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Abstract b-carotene is a widely known carotenoid molecule, commercially used as food and feed

additive, cosmetic and pharmaceutical products. The current study investigates the usability of

some agro-industrial by-products for b-carotene production by Serratia marcescens and optimizes

the production process using Plackett–Burman Design (PBD) and central composite design (CCD).

Rice bran, molasses and sugarcane bagasse were tested for their effects on b-carotene production
by S. marcescens. Molasses was the high potent source for b-carotene production giving 1.1 mg/L

after 2 days of incubation in the dark at 30 �C on a rotary shaker at 150 rpm.

PBD was used to evaluate the effect of lactose, sucrose, beef extract, peptone, NaCl, MgSO4,

KH2PO4, pH, inoculum size (ml/L) and agitation rate (rpm) on b-carotene production. Sucrose,

lactose, peptone, beef extract, pH, inoculum size showed a positive sign of the effect on

b-carotene production, while other factors showed a negative sign. The coefficient of determination,

R2, was 0.9829, showing good fitness of the model.

Factors screened by PBD were further optimized using CCD of Response Surface Methodology

(RSM). Central composite rotatable design was used to determine the optimum levels of three
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independent variables (sucrose g/L, peptone g/L and pH) at five different levels, coded as – a, �1, 0,

1 and +a. Results of CCD were analyzed by standard ANOVA, and the quadratic regression equa-

tion was generated. The optimum production medium were composed of 2.5 g/L sucrose, 7.8 g/L

peptone and pH 6.7 with a predicted value of 2.51 mg/L and actual value of 2.24 mg/L.

� 2016 Production and hosting by Elsevier B.V. on behalf of Faculty of Agriculture, Ain Shams

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
Introduction

In contract to natural pigments, addition of synthetic col-
orants in food products has safety concerns due to its poten-
tially harmful effects on human health (Velmurugan et al.,
2010). On the other hand, naturally produced pigments have

been shown as important alternative to synthetic food
colorants.

b-carotene, a member of the carotenoids, is a strongly col-

ored red-orange pigment abundant in plants and fruits. It is
biosynthesized from geranylgeranyl pyrophosphate.

b-carotene can be obtained by extraction from vegetables,

by chemical synthesis or microbial production. The latter,
has some advantages due to their natural characteristics, safe
use, medicinal properties and production independent of sea-

son and geographical conditions (Rashid and Mazumdar,
2014). Moreover, microbial production (by algae, fungi and
bacteria) of b-carotene has an economic advantage of using
low cost natural substrates used as sources of carbohydrates

in microbial processes (Hernández-Almanzaa et al., 2014).
Microbial producers of b-carotene include Blakeslea tris-

pora (fungi), Rhodotorula spp., and Saccharomyces cerevisiae

(yeast), Dunaliella bardawil (microalgae), and bacteria such
as Serratia marcescens (Wang et al., 2012).

Several studies showed feasibility for production of carote-

noids from low cost substrates, such as rice bran, sugarcane
bagasse and corn starch hydrolyzate (Hernández-Almanzaa
et al., 2014). Therefore, it is necessary to determine the best cul-
ture medium and environmental conditions for microbial fer-

mentation in order to exploit the potential of the selected strain.
In general, natural pigments has an annual growth rate of

5–10%, comprising 31% of the worldwide colorant market,

compared to 40% for synthetic colorants (Downham and
Collins, 2000; Mapari et al., 2010). Global production of b-
carotene reached $ 233 million dollars in 2010, and is expected

to reach $ 309 million by 2018 with an annual growth rate of
3.6% (Mata-Gómez et al., 2014).

Therefore, the aim of the current study was set on utilizing

cheap agro-industrial by-products as basic materials for pro-
duction of b-carotene by S. marcescens, screening the significant
factors affecting b-carotene production process by applying
Plackett–Burman design then optimizing the levels of these fac-

tors by statistical approach of response surface methodology.

