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Performance in visual tasks is limited by the low-level mechanisms that sample the visual field. It is well
documented that contrast sensitivity and spatial resolution decrease as a function of eccentricity and that
those factors impair performance in ‘‘higher level’’ tasks, such as visual search. Performance also varies
consistently at isoeccentric locations in the visual field. Specifically, at a fixed eccentricity, performance
is better along the horizontal meridian than the vertical meridian, and along the lower than the upper
vertical meridian. Whether these asymmetries in visual performance fields are confined to the vertical
meridian or extend across the whole upper versus lower visual hemifield has been a matter of debate.
Here, we measure the extent of the upper versus lower asymmetry. Results reveal that this asymmetry
is most pronounced at the vertical meridian and that it decreases gradually as the angular distance (polar
angle) from the vertical meridian increases, with eccentricity held constant. Beyond 30� of polar angle
from the vertical meridian, the upper to lower asymmetry is no longer reliable. Thus, the vertical merid-
ian is uniquely asymmetric and uniquely insensitive. This pattern of results is consistent with early ana-
tomical properties of the visual system and reflects constraints that are critical to our understanding of
visual information processing.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

While typing at your computer, you may remain fixated on the
screen while reaching for your coffee cup on your desk’s surface or
taking a book off of the shelf. You are able to use the information in
your peripheral visual field to guide your actions. Similarly, when
looking for your keys on your desk, you can fixate on individual
items, moving from location to location until you find them. To
pick the next location of fixation, you must again use information
outside the focus of your gaze, where sensitivity and acuity are
diminished. Interacting with objects that are not at the center of
your gaze requires making decisions based on degraded informa-
tion that is available in the peripheral visual field. Indeed, the
peripheral visual field is limited: contrast sensitivity and spatial
resolution (e.g., Seiple et al., 2004; Virsu & Rovamo, 1979), acuity
(Carrasco, Williams, & Yeshurun, 2002; Golla et al., 2004; Seiple
et al., 2004; Yeshurun & Carrasco, 1999), and texture segmentation
(Gurnsey, Pearson, & Day, 1996; Kehrer, 1989; Yeshurun & Carras-
co, 1998) are all impaired with increasing eccentricity. Further-
more, as eccentricity increases crowding (e.g., Bouma, 1970; Pelli,
Palomares, & Majaj, 2004; Toet & Levi, 1992) and positional
ll rights reserved.
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uncertainty (e.g., Michel & Geisler, 2011) become worse. These
perceptual limitations serve as an initial bottleneck that constrains
later perceptual processes, such as visual search in fixating observ-
ers (e.g., Carrasco, Evert, & Katz, 1995; Carrasco & Frieder, 1997;
Carrasco, Giordano, & McElree, 2006; Geisler & Chou, 1995), as well
as when observers are permitted to make eye movements
(Najemnik & Geisler, 2005, 2008, 2009).

