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Abstract In this paper two non-stationary forms of Chaikin’s perturbation subdivision scheme,
mentioned in Dyn et al. (2004), have been proposed with tension parameter . Comparison among
the proposed subdivision schemes and the existing non-stationary subdivision scheme depicts that
the trigonometric form is more efficient in the reproduction of circles and ellipses and the hyperbolic
form is more suitable for the construction of many analytical curves.
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1. Introduction

Subdivision schemes ascend from modeling and interrogation
of curves and surfaces, image reconstruction and decomposi-
tion, and the construction problems of compact supported
wavelet. These schemes are being developed in geometric mod-
eling with great potentiality in computer graphics, CAM/CAD
and image processing. Subdivision schemes are widely used in
garment CAD, jewelry CAD and computer graphics industry.
These schemes are also important in fractal generation by
computer particularly [2,3]. Subdivision schemes are used to
construct the required curves and surfaces from scattered data
directly through stated subdivision rules. Mask of the subdivi-
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sion schemes is simply averaging rules corresponding to odd
and even subsequences of finitely supported sequence of real
numbers. In case of level dependent subdivision schemes
[4-9] mask varies from one level to another; generally, it allows
to generate larger variety of limiting curves having several use-
ful properties e.g. reproduction of conics and spirals etc. New
methods of convergence of non-stationary schemes have been
introduced in [18,19]. In [18] asymptotic similarity has been
used instead of asymptotic equivalence. In [19] spectral radius
approach has been used along with the asymptotic similarity
for convergence. Different properties of the non-stationary
subdivision schemes e.g. approximation order and reproduc-
tion properties have been analyzed in [20-23].

Some numerical schemes have been presented by P. Das
and S. Natesan to solve singularly perturbed reaction diffusion
differential equations in [15-17].

In this paper, Chaikin’s perturbation subdivision scheme [1]
has been presented in trigonometric and hyperbolic forms with
the abilities to reproduce conic-sections and many analytical
curves.
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The following basic results of the non-stationary subdivision
schemes are considered to prove the convergence/ smoothness
of the proposed non-stationary subdivision schemes.

Deﬁnition 1.1. Given a set of initial control points
A . .

={p e Rd}(+ ;- a binary subdivision scheme generates

new set of control points P" = {p! }[,Z:kf atleveln(n = 0,k € Z)

by the subdivision rule

n+1 ]
Zal 2/[)/7 i€Z,

jez

where the set of coefficients o = {a",i€ Z} in above
equation is termed as the mask of the subdivision scheme at
n subdivision step. The Laurent polynomial associated with
the non-stationary subdivision scheme {S,} having mask

Za(”> i >

icZ

a™ is

Definition 1.2 [10]. A binary subdivision scheme {S,.} is said
to be C" if for every initial data p° = {p? : i € Z} there exists
a limit function f'€ C" such that for any closed interval

=la,b] C R,
lim max 27" = 0.
fim mas I (270

Obviously f = $*p° # 0 for some initial data p® and also p! are
the control points at level 7.

Definition 1.3 [10]. Two binary subdivision schemes {S,.} and
{Sy} are asymptotically equivalent if

.
> NSu = Syl < o0,
n=1

where [[Sa ||, = max{2162|a21 l, Zt62|a21+]|}

Theorem 1.1 [11]. Let {Sx} and {S,} be the two asymptotically
equivalent subdivision schemes having finite masks of the same
support. Suppose {Syx} is a level dependent subdivision scheme
and {S,} is a stationary subdivision scheme. If {S,} is C" and

0
sznnsan _ Sa” < 0,

n=0
then the non-stationary subdivision scheme {Sy} is C".

The organization of paper is as follows. In Section 2, Chai-
kin’s perturbation (binary four point approximating) subdivi-
sion scheme has been recalled. In Section 3, the trigonometric
and hyperbolic forms of Chaikin’s perturbation subdivision
scheme have been presented. Convergence analysis of the pro-
posed schemes has also been discussed in Section 3. The nor-
malization of the proposed schemes has been given in
Section 4 as these schemes do not observe the affine invariance
property. In Section 5, some properties of the proposed
schemes have been discussed. Graphical behavior of the pro-
posed schemes has been exhibited along with their comparison
in Section 6.