Materials and methods

Microorganisms

S. marcescens ATCC 27117 was obtained from Cairo
Microbiological Resources Center (Cairo MIRCEN), Faculty
of Agriculture, Ain Shams University, Cairo, Egypt.
S. marcescens was maintained and sub-cultured on nutrient
agar slants at 4 �C until further use.

Production medium

Nutrient broth (composed of (g/L): beef extract (3), peptone

(5), pH 7) was used as production medium (Wang et al.,
2012) and inoculum preparation. Nutrient agar (NA),
containing 20 g/L of agar, was used to maintain S. marcescens

culture. The pH was adjusted by 1 N NaOH or HCl solution
and autoclaved at 121 �C for 20 min.

Agro-industrial by-products

Rice bran, sugar cane molasses and sugar cane bagasse were
used for b-carotene production. Rice bran was collected from
rice farms in El-Beheira governorate (located in the Nile Delta,

north of Cairo). Rice bran was dried at 70 �C for 2 h, cooled
and stored in a desiccator for further studies. Sugar cane
molasses was obtained from EL-Howamdia Company, Egypt.

Sugarcane bagasse was procured from local sugarcane juice
vendor. The bagasse was packed in a cloth carrying bag to pre-
vent the entry of flies and other insects and dried in shade.

After drying, the pith portion of the bagasse was extracted
manually and the outer rind was discarded. The pith was
ground to fine powder in a steel kitchen grinder to reach a par-
ticle size of 0.2–2 mm.

Chemical analysis of agro-industrial by-products

All agro-industrial by-products were analyzed for N, C, P,

protein, ash, fiber, moisture, cellulose, hemicellulose at Arid
land Agricultural Research and Services Center, Faculty of
Agriculture, Ain Shams University. Cellulose and hemicellu-

loses contents of agro-industrial by-products were determined
using the standard laboratory analytical procedures for bio-
mass analysis provided by the National Renewable Energy

Laboratory (NREL, USA) and methods developed by the
Association of Official Analytical Chemistry (A.O.A.C.,
1995). Three samples were dried at 105 �C to constant weight
to determine the biomass moisture content. The ash determi-

nation was done by burning the samples at 550 �C in a muffle
furnace (Blue M Electric Company, Blue Island, USA) for
3 h, according to the laboratory analytical procedure for

determination of ash. Total nitrogen of by-products was
determined using the Kjeldahl method (Bradstreet, 1965).
Crude protein content was calculated by multiplying total

nitrogen percentage by 6.25 and crude fiber was determined
by enzymatic-gravimetric method (A.O.A.C., 1995). Organic
carbon is measured using a carbonaceous analyzer, which

converts organic carbon to carbon dioxide (CO2) by either
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Table 1 Experimental variable at different levels, estimated

effect, for b-carotene production by S. marcescens in eleven

variable Plackett–Burman design experiments.

Coded

factors

Variables Low level (�1)

(g/L)

High level (+1)

(g/L)

X1 Sucrose 2 (�1) 3.5 (+1)

X2 Lactose 2 (�1) 3.5 (+1)

X3 Peptone 4 (�1) 8 (+1)

X4 Beef extract 4.6 (�1) 9.3 (+1)

X5 NaCl 0.1 (�1) 1.2 (+1)

X6 MgSO4 0.1 (�1) 1.2 (+1)

X7 KH2PO4 0.1 (�1) 1.2 (+1)

X8 pH 4.5 (�1) 7 (+1)

X9 Inoculum

size

3 (�1) 7 (+1)

X10 Agitation 100 (�1) 200 (+1)

X11 Dummy 1 �1 +1
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catalytic combustion or wet chemical oxidation. Determina-
tion of phosphorus was carried out by semi-automated col-
orimetric method.