Given that the effect of eccentricity on performance is well doc-
umented, many experimenters place stimuli at isoeccentric loca-
tions to mitigate perceptual differences (e.g., Cameron et al.,
2004; Carrasco & McElree, 2001; Carrasco et al., 2003; Eckstein,
1998; Moher et al., 2011; Palmer, Verghese, & Pavel, 2000). How-
ever, differences in performance at isoeccentric locations can be
quite pronounced, even at parafovea. The shape of the visual per-
formance field, with eccentricity held constant, is characterized
by a Horizontal–Vertical Anisotropy (HVA), in which performance
is better in the East1 and West relative to the North and South,
and a vertical meridian asymmetry (VMA), in which performance
is better in the South than in the North. These performance fields
emerge in contrast sensitivity and spatial resolution tasks (Altpeter,
Mackeben, & Trauzettel-Klosinski, 2000; Anderson, Wilkinson, &
1 For ease of comprehension, we refer to isoeccentric locations using compass
rminology, specifying position along the cardinal meridians.
te
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Thibos, 1992; Cameron, Tai, & Carrasco, 2002; Carrasco, Talgar, &
Cameron, 2001; Carrasco, Williams, & Yeshurun, 2002; Low, 1943a,
1943b; Lundh, Lennerstrand, & Derefeldt, 1983; Mackeben, 1999;
Millodot & Lamont, 1974; Montaser-Kouhsari & Carrasco, 2009;
Pointer & Hess, 1989; Pointer & Hess, 1990; Regan & Beverley,
1983; Rijsdijk, Kroon, & van der Wildt, 1980; Robson & Graham,
1981; Rovamo et al., 1982; Seiple et al., 2004; Silva et al., 2008; Silva
et al., 2010; Skrandies, 1985; Talgar & Carrasco, 2002), as well as in
visual search tasks (Carrasco, Giordano, & McElree, 2004; Chaikin,
Corbin, & Volkmann, 1962; Kristjánsson & Sigurdardottir, 2008;
Kröse & Julesz, 1989; Najemnik & Geisler, 2008, 2009; Pretorius &
Hanekom, 2007; Rezec & Dobkins, 2004). Both the HVA and the
VMA also exist in the rate of information accrual at isoeccentric loca-
tions: information accrual is faster along the horizontal than the ver-
tical meridian, and it is faster along the lower than the upper vertical
meridian (Carrasco, Giordano, & McElree, 2004).

Both the HVA and the VMA become more pronounced as target
eccentricity, target spatial frequency, and the number of distract-
ing stimuli increases (Cameron, Tai, & Carrasco, 2002; Carrasco,
Giordano, & McElree, 2004; Carrasco, Talgar, & Cameron, 2001).
These differences are apparent regardless of stimulus orientation
and do not depend on whether the stimuli are presented binocu-
larly or monocularly (Carrasco, Talgar, & Cameron, 2001). Further-
more, observers report differences in subjective appearance for
stimuli appearing at different isoeccentric locations. Specifically,
perceived contrast is higher along the lower than the upper vertical
meridian (Fuller, Rodriguez, & Carrasco, 2008) and perceived spa-
tial frequency is higher along the horizontal than the vertical
meridian (Edgar & Smith, 1990; Montaser-Kouhsari & Carrasco,
2009). Furthermore, luminance defined stimuli fade faster along
the vertical than the horizontal meridian and fade faster in upper
than in lower visual field locations (Sakaguchi, 2003). Finally, these
asymmetries in perceptual performance are also observed in mo-
tion perception (Fuller & Carrasco, 2009), as well as in tasks involv-
ing visual short-term memory (Montaser-Kouhsari & Carrasco,
2009) and memory for scenes (Previc & Intraub, 1997). Finally,
crowding is more pronounced along the upper than the lower ver-
tical meridian (He, Cavanagh, & Intriliagator, 1996).

1.1. What is the source of these asymmetries in sensitivity?

At the level of the retina, cone density is highest along the hor-
izontal meridian, which may be an anatomical correlate of the
HVA. Regarding the VMA, there is also a slight upper to lower
asymmetry with more cones in the superior than in the inferior
portions of the retina, which process the lower and the upper vi-
sual field, respectively (Curcio et al., 1987, 1990). The distribution
of ganglion cells in the retina also follows this relation and has a
greater asymmetry than at the level of the cone mosaic (Curcio &
Allen, 1990; Perry & Cowey, 1985).

In the LGN, the magnocellular layers are relatively symmetric at
any given eccentricity, whereas the parvocellular layers are asym-
metric. In the parvocellular layers, more space is dedicated to the
representation of the horizontal meridian and there is slightly
more space dedicated to the lower than to the upper visual field
(Connolly & Van Essen, 1984). This relative asymmetry of the par-
vocellular layers may be responsible for the interaction between
visual performance fields and spatial frequency. Specifically, par-
vocellular units tend to be sensitive to higher spatial frequencies,
whereas magnocellular units tend to be sensitive to lower fre-
quency stimuli. Therefore, visual information with a higher spatial
frequency might be processed in the asymmetric parvocellular
layers, leading to increasingly asymmetric performance fields as
spatial frequency increases.