2. Chaikin’s perturbation subdivision scheme

Given a set of control points f* = {fio},.EZ at level 0, Chaikin’s
perturbation subdivision scheme [1] generates a new set of con-
trol points {f"},., at the level n 4 1 by applying the following
subdivision rules:

{‘ = Tefl + G 0)f + (G4 30)f - Sofl,
i = =Sofy + (34 30)f + G+ 90)fi, — Tofl,,

with @ =0 corresponds to the Chaikin’s scheme [12]. The
scheme gives C'— continuous limit curves for w =0 and

(1)

C?— continuous limit curves for 0 < m < %

3. Non-stationary schemes for uniform trigonometric and
hyperbolic spline curves

In this section, trigonometric and hyperbolic forms of Chai-
kin’s perturbation subdivision scheme [1] have been presented.

3.1. Trigonometric form

The four point non-stationary subdivision scheme is

{ 2= B B B+ B, o)
. 2,;11 =B+ B+ B+ Bofiias
where
= —Tw,
s(3%)
ﬁn _ 20( + 960,
: s(37)
s(352)
ﬁn _ 2a + 360,
? s(37)
:le = —5607
where s(7) = sin(¢) and ¢() = cos().
3.2. Hyperbolic form
The four point non-stationary subdivision scheme is
s =T T A+ 3
. 2711 = V3fi—1 + /sz + Vlfm + Vofi+2»
where
“/8 = —760,
/(3o
(2h+2)
,‘H 9
))1 S'(%) U),
s'(3%)
n 2n\2
Yy = 3
))2 S'(%) (/)7
"/‘g = _5(’01

where §'(¢) = sinh(¢) and ¢/(¢) = cosh(z).
3.3. Continuity analysis

Asymptotic equivalence is needed to be established for conti-
nuity analysis.
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For this, the schemes (2) and (3) will be denoted by {S,~}
and {S,»}, where d" and d" are the Laurent polynomials
d"=3%,,d"z and d" =Y, ,d"z" respectively. Firstly, some
estimations of 7 and y/",i =0,...,3 should be given and for
this the following six inequalities are needed:

s(x) _ ¥
——=2-, 0<x< y<—
so) "y 2’
Bcsc(6) < tesc(t), O<0<t<g

s(x) m
c(x) < pat O<x<2.
s'(x) _x N
—— <=, 0<x<y, xyeR"\unr
s "y
fOcsch(0) > resch(r), 0<O0<t, 0,1eR " \n'n
d(x) > @, x €€ R\ n'm.

Lemma 3.1. Forn>0and 0 <o <35

i fy=—-T0,

ii. 24+ 90 < f] <3 (11)+9w,

e(ar

iii. 24 3w < ﬁ;é%c(i)—i-%o,

iv. f = -5, )

v. vy = 1o,

vi. 2490 = 9] >Zc,(zi)+9w
vil. 430 > 7} >}w('$)+3w
vill. Y5 = —5w

Proof.
(52 =
pr=2 g, > B g,
s(%) ()
> 3—0—9@
4
and
3u 1
ﬁl\ n o o +9(}),
27 % e(3)
31

:—T+9w-

4c(z)

This proves (ii). The other proofs are similar. [J

Lemma 3.2. For the constants C;, i=1,...
n, the following inequalities hold:

LB+ To| =0,
i. |p —-—9w\

< Cigm
i, |f) —4—30| < Cysh,
v, |B+ 5w| =0,
v. |+ Tw| =0,
vi. |y1 7—79w| < C5-L 22n,

Vil. ]yz —i- 3(0] < Cy5 s
viii. |74 4 50| =0,

,4, independent of

Proof. Using above lemmas, inequality (i) can be proved by
taking

31
u <_
/))1 \46 %)+9w7
. 3 3(1-cz)
5149w<4<c(21”)>
3 (2()
2\ <)
.3 302 1
ﬁ‘Z‘%4<§?aa7
where C| = this proves (ii). O