Standard inoculum

One loop of a 24-h-old slant culture grown on NA was mixed

with 100 ml of saline solution (0.9%) in 250-ml Erlenmeyer
flasks to prepare microbial suspension with 108 cfu/ml using
optical density at 550 nm for all experiments.

b-carotene production by S. marcescens

For production of b-carotene, all tested by-products were

used as the basal production medium giving a final carbon
concentration of 1%, therefore, 5.5 g of rice bran in 7 ml dis-
tilled water, 2.5 g molasses in 25 ml distilled water or 7.1 g
bagasse in 18 ml distilled water were placed, each, in 250-ml

Erlenmeyer flask. After sterilization, 5 ml of S. marcescens cell
suspension was transferred to each of the flasks and nutrient
broth was used as control treatment. Flasks were incubated

at 30 �C on a rotary shaker operated at 150 rpm in dark place
for 5 days. Samples (a whole flask) were removed on a daily
basis for biomass and b-carotene determination. All

treatments had three replicates and average responses were
taken.

Extraction of b-carotene from S. marcescens biomass grown on
by-products

For pigment extraction, samples containing waste and cells
were mixed with equal volume of 3 M HCl and mixed well

with hand shaking. The mixture was then incubated in boiling
water for 4 min, quickly chilled for 10 min then centrifuged at
4000 rpm for 5 min. The pellets (cells and waste) were washed

twice with distilled water and vortexed well in equal volume of
acetone. The above layer containing the pigment was cen-
trifuged at 4000 rpm for 20 min and its supernatant was stored

at �20 �C until used for b-carotene analysis (Wang et al.,
2012).

Determination of b-carotene

b-carotene was measured by reading the optical density by
spectrophotometer at 475 nm (Wang et al., 2012) in each
extract. Concentration of b-carotene was calculated by

Beer–Lambert law and a standard curve was constructed using
b-carotene standard.

Determinations of viable count and biomass

Viable count of S. marcescens was carried out on NA medium
using plate count technique. Plates were incubated at 30 �C for

48–72 h. Biomass was determined by cell dry weight as follows:
one flask was taken and its whole content was centrifuged at
4000 rpm for 5 min. The pellets were dried at 85 �C until
reaching constant weight (El-Banna, 2012).
Optimization of b-carotene production

Effect of carbon and nitrogen sources and its concentrations on
b-carotene production by S. marcescens from molasses

The influence of supplementing the production medium with
various carbon sources at different concentrations on b-
carotene production by S. marcescens was studied by adding
sucrose, lactose and starch at 1.5, 2, 2.5, 3, 3.5 (g/L) to 2.5 g

molasses in 25 ml distilled water in 250-ml Erlenmeyer flasks.
After sterilization, flasks were inoculated with 5 ml of (stan-
dard inoculum) freshly prepared bacteria suspension and incu-

bated at 30 �C on a rotary shaker operated at 150 rpm in dark
place for 2 days (Wang et al., 2012). Each treatment has three
replicates and average response was taken.

To study the effect of supplementing the production med-
ium with nitrogen sources at different concentrations on b-
carotene production by S. marcescens, three nitrogen sources
were chosen; beef extract at 2.3, 4.6, 7, 9.3, 9.5 g/L, peptone

and KNO3 at 2, 4, 6, 8, 10 g/L, all were added to 2.5 g molasses
in 25 ml distilled water into 250-ml Erlenmeyer flasks, then all
the procedures were applied as previously mentioned.

Statistical analysis

All data obtained were statistically analyzed (Snedecor and
Cochran, 1989) using Costat computer program V 8.303

(2004). LSD at 5% level as significance was used to differenti-
ate between means.

Statistical screening of nutritional and physical parameters by S.
marcescens using Plackett–Burman Design (PBD)

Plackett–Burman design was used to screen for significant fac-
tors (Table 1). Each independent variable was tested at high

(+1) and low (�1) levels. The variables chosen for the present
study were: lactose, sucrose, beef extract, peptone, NaCl,
MgSO4, KH2PO4 (all in g/L), pH, inoculum size (ml/L) and

agitation rate (rpm) for molasses as substrate. The inoculated
flasks were incubated on a rotary shaker at 30 �C in dark place
for 2 days. The experimental Plackett–Burman design was
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Table 3 Ranges of the independent variables used in RSM.