Finally, in cortex, asymmetries in the representation of the visual
field have been reported at the level of V1 (Tootell et al., 1988; Van
Essen, Newsome, & Maunsell, 1984; but see Adams & Horton, 2003,
who found no upper versus lower asymmetry in squirrel monkey
V1) and MT (Maunsell & Van Essen, 1987), with more cortical space
dedicated to horizontal meridian than the vertical meridian and
more space dedicated to the lower than the upper visual field. These
cortical asymmetries are possible correlates of the HVA and the
VMA, respectively. It should be noted, however, that most of these
anatomical studies refer to asymmetries between the whole upper
versus whole lower visual hemifields and are not constrained to
the vertical meridian. In this sense, our knowledge of visual perfor-
mance fields departs from our knowledge of the anatomy of the
visual system, as behavioral studies report that the upper to lower
asymmetry applies to the vertical meridian but not to the intercar-
dinal locations (Cameron, Tai, & Carrasco, 2002; Carrasco, Giordano,
& McElree, 2004; Carrasco, Talgar, & Cameron, 2001).

Only one report has found a unique physiological basis for the
VMA: an fMRI study in humans found that for high- but not low-
spatial frequencies the amplitude of the BOLD response is smaller
along the upper than the lower vertical meridian and that this dif-
ference disappears when the stimuli are presented at the intercar-
dinal locations (Liu, Heeger, & Carrasco, 2006). Two other reports
have provided evidence for greater insensitivity closer to the verti-
cal meridian at a fixed eccentricity: In non-human primates, an
electrophysiological study found that in V1 there is a greater rep-
resentation of the visual field within ±45� of the horizontal merid-
ian relative to positions within ±45� of the vertical meridian (Van
Essen, Newsome, & Maunsell, 1984; but see Adams & Horton,
2003). Finally, a neuroanatomical study of the macaque LGN found
an overemphasis of the representation within ±45� of the horizon-
tal meridian (Connolly & Van Essen, 1984).

These studies provide clear anatomical evidence for the HVA
and limited evidence for the VMA. Most of the anatomical data
suggest that upper versus lower visual field differences should
not be restricted to the vertical meridian, but behavioral studies
that have compared performance along the vertical meridian to
performance at the 45� intercardinal locations have found no
upper to lower asymmetry at the 45� intercardinal locations (e.g.,
Cameron, Tai, & Carrasco, 2002; Carrasco, Giordano, & McElree,
2004; Carrasco, Talgar, & Cameron, 2001). This apparent discrep-
ancy between the anatomy and the behavior may be due to the fact
that the relation between anatomical and behavioral asymmetries
is complex. Different cell populations can have different spatial
properties from each other (i.e., lowpass or bandpass), which can
lead to differential sensitivity. If neurons with dissimilar spatial
properties represent different regions of space, then a lower cell
density is not sufficient for a claim of diminished sensitivity. Thus,
it can only be hypothesized that lower cell densities might lead to
diminished performance.

Some authors have suggested that visual performance fields re-
sult from different properties of attentional orienting across the vi-
sual field (e.g., Altpeter, Mackeben, & Trauzettel-Klosinski, 2000;
He, Cavanagh, & Intriliagator, 1996; Intriligator & Cavanagh,
2001; Mackeben, 1999). However, when selective attention has
been explicitly manipulated and performance is compared across
cued and neutral trials, cueing alters sensitivity across the visual
field, but both the HVA and the VMA remain (Cameron, Tai, & Carr-
asco, 2002; Carrasco, Talgar, & Cameron, 2001; Carrasco, Williams,
& Yeshurun, 2002; Kristjánsson & Sigurdardottir, 2008; Mackeben,
1999; Talgar & Carrasco, 2002). In contrast, with respect to the
speed of information accrual, attention ameliorates the differences
across the performance field, speeding information accrual more
where that rate is the slowest (North) and least where the rated
is the fastest (East and West; Carrasco, Giordano, & McElree,
2004). Thus, whereas attention modulates the speed of information
accrual as a function of isoeccentric location, it does not so with
regard to sensitivity.