(1)’

Lemma 3.3. The symbol d"(z) corresponding to the n™ level of
the non-stationary subdivision scheme {Sy»} can be written in
the form of

d'(z) = (1 ;Z>e”(z)

where

¢"(2) = 2Bzt + (By — By)z — (B —
+ B - ﬁ3)271

- B+ (BB
+ (=85 + B3+ By) + (B — B3)z + B2

Corollary 3.1. The symbol d"(z) corresponding to the n™ level
of the non-stationary scheme {Syn} can be written in the form of

@)= (57)e

where
() =2{Ar -1z = (o= =9z 0 =
H9 =)z (= 0 05) + (0 — 8)z )
In view of [13], it is sufficient to show that the schemes
{8y} and {S,«} associated with {d"(z)} and {d"(z)} are C'
in order to prove that the proposed schemes are C*. The result
of Theorem 8(a) of [14] will be used to prove this. In order to
use the result of Theorem 8(a) given in [14], the schemes { Sy~ }

and {S,~} will be compared with {S,} which is defined in the
following lemma.

Lemma 3.4. The stationary subdivision scheme S; associated
with the symbol

d(z) = 2{5(02’4 + 2wz — % (1+20w)z72 + % (=1 —8w)z™"

1
Z( 1 —200) + 2wz + 5wz’ }
is C? for the range o € ]O,%[.

Theorem 3.1. The non-stationary subdivision scheme defined in
(2) is asymptotically equivalent to the stationary scheme (1).
Hence, it generates C? limit curves.
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Proof.

00

> 2"|Sun — Sall, < 0

n=0

where

||Sdn — Sﬂ'”oo = max {Z'diﬁij — di+2j| 1i=0, 1}

Jjez

= max {sz'; —dyl, Y |}

Jjez

D ldly = dviyl = [ + 70| +

Jjez

"
1

Jjez

4

1+2/

79w‘+

- d1+2j|},

1
-t

+ B+ S0|= > |dy — by,

ianSd’ - Silly = il’ max

n=0 n=0

+
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From the results of Lemma (3.2), it can be noted

Oo2" ’;—2—9(0 < 00, Oo2" !
4
n=0 n=0

1 3w’ < o0,
and thus it can be written as

2

o
D 2ISe = Sall, < 00
n=0

and hence {S;} is C' and the scheme (2) is C*. O
Corollary 3.2. The hyperbolic form of the Chaikin’s perturba-
tion scheme defined in (3) is C*.

In the following section normalized schemes corresponding

to proposed schemes (2) and (3) have been presented.

4. Normalization

Since the sums of the masks of the proposed four point
schemes are not equal to one i.e. the sum of the trigonometric
form (2) of four point scheme is

(b)

(f)

Construction of circles along with the associated curvature plots.
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The four point normalized non-stationary subdivision scheme
is

n+l _
n+l _
2i+1

where

nf + ﬂ/nfn + ﬁ/n n ﬁ +27

/n 'n on (4)
f +ﬁf +ﬁf+1+ﬁ i+27

=

The sum of the hyperbolic form (3) of four point scheme is

)
no__ no__ 2n
7’*23%*d(«y

2!1-]

and the corresponding normalized scheme can be obtained as
follows

b =g +Vm i1 T3 (5)
271: = V3f + ,yln ln +l + / f+27

with

1 .
W=yl Jj=0,...,3
Yy
The convergence analysis of the normalized schemes is similar
as in Section 3.
Moreover, the normalized schemes reproduce the function

f(x) =1 because 37 f" =1 and 3y =
5. Properties of the schemes

In this section, the properties of the proposed schemes have
been discussed.

The basic limit function denoted by L of the scheme {S,;}
is the limit function of the scheme for the data

joi{l,i:Q

o, i#0.

Let

Dk:{zk,]GZ} (6)

It is easy to check that restriction of L to Dy satisfies

(f)

Figure 2 Construction of ellipses along with the associated curvature plots.
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Theorem 5.1. The basic limit function L of the scheme (2) is
symmetric about the Y-axis.

Proof. Mathematical induction on k is used to prove the
theorem.