Variables �a �1 0 +1 +a

Sucrose (g/L) 1.5 2 2.75 3.5 4

Peptone (g/L) 2.6 4 6 8 9.4

pH 3.6 4.5 5.75 7 7.9

Table 4 Central composite design of factors in actual value

for optimization of process variables.

Trials Type (A) Sucrose (g/L) (B) Peptone (g/L) (C) pH

1 Factorial 3.5 8 7.0

2 Center 2.75 6 5.75

3 Factorial 2 4 4.5

4 Center 2.75 6 5.75

5 Factorial 3.5 4 4.5

6 Factorial 2 8 4.5

7 Factorial 3.5 4 7

8 Axial 2.75 6 7.9

9 Axial 4 6 5.75

10 Center 2.75 6 5.75

11 Center 2.75 6 5.75

12 Axial 2.75 2.6 5.75

13 Center 2.75 6 5.75

14 Factorial 2 8 7

15 Factorial 3.5 8 4.5

16 Axial 2.75 9.4 5.75

17 Axial 2.75 6 3.6

18 Axial 1.5 6 5.75

19 Factorial 2 4 7
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analyzed using Design Expert 9.0.3.1 software (Stat-Ease Inc.
USA).

Twelve assigned variables were screened in 20 experimen-
tal designs. All experiments were carried out in duplicate and
the average of the b-carotene production was taken as

responses (Table 2). From the regression analysis, variables
(p < 0.05) were found to have significant impact on b-
carotene production.

CCD of RSM for optimization of nutritional and physical
parameters S. marcescens for b-carotene production

Factors screened by Plackett–Burman design were further

optimized using response surface methodology. A three-
factor, five-level central composite rotatable design was used
to determine the optimum levels of these variables. This cen-
tral composite design consisted of three groups of design

points, including two-level factorial design points, axial or
star points and center points. Therefore, three selected inde-
pendent variables (sucrose g/L, peptone g/L and pH) were

studied at five different levels coded as – a, �1, 0, 1 and
+a. The value for alpha (1.68179) is chosen to fulfill the rata-
bility in the design. According to the central composite design

matrix, a total of 19 experiments were required, including 8
factorial, 6 axial and 5 center, for estimation of the pure error
sum of squares. After inoculation with 5 ml of bacteria sus-

pension, flasks were incubated at 30 �C on a rotary shaker
operated at 150 rpm in dark place for 2 days. To identify
the significance of the main effects and interactions, ANOVA
was performed for each parameter. A p value < 0.05 was



Table 5 Chemical analysis of agro-industrial by-products.

Sample Chemical composition (% w/w)

N C Ph. Protein Ash Fiber Moisture Cellulose Hemicellulose

Sugarcane molasses 0.7 40 0.1 4.6 – – 28 – –

Sugarcane bagasse 0.22 14 1.1 1.4 1.5 26.1 12 39.2 56.7

Rice bran 2.5 18 1.2 15.63 5.98 4.3 10.7 29.2 23.5
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considered to be statistically significant. The levels of factors
used for experimental design are given in Table 3 and design
of factorial, axial and center points were noted in Table 4. In

this experimental design, the statistical software package
Design Expert 9.0.3.1 (Stat-Ease, Minneapolis, MN) was used
in the design of the experiments, the analysis of the experimen-

tal data, and the generation the response surface graphs.
This resulted in an empirical model. For four variable sys-

tems, the model Eq. (1) is as follows:

Y ¼ b0 þ b1Aþ b2Bþ b3Cþ b11A
2 þ b22B

2 þ b33C
2

þ b12ABþ b13ACþ b23BC ð1Þ
where y is the measured response, b0 is the intercept term, b1,
b2, b3 are linear coefficients, b11, b22, b33 are quadratic coeffi-
cients, b12, b13, b23 are interaction coefficients and A, B and
C are coded independent variables. The fit of the regression

model attained was determined by the coefficient of determina-
tion (R-Squared), and the adjusted coefficient (Adjusted R-
Squared). Appropriate model significance was determined by

Fischer’s F-test. The three dimensional graphical representa-
tion and their respective contour plots were determined by
the interaction of dependent variable and the independent vari-

ables (Ghosh et al., 2012).