72 J. Abrams et al. / Vision Research 52 (2012) 70–78
Based on the evidence presented thus far, we argue that the
most parsimonious explanation for visual field asymmetries in
sensitivity lies in the anatomical organization of the early visual
system. Indeed, performance measures in acuity, contrast sensitiv-
ity, and letter identification tasks are highly correlated with known
ganglion cell densities at both eccentric and isoeccentric locations
(Seiple et al., 2004). Along similar lines, visual performance fields
depend on the retinotopic location of the stimulus and not the
external frame of reference, further suggesting a link between
the anatomy of the early visual system and performance asymme-
tries (Corbett & Carrasco, 2011).

1.2. What is the extent of the VMA?

With respect to the previously discussed behavioral findings,
one key issue has gone unresolved: is the VMA an indicator of a
general upper versus lower visual hemifield asymmetry or is the
vertical meridian uniquely asymmetric? A number of reports sug-
gest that performance is asymmetric along the vertical meridian
and that no upper to lower asymmetry exists at 45� intercardinal
locations (Cameron, Tai, & Carrasco, 2002; Carrasco, Giordano, &
McElree, 2004; Carrasco, Talgar, & Cameron, 2001; Fuller & Carras-
co, 2009; Liu, Heeger, & Carrasco, 2006). Others have reported
upper versus lower hemifield differences either with stimuli on
the vertical meridian alone (He, Cavanagh, & Intriliagator, 1996;
Rubin, Nakayama, & Shapley, 1996), with performance averaged
across the vertical and the intercardinal locations (Nazir, 1992),
stimuli at intercardinal locations (McAnany & Levine, 2007), or
with stimuli that occupy large portions of the upper versus lower
visual hemifields (Graham et al., 1999; Levine & McAnany, 2005;
Vecera, Vogel, & Woodman, 2002). With one exception (McAnany
& Levine, 2007), it is possible that whole upper versus lower visual
hemifield differences in the abovementioned reports are driven by
asymmetric performance at the vertical meridian alone. Some
authors have also reported no upper versus lower visual field
asymmetry (e.g., Carrasco, Evert, Chang, & Katz, 1995) or only a
small asymmetry (Graham et al., 1999) when averaging across
the whole upper versus the whole lower visual field. Such averag-
ing may have obscured the presence of an upper to lower asymme-
try restricted to the vertical meridian (as discussed by Carrasco,
Giordano, and McElree (2004) and Talgar and Carrasco (2002)).

Measuring the conspicuity of objects across eccentricity as well
as at isoeccentric locations provides a framework for how people
process information in the periphery (e.g., Engel, 1971), facilitating
models of visually guided behavior (e.g., Najemnik & Geisler, 2005;
Najemnik & Geisler, 2008, 2009). Assessing the visual performance
field (how performance varies at eccentric and isoeccentric loca-
tions) is critical not only for our understanding of visual process-
ing, but also for designing interfaces intended to convey
information, as well as for experimental design. Moreover, measur-
ing performance degradations in the periphery and at isoeccentric
locations allows us to link changes in the anatomy of the visual
system to behavior. In this sense, documenting performance con-
straints in the periphery can facilitate our understanding of ‘‘high
level’’ tasks such as visual search, as well as how the visual system
performs the computations necessary for a given task. Finally,
these measurements can serve as a sensitivity benchmark, which
can inform future experiments examining performance in a variety
of situations (e.g., with varying states of adaptation, learning, or
attentional deployment).