Since

J J .
L(?):L<_?)7 for k=0, VjeZ

Therefore it provides basis for induction. Let

J J :
Z)l=L[-Z = Z.
L(2n) L( 2,,), for n=1,2,...,k, Vje¢

It can be written as

2 2 .
(g) - (-5)

Moreover,

L(ZE) = Bt o+ B+ B+ B
“el() eelz) ()
J+2
L (2 )
7ﬁ0(1+1) [),k (2)+ﬁ2<]2;1)
-2

Similarly, it can be shown that

@)

Hence,

L('zl—k):L( 2k) k€ Zand V.

From the continuity of L,

L(t)y=L(-1), V teR.

6. Graphical inspection

In this section behavior/comparison among the proposed
trigonometric and hyperbolic forms of Chaikin’s perturbation
subdivision scheme and the binary scheme [11] have been pre-
sented. The approach of curvature plots and comparison with
the original parametric curves has been used to check out the
efficiency of the above listed subdivision schemes.

In Figs. 1 and 2, circles and ellipses have been reconstructed
using the proposed non-stationary subdivision schemes (4), (5)
and the scheme [11]. Figs. 1(a) and 2(a) are obtained using the
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Figure 3  Generation of cardioid along with the corresponding
magnified parts.

proposed trigonometric form (4) along with the associated cur-
vature plots in Figs. 1(b) and 2(b). Figs. 1(c) and 2(c) are
obtained from the proposed hyperbolic form (5) and the corre-
sponding curvature plots are given in Figs. 1(d) and 2(d). The
Figs. 1(e) and 2(e) are obtained from the subdivision scheme
[11] and the corresponding curvature plots are given in Figs. 1
(f) and 2(f). With the help of curvature plots it can be observed
that the proposed trigonometric form is more suitable in the
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Figure 4  Generation of astroid for o =%, obtained using the

proposed trigonometric, hyperbolic form and scheme [11].

construction of circles and ellipses as compared to the pro-
posed hyperbolic form and the scheme [11].

In Figs. 3-5, cardioid, astroid and lemniscate have been
generated using the proposed trigonometric form, hyperbolic
form and the scheme [11] represented by solid line (in blue),
broken line-segments (in red) and dotted line segments (in
black).

Comparison among the proposed trigonometric and hyper-
bolic forms and the scheme [11] with the standard parametric
curves of cardioid, astroid and lemniscate is demonstrated in
Figs. 3(a,c,e), 4(a,c,e) and 5(a,c,e). Corresponding boxed parts
of these Figs. have been magnified to demonstrate better com-
parison, in Figs. 3(b,d.f), 4(b,d.f) and 5(b,d,f). Parametric equa-
tion of cardioid x = a(1 +2cos+cos2¢),y = a(2sint + sin2¢)
for a=1 parametric equation of astroid x=bhcos’s,

y=bsin’t for b=2, and parametric equation of lemniscate
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Figure 5 Generation of lemniscate for o = 3%,

—
—n
~

__acos(t) __ asin(r)cos(t

=5 L2 ) for a= 2, have been used to obtain
+sin~ (1) 1-sin”(r)

the standard cardioid, astroid and lemniscate (represented by
green dotted line-segments). Through the comparison it can
be observed that the cardioid, astroid and lemniscate con-
structed using the proposed hyperbolic form are more close
to the corresponding standard curves. Therefore, it can be said
that the proposed hyperbolic form is more suitable in the con-
struction of astroid and lemniscate than the proposed trigono-
metric form and the scheme [11].

2861
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7. Conclusion

Two non-stationary counterparts of the Chaikin’s perturba-
tion subdivision scheme [1] have been developed in trigono-
metric and hyperbolic forms. The curvature plot approach
has been used to check the precision of conics reproduction
property (circles and ellipses) of the proposed schemes.
Through visual inspection, it can be observed that the pro-
posed trigonometric form gives more precision in reproduction
of circles and ellipses as compared to the proposed hyperbolic
form and the scheme [11]. On the other hand, hyperbolic form
is more precise in the reproduction of cardioid, astroid and
lemniscate.
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