Results and discussion

Chemical composition of agro-industrial by-products

The chemical compositions of the three different agro-
industrial by-products investigated in this work are shown in
(Table 5). The highest fractions of cellulose (39.2%), and hemi-
cellulose (56.7%) were recorded in sugarcane bagasse and rice

bran, respectively. The highest moisture content was in
Table 6 Screening of agro-industrial by-products for b-carotene pro

Incubation (days) By-products

NA medium Rice bran

b-carotene
(mg/L)

DW (g/L) b-carotene (mg/kg) DW (g/kg)

1 0.58c 4.62d 0.46d 18e

2 0.66b 7.02c 0.54b 30c

3 0.91a 9.06a 0.62a 60a

4 0.63b 7.22b 0.50c 48b

5 0.51d 4.51e 0.38e 22d

Means of triplicate samples value with different significance according to

Means within each column marked with similar letters are not significan

Values shown in bold illustrate the highest records of the measured para
molasses (28%) and the lowest was in rice bran (10.7%). Rice
bran contained the highest nitrogen content (2.5%) and pro-
tein (15.63% w/w), while molasses contained the highest car-

bon content (40%). Sugarcane bagasse contained the lowest
nitrogen and carbon content (0.22% and 14%, respectively),
while having the highest fiber content (26.1%).

Screening of agro-industrial by-products for b-carotene
production by S. marcescens

Rice bran, sugar cane molasses, and sugar cane bagasse were
used as cheap substrate and rich with nutrients for b-
carotene production by S. marcescens ATCC 27117.

Pigment production by S. marcescens was observed in
Table 6. The high concentration of b-carotene was produced
after two days with molasses (1.1 mg/L) and on day 3 with
both rice bran and nutrient broth medium giving 0.62 mg/kg

and 0.91 mg/L, respectively. Similar studies showed that natu-
ral carotenoid-producing bacteria, such as Brevibacterium sp.
(Hsieh et al., 1974), Micrococcus roseus (Berry, 1981),

Mycobacterium sp. (David, 1974), and Flavobacterium sp. pro-
duce b-carotene as a minor product only (Masetto et al., 2001).
In another study, maximum concentration of b-carotene
(360.2 mg/L) was obtained by B. trispora in culture grown in
molasses solution containing 5% (w/v) sugar supplemented
with linoleic acid (37.59 g/L), kerosene (39.11 g/L), and antiox-
idant (1.0 g/L) (Goksungur et al., 2004).

Optimization of b-carotene production

The selected isolate which produces high concentration of

b-carotene, was used for this experiment with the best
by-product, which was run in triplicate.
duction by S. marcescens, compared with nutrient broth medium.

Molasses Bagasse

b-carotene (mg/L) DW (g/L) b-carotene (mg/kg) Dry weight (g/kg)

0.60cd 9cd 0.16d 6c

1.1
a 20a 0.28b 10b

0.82b 14b 0.40a 17a

0.71bc 11bc 0.23c 11b

0.51d 7d 0.13d 8bc

the statistical analysis Duncan’s multiple range test (p 6 0.05).

tly different (p< 0.05).

meter.



Table 7 Screening of different carbon sources and concentrations for b-carotene production and biomass by S. marcescens incubated

for 2 days at 30 �C.

Sucrose Lactose Starch

Concen. (g/L) b-carotene (mg/L) DW (g/L) Concen. (g/L) b-carotene (mg/L) DW (g/L) Concen. (g/L) b-carotene (mg/L) DW (g/L)

1.5 1.3c 16c 1.5 1.0c 17bc 1.5 0.8bc 11c

2.0 1.7ab 21ab 2.0 1.3b 18abc 2.0 1.0ab 14abc

2.5 1.9
a

24
a 2.5 1.6

a
21

a 2.5 1.2
a

16
a

3.0 1.8a 19bc 3.0 1.52ab 19ab 3.0 0.9abc 15ab

3.5 1.4bc 17c 3.5 1.23bc 15c 3.5 0.6c 12bc

Means of triplicate samples value with different significance according to the statistical analysis Duncan’s multiple range test (p 6 0.05).