The present study investigated the spatial extent of the upper
versus lower visual field asymmetry by characterizing the relation
between asymmetric sensitivity and proximity to the vertical
meridian in degrees of polar angle. Fig. 1 depicts a number of pos-
sible patterns of asymmetry for the upper versus lower visual field
sensitivity as a function of angular distance from the vertical
meridian. By characterizing the change in sensitivity as a function
of position for the upper and lower visual fields, we can character-
ize the asymmetries in visual performance fields and better under-
stand the factors that limit performance in the periphery.
2. Experiment

2.1. Methods

2.1.1. Participants
Fourteen paid volunteers (Eight females; mean age �27) partic-

ipated in this experiment. Five were experienced psychophysical
observers and all but one (author, JA) were naïve with respect to
the purpose of this study. All participants had normal or cor-
rected-to-normal vision. The Institutional Review Board at New
York University approved the experimental procedures and all par-
ticipants gave informed consent.

2.1.2. Apparatus
All stimuli were generated and presented using Matlab (Math-

works, Natick, MA) and the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997) on an Apple iMac computer and were displayed
on a 2100 CRT monitor (1280 � 960 at 100 Hz). The display was
calibrated using a Photo Research (Chatsworth, CA) PR650 Spectra-
Colorimeter to generate linear lookup tables with 10-bit color
specification for this experiment. The maximum luminance of the
monitor was set to �28 cd/m2. Observers viewed the display at a
distance of 57 cm through a circular aperture (Diameter = 29�),
with their head position stabilized with a chin rest.

2.1.3. Stimuli
Each trial consisted of three displays: fixation, stimulus, and re-

sponse. Across all three displays, there was a fixation point
(0.2� � 0.2�; <1 cd/m2) and a set of four placeholders. The place-
holders indicated potential stimulus locations and consisted of four
arcs (35� polar angle; �0.03� wide; <1 cd/m2) around an imaginary
circle subtending 4.25� of visual angle. In a given block, each place-
holder was centered at one of twenty polar angles relative to the
horizontal meridian (0�, 22.5�, 45�, 60�, 75�, 90�, 105�, 120�, 135�,
157.5�, 180�, 202.5�, 225�, 240�, 255�, 270�, 285�, 300�, 315�, and
337.5�; following the mathematical convention 0� corresponds to
East; 90� to North; 180� to West; 270� to South, etc.) at 6� of eccen-
tricity from the central fixation point. The stimulus display con-
sisted of the fixation point, four placeholders, and four Gabor
patches (sinusoidal gratings in a Gaussian envelope, 1� at half
height; 6 cycles/�). Three of the Gabor patches were vertical,
whereas the fourth (the target) was oriented at ±15� from vertical.
The locations tested were blocked such that only four locations
were tested simultaneously per session, one in each quadrant
(Group 1: 0�, 90�, 180�, and 270�; Group 2: 45�, 135�, 225�, and
315�; Group 3: 22.5�, 157.5�, 202.5�, and 337.5�; Group 4: 60�,
105�, 240�, and 285�; Group 5: 75�, 120�, 255�, and 300�). Individ-
ual groups were tested on different days in a randomized fashion.
Pilot data confirmed that locations near the vertical meridian
exhibited the most change as a function of angular distance from
the vertical meridian. Therefore, we sampled the area within
±45� of the vertical meridian more densely (Groups 4 and 5). Pilot
data also confirmed that different distances in polar angle between
locations within each group (45� in Groups 3–5 versus 90� in
Groups 1 and 2) had no effect on threshold. Note that testing all
stimulus locations simultaneously would have resulted in crowd-
ing and contaminated our measurements.

On each trial, the four Gabor patches had the same contrast,
which was set on a trial-to-trial basis by a staircase procedure.
The response display consisted of the fixation point, placeholders



