass transfer increases with increasing of Schmidt number with the absence
and presence of Soret number while decreases with an increase of Soret number.

7. Conclusions

The following conclusions are drawn from the above study, for both ramped temperature and isothermal plate.

1. The primary velocity increases with increasing of Sr and Dr, while decreases with increasing of M2, m and Ω in
case of cooling of the plate and opposite effects in case of heating of the plate.

2. The secondary velocity increases as increasing of m, Sr and Dr while decreases with increasing of M2 and Ω in
case of cooling of the plate and opposite effects in case of heating of the plate.

3. The temperature increases with increasing of N and the opposite effect for Pr while temperature increases with
increasing of Dr.



262 G. Jithender Reddy et al. / Transactions of A. Razmadze Mathematical Institute 170 (2016) 243–265

Fig. 15. Dufour effect Dr on temperature profiles.

Fig. 16. Soret effect Sr on concentration profiles.

Table 6
Rate of mass transfer near to the plate with the effect of
Schmidt number and Soret number.

Sc Sr Sh

0.22 0 0.49284
0.60 0 0.79023
0.22 1 0.25744
0.60 1 0.35794
0.22 2 0.20701
0.22 3 0.13156

4. Concentration profile decreases with increasing of Sc while increases with increasing of Sr.

5. Primary skin-friction coefficient increases with an increase of Sr and Dr while decreases with an increase of m and
Ω in case of cooling of the plate and opposite effect for heating of the plate.
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Fig. 17(a). Schmidt number Sc on concentration profiles with absence of Soret.

Fig. 17(b). Schmidt number Sc on concentration profiles with presence of Soret.

6. Secondary skin-friction coefficient increases with the increase of m,Ω , Dr and Sr in case of cooling of the plate
and opposite effect in case of heating of the plate.

7. Heat transfer coefficient increases with increasing of Pr while decreases with increasing of N and Dr.

8. Mass transfer coefficient increases with increasing of Sc while decreases with increasing of Sr.

9. In case of cooling of the plate, the results of primary and secondary velocities and its skin-frictions are in good
agreement with the results of Seth et al. [7] with the absence of Soret and Dufour.
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