Means within each column marked with similar letters are not significantly different (p < 0.05).

Values shown in bold illustrate the highest records of the measured parameter.

Table 8 Screening of different nitrogen sources with different concentration for b-carotene production and biomass by S. marcescens

incubated for 2 days at 30 �C.

Beef extract Peptone Potassium nitrate

Concen. (g/L) b-carotene (mg/L) DW (g/L) Concen. (g/L) b-carotene (mg/L) DW (g/L) Concen. (g/L) b-carotene (mg/L) DW (g/L)

2.3 1.3b 16bc 2 1.2c 15b 2 0.7c 8c

4.6 1.8a 19ab 4 1.3bc 17b 4 0.8bc 10abc

7.0 1.9
a

21
a 6 1.5abc 21a 6 1.2

a
13

a

9.3 1.6ab 20a 8 1.8
a

23
a 8 1.1ab 12ab

9.5 1.44b 14c 10 1.6ab 16b 10 0.8bc 9bc

Means of triplicate samples value with different significance according to the statistical analysis Duncan’s multiple range test (p 6 0.05).

Means within each column marked with similar letters are not significantly different (p < 0.05).

Values shown in bold illustrate the highest records of the measured parameter.

Table 9 Plackett–Burman experimental design of 12 runs for

11 variables with observed and predicted values of b-carotene
production by S. marcescens.

Run Observed value

of b-carotene (mg/kg)

Predicted value

of b-carotene (mg/kg)

1 0.93 0.90

2 0.86 0.86

3 1.47 1.56

4 2.21 2.16

5 2.42 2.29

6 2.02 2.07

7 1.94 2.06

8 1.72 1.63

9 1.12 1.23

10 2.45 2.46

11 1.00 0.92

12 2.32 2.33 Fig. 1 Predicted response vs. actual value for b-carotene
production from S. marcescens.
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Effect of carbon and nitrogen sources and concentrations on

b-carotene production by S. marcescens from molasses

Different sources and concentrations of carbon and nitrogen
were tested to maximize b-carotene production by S. marces-
cens. The amount of carbon and nitrogen compounds were

added to the production medium to give a final concentration
of 1% C and 1% N, to eliminate errors due to differences in
carbon and nitrogen concentration in each source. Results

shown in Tables 7 and 8 indicated that maximum production
of b-carotene by S. marcescens on molasses were obtained in
the presence of sucrose at 2.5, lactose at 2.5, beef extract at 7

and peptone at 8 (g/L) giving 1.9, 1.6, 1.9 and 1.8 mg/L
molasses, respectively. Bhosale and Bernstein (2004) reported
that the maximum b-carotene level was 7.85 mg/L culture, rep-

resenting 80% (w/w) of the total carotenoid produced by
Flavobacterium multivorum with optimum medium contained
4000 and 4070 mg/L urea and sodium carbonate, respectively.

Statistical screening of physical and nutritional factors for b-
carotene production by S. marcescens using Plackett–Burman
design

The PB results, shown in Table 9 and Fig. 1, indicated that
there was a variation in pigment production in the twelve trials



Table 10 Estimated effects, linear regression coefficients,

corresponding F-values and p-values for b-carotene production
by S. marcescens in Plackett–Burman design experiment.

Variable Effect Coefficient F-value p-Values

Intercept – 1.71 – –

Model – – 47.93 0.0003

A-sucrose 0.42 0.21 38.72 0.0016

B-lactose 3.333E�003 – – –

C-peptone 0.19 0.093 7.53 0.0406

D-beef extract 0.073 0.037 1.16 0.3303

E-NaCl �0.037 – – –

F-MgSO4 �0.12 �0.062 3.29 0.1296

G-KH2PO4 �0.013 – – –

H-pH 1.04 0.52 235.16 <0.0001

J-inoculum size 0.090 0.045 1.75 0.2432

K-agitation �0.080 – – –

L-dummy1 0.12 – – –

Table 11 Central composite design (CCD) of factors for

optimization of 19 trials for 3 variables with observed and

predicted value of b-carotene production by S. marcescens.