Fig. 1. Four possible patterns for upper and lower visual field sensitivity as a function of angular distance from the vertical meridian. Sensitivity is the reciprocal of the
contrast necessary to reach 75% performance in the orientation discrimination task. (A) One possibility is a constant upper to lower asymmetry where the vertical meridian
plays no role. (B) Alternatively, there may be a constant upper to lower asymmetry where performance is worst at the vertical meridian. (C) Conversely, it is possible that
there is no upper versus lower asymmetry, with an upper to lower difference that is restricted to the vertical meridian. (D) Finally, it may be that the vertical meridian is the
most asymmetric and insensitive portion of the visual field and that the asymmetry decreases as a function of angular distance from the vertical meridian.
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and a response cue (0.15� � 1�; <1 cd/m2) that indicated the
location of the target Gabor. The response cue was introduced to
eliminate spatial uncertainty (e.g., Eckstein, Shimozaki, & Abbey,
2002; Ling & Carrasco, 2006; Lu & Dosher, 2000; Pestilli, Viera, &
Carrasco, 2007). The mean luminance of the display was set to
�14 cd/m2.
2.3. Procedure

Fig. 2 depicts the trial sequence. Observers began each trial with
500 ms of fixation, followed by a 40 ms stimulus presentation, and
then the presentation of the response cue for a 2000 ms response
window. Observers were instructed to indicate whether the Gabor
Fig. 2. Trial sequence. Observers performed a 2AFC orientation discrimination on
Gabor stimuli. Note that only four locations were present on a given trial and that
only four of the possible locations are represented by this figure. Note also that the
Gabor tilt angle, as well as the size of the place-holders, fixation point, and response
cue have been exaggerated for clarity.
denoted by the response cue was tilted to the left or to the right.
Observers were informed that the response cue was 100% valid
with respect to target location. Observer responses terminated
the response window, at which point auditory feedback was given
and a 400 ms inter-trial interval began. Observers participated in
five 1-h sessions. During each session, one of the five abovemen-
tioned groups was tested. Observers were given one block of prac-
tice, followed by four blocks of the main experiment. The practice
block familiarized the observer with the locations presented dur-
ing that session. During the experimental blocks, stimulus contrast
was controlled by a series of interleaved 2-down 1-up and 3-down
1-up staircases (Levitt, 1971) with either high or low starting con-
trasts for a total of four possible staircase types (increment
rule � starting contrast). In a given block, one rule by contrast pair-
ing was selected in pseudo-random fashion for each of the four
locations. Each block consisted of 200 trials, with 50 trials for each
of the four staircases, thus each location within a block was tested
50 times. Each observer completed 4000 trials of the experiment
(20 locations � 4 staircases � 50 trials per staircase).

2.3.1. Analysis
Psychometric functions were fit to the data from each location

with a four-parameter Weibull function

w ¼ cþ ð1� c� kÞ 1� exp � x
a

� �b
� �� �

;

where w is the proportion of correct responses in the orientation
discrimination task, x is the contrast of the target, a is the location
parameter, b is the slope, and c and k are lower and upper asymp-
totes, respectively. Fits were performed using maximum likelihood
estimation. Goodness of fit was evaluated with a deviance score,
which is the log-likelihood ratio between a fully saturated, zero
residual model and the data model. A score above the critical
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chi-square value indicates a significant deviation between the fit
and the data (Wichmann & Hill, 2001a, 2001b). In all conditions,
for all observers none of the deviance scores for the fits exceeded
the critical chi-square value.

For each location, the contrast necessary to reach 75% orienta-
tion discrimination performance was extracted from the fitted
function. The reciprocal of that contrast value is the sensitivity
measure.
3. Results

3.1. Cardinal locations

Fig. 3a shows the average raw difference in performance on the
horizontal meridian (East and West) and the vertical meridian
(North and South), as well as the difference between the average
performance in the South and the North. Both the Horizontal–Ver-
tical Anisotropy (HVA) and the vertical meridian asymmetry
(VMA) are reflected in Fig. 3. To assess the HVA, we compared
mean sensitivity along the vertical meridian with mean sensitivity
along the horizontal meridian (Mean sensitivities: North: 2.89;
South: 4.45; East: 5.42; West: 6.18). We found a reliable HVA with
a magnitude of �63% better performance along the horizontal than
the vertical meridian (t(13) = 5.8386; p < 0.0001; d = 1.56). The
VMA was also significant, with a magnitude of �65% better sensi-
tivity along the lower than the upper vertical meridian
(t(13) = 7.4992; p < 0.0001; d = 2.00). We found no reliable differ-
ence between the West (left) and East (right) positions along the
horizontal meridian (t(13) = 1.1957; p > 0.1). Given the number of
comparisons in this study, we have applied a Bonferroni correction,
setting the critical alpha value to 0.0055.

In Fig. 3b, we plot sensitivity for individual observers for the
horizontal (East and West) and vertical (North and South) meridi-
ans: data points along the unity line would indicate no anisotropy;
points above the diagonal denote higher sensitivity for locations
along the horizontal than the vertical meridian. As can be seen,
all but one observer2 have better performance along the horizontal
than the vertical meridian, the HVA. Similarly, in Fig. 3c, we plot sen-
sitivity for individual observers for the lower (South) and upper
(North) vertical meridian. All data points are above the diagonal line
indicating higher sensitivity for locations along the lower than the
upper vertical meridian, the VMA. Whereas there is substantial var-
iability in baseline sensitivity across observers, the HVA and the
VMA are consistently present.
Fig. 3. (a) HVA and VMA across observers. The HVA as the raw difference between
averaged sensitivity (1/threshold) on the horizontal meridian and the vertical
meridian and the VMA as the difference between sensitivity (1/threshold) along the
lower and the upper vertical meridian. Values greater than zero indicate higher
performance along the horizontal meridian and higher performance along the lower
than the upper vertical meridian, respectively. Error bars represent 95% confidence
intervals of the difference. (b) HVA for individual observers. The HVA for each
observer is depicted as the sensitivity along the horizontal meridian as a function of
sensitivity along the vertical meridian. Points above the diagonal indicate that
sensitivity is lower along the vertical meridian than the horizontal meridian. (c)
VMA for individual observers. The VMA for each observer is depicted as the
sensitivity along the lower vertical meridian as a function of sensitivity along the
upper vertical meridian. Points above the diagonal indicate that sensitivity is lower
along the upper vertical meridian than the lower vertical meridian.
3.2. Upper versus lower visual field asymmetry

To rule out the possibility of a systematic difference between
the left and the right visual hemifields, we performed a paired t-
test on the averaged data from the left and right visual hemifields.
There was no reliable difference between the two hemifields
(t(13) = 1.1065; p > 0.1). As a result, all further analyses were con-
ducted on data collapsed across the left and right hemifields.

Fig. 4 illustrates the change in performance in the upper and
lower visual hemifields as a function of angular distance from
the vertical meridian, as well as a fit to the data using linear regres-
sion. To assess the relation between visual hemifield and angular
distance from the vertical meridian, we conducted a repeated-
measures ANOVA (2 hemifields � 5 angles). There was a significant
main effect of hemifield (F(1,13) = 102.598; p < 0.001; g2

p = 0.888);
the upper visual hemifield was less sensitive than the lower visual
hemifield. Furthermore, there was a significant effect of angular
2 The unusual result for this observer emerged because performance at one of the
horizontal locations was substantially lower than at the other three locations.
position (F(4,52) = 23.73; p < 0.001; g2
p = 0.646), which indicates

that sensitivity was diminished at positions that were closer to
the vertical meridian. Importantly, the interaction between hemi-
field and angular position was significant (F(4,52) = 4.713;
p = 0.003; g2

p = 0.266) indicating that the difference between upper
and lower was more pronounced at the vertical meridian and



Fig. 4. Sensitivity (1/threshold) as a function of angular distance from the vertical
meridian for the upper and lower visual hemifields, as well as a fit to both sets of
data using linear regression. Error bars represent ±1 standard error of the mean.