Run Observed value of

b-carotene (mg/L)

Predicted value of

b-carotene (mg/L)

1 2.00 2.11

2 2.46 2.29

3 0.87 0.76

4 2.00 2.29

5 0.60 0.31

6 1.00 1.14

7 1.20 1.06

8 1.90 1.82

9 0.90 1.02

10 2.26 2.29

11 2.40 2.29

12 0.50 0.90

13 2.35 2.29

14 1.80 2.09

15 0.80 0.93

16 2.51 2.11

17 0.32 0.40

18 1.50 1.38

19 1.40 1.27

Table 12 Quadratic regression coefficients and corresponding

F-values and p-values for b-carotene production by S.

marcescens by the RSM–CCD design experiment.

Source Coefficient F-values p-Values

Intercept 2.29 – –

Model – 11.66 0.0006

A-sucrose �0.11 1.90 0.2012

B-peptone 0.36 20.96 0.0013

C-pH 0.42 29.12 0.0004

AB 0.059 0.33 0.5810

AC 0.059 0.33 0.5810

BC 0.11 1.12 0.3168

A2 �0.39 24.27 0.0008

B2 �0.28 12.63 0.0062

C2 �0.42 28.42 0.0005
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ranged from 0.86 to 2.45 mg/kg b-carotene production.
Among the 6 factors, sucrose, lactose, peptone, beef extract,

pH, inoculum size showed a positive sign of the effect on b-
carotene production, and all other factors showed a negative
sign of the effect. When the sign of the effect (Table 10) of

the tested variable is positive, the b-carotene production is
greater at a high level of the parameter, and when it becomes
negative, the b-carotene production is greater at a low level of

the parameter (Kiruthika et al., 2011). The coefficient of deter-
mination, R2, was found to be 0.9829, showing good fitness of
the model. The adequacy of the model was calculated, and the
variables exhibiting statistically significant effects were

screened using ANOVA. Factors with p value (Table 10) lower
than 0.05 were considered to have significant effects on the
production of b-carotene, and were therefore selected for fur-

ther optimization studies using CCD. Value of pH, with a p
value of (<0.0001), was considered as the most significant fac-
tor, followed by sucrose (0.0016) and peptone (0.0406). Plack-

ett–Burman design experiments on production of b-carotene
from S. marcescens ATCC 27117 on molasses indicated that
the most important parameters were sucrose, peptone and
Fig. 2 Pareto chart showing the effect of medium components on b-carotene production from S. marcescens.



Fig. 3 3D surface and contour plots for b-carotene production at varying concentrations of: (a) sucrose and peptone, (b) sucrose and pH

and (c) peptone and pH.
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pH as shown in the Pareto charts (Fig. 2). The Model F-value
of 47.93 implies the model is significant. There is only a 0.03%

chance that an F-value this large could occur due to noise.
Values of ‘‘Prob > F” less than 0.0500 indicate model terms
are significant. In this case A, C, H are significant model terms.
Values greater than 0.1000 indicate the model terms are not

significant. The ‘‘Pred R-Squared” of 0.9016 is in reasonable
agreement with the ‘‘Adj R-Squared” of 0.9624; (i.e. the differ-
ence is less than 0.2) indicating a good agreement between the

experimental and predicted values on b-carotene production.
‘‘Adeq Precision” measures the signal to noise ratio. A ratio
greater than 4 is desirable. Your ratio of 17.814 indicates an
adequate signal. This model can be used to navigate the design

space.
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Central composite design of RSM for optimization of nutritional

and physical parameters by S. marcescens for b-carotene
production

Based on CCD experiment, the effects of three independent
variables; sucrose, peptone and pH, on b-carotene production
are shown in (Table 11). The predicted and observed responses
were reported. The results obtained from CCD were then ana-
lyzed by standard analysis of variance (ANOVA), and the

quadratic regression equation was applied for prediction of
b-carotene production. Based on the full quadratic model
application, (Table 12) it appeared that quadratic effect of
pH value (p value = 0.0005), peptone (p value = 0.0062) and

sucrose concentration (p value = 0.0008) should to be signifi-
cant on the model. The linear effect for peptone and pH were
still considered as an important factor in this model (p< 0.05)

than sucrose concentration (p value = 0.2012). The polyno-
mial model for b-carotene production (Y) was regressed by
only considering the significant terms (p< 0.05) as shown in

the following Eq. (2):

Y ¼ 2:29þ 0:36Bþ 0:42C� 0:39A2 � 0:28B2 � 0:42C2 ð2Þ
where Y is the predicted b-carotene production yield, B is pep-
tone concentration, C is pH value. A2, B2 and C2 are quadratic

coefficients of sucrose concentration, peptone concentration
and pH. The regression equation obtained from analysis of
variance (ANOVA) with the R2 value (multiple coefficients

of determination) of 0.9210 revealed that the model should
to be fitness. The Model F-value of 11.66 implies the model
is significant. There is only a 0.06% chance that an F-value this

large could occur due to noise. The ‘‘Lack of Fit F-value” of
3.88 implies the Lack of Fit is not significant relative to the
pure error. There is a 10.66% chance that a ‘‘Lack of Fit F-

value” this large could occur due to noise. Non-significant lack
of fit is good. ‘‘Adeq Precision” measures the signal to noise
ratio. A ratio greater than 4 is desirable. Your ratio of 9.429
indicates an adequate signal. This model can be used to navi-

gate the design space. This model can be used to navigate the
design space. ANOVA analysis also confirmed a satisfactory
adjustment of the reduced quadratic model to the experimental

data. The three-dimensional response surface graphs were
plotted to illustrate the interaction between the parameters
and the optimum level of tested components on b-carotene
production. The optimum conditions were Sucrose (2.5 g/L),
peptone (7.8 g/L) at pH 6.7 with a maximum predicted b-
carotene production of 2.51 mg/L molasses and actual
2.24 mg/L. Fig. 3 shows 3D surface and the contour plots of

b-carotene production for each pair of factors by keeping the
other two factors constant at its middle level.

Wang et al. (2012) noticed that the cultivation conditions

for b-carotene production by S. marcescens RB3 were opti-
mized as 2.0% lactose, 2.0% peptone, 0.3% beef extract,
1.0% NaCl supplemented with 0.05% Fe2+, pH 6.0 and

30 �C. Under the optimal conditions, the yield of b-carotene
was 2.45 lg/ml. Zhai et al. (2014) produced 1.19 mg/g dry bio-
mass of carotene by Arthrobacter globiformis from medium

containing (g/L) sugarcane molasses, 40.0 and corn steep
liquor, 50.0, incubated at 100 rpm, 30 �C, and with pH 7.5.

Krishna (2008) reported that S. marcescens at 37 �C did not
show any pigment production in nutrient broth and the culture

broth was white in color, and the level of pigment production
over a range of pH from 5.0 to 9.0 and maximal pigment were
recorded at pH 6.0 in spite of a decline in pigment production
along with increase in pH. Highly acidic (2.0–4.0) and alkaline
(10.0–13.0) m media did not support pigment production.

Korumilli and Mishra (2014) reported that the maximum pig-
ment production by Bacillus clausii was achieved being 107
± 1.2 mg/3 g of rice powder by Taguchi method of optimiza-

tion with conditions set at pH 7 and 35 �C temperature.

Conclusion

In this study, b-carotene was produced by S. marcescens grown
on molasses as a low-cost substrate with other nutrients and
compared with rice bran and bagasse. Different chemical

and physical factors were screened by Plackett–Burman design
for b-carotene production. RSM was used to determine the
effects of sucrose, peptone, and pH on b-carotene production.
The model generated in this study by RSM satisfied all the nec-
essary arguments for its use in the optimization. This article
provides a detailed study that used statistical analysis to deter-
mine the optimum levels and interactions among the above

mentioned parameters in b-carotene production from S.
marcescens.
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