J. Abrams et al. / Vision Research 52 (2012) 70–78 75
decreased with distance from the vertical meridian. This pattern
was confirmed by a significant linear contrast of the interaction
(F(1,13) = 22.947; p < 0.001; g2

p = 0.638), illustrating that the raw
difference (upper minus lower locations) can be well described
by a line. The effect of angular distance from the vertical meridian
was also well characterized by a linear function (F(1,13) = 40.043;
p < 0.001; g2

p = 0.755). Thus, the averaged data from the upper and
lower visual fields were fit with a linear regression (Fig. 4). The
change in sensitivity as a function of angular distance from the ver-
tical meridian was well described by a linear function in both the
upper (R2 = 0.957; p < 0.001) and lower (R2 = 0.731; p = 0.0299) vi-
sual fields.

Planned comparisons revealed that the two visual hemifields
remained reliably different until 30�, and that there was only a
marginal difference at 45�. Table 1 summarizes the angles, t-statis-
tics, p-values, and Cohen’s d values for the planned comparisons.

4. Discussion

Fig. 3a illustrates the average raw difference between the South
and the North (VMA) and between the average performance on the
horizontal meridian and the vertical meridian (HVA). This figure
clearly shows the characteristics of previously reported perfor-
mance fields, suggesting distinctly higher sensitivity about the hor-
izontal axis relative to the vertical. Similarly, the VMA itself is
readily apparent. Fig. 4 captures both of these facts about the visual
performance field and provides a more complete picture of how
performance varies at isoeccentric locations: the vertical meridian
is uniquely asymmetric and uniquely insensitive.

The first aspect of note in Fig. 4 is that there is not a constant
upper versus lower visual field asymmetry. The change in perfor-
mance as a function of angular distance from the vertical meridian
is well defined by a line in both the upper and lower visual fields.
The slopes, however, are not parallel; the slope is steeper for the
Table 1
The angles, t-statistics, p-values, and Cohen’s d values for the paired t-test on the
sensitivity in the upper and lower visual hemifields as a function of angular distance
from the vertical meridian. For example, 0� is the comparison between the North and
the South. We have applied a Bonferroni correction, setting the critical alpha value to
0.0055.

Angle from vertical (�) t-Statistic (d.f. = 13) p-Value Cohen’s d

0 7.4992 p < 0.0001 2.000
15 6.1069 p < 0.0001 1.632
30 5.9646 p < 0.0001 1.5941
45 3.2540 p = 0.0063 0.8696
67.5 1.5170 p > 0.1 N/A
upper than the lower visual field. This finding is consistent with
a study that demonstrated that perceptual filling-in changes more
rapidly in the upper than the lower visual field as a function of po-
lar angle (Sakaguchi, 2003). Moreover, the two lines cease to be
reliably different from one another beyond 30�. These results, con-
sistent with previous studies (e.g., Cameron, Tai, & Carrasco, 2002;
Carrasco, Giordano, & McElree, 2004; Carrasco, Talgar, & Cameron,
2001), indicate that stimuli along the horizon line enjoy privileged
processing relative to locations along other meridians of the visual
field, and that sensitivity at 45� in the four quadrants is similar and
intermediate to performance at the vertical and horizontal merid-
ians (e.g., Cameron, Tai, & Carrasco, 2002; Carrasco, Giordano, &
McElree, 2004; Carrasco, Talgar, & Cameron, 2001; Fuller & Carras-
co, 2009).

A second noteworthy aspect of Fig. 4 is the gradient of sensitiv-
ity in both visual fields has a minimum at the vertical meridian,
indicating that the vertical meridian is uniquely insensitive. A third
aspect depicted in this figure is that the intermediate level of per-
formance at the intercardinal location increases to levels obtained
along the horizontal meridian as distance from the horizontal de-
creases. This pattern of results is analogous to the situation de-
picted in Fig. 1D, wherein sensitivity becomes higher and
performance in both hemifields becomes more similar as the angu-
lar distance from the vertical meridian increases.

Taken together these data support previous notions of visual
performance fields (e.g., Carrasco, Talgar, & Cameron, 2001) and
the conspicuity area. Previous measurements of the conspicuity
area (e.g., Engel, 1971; Pretorius & Hanekom, 2007) have suggested
that the visual performance field is simply an ellipse. The HVA
derived from the present data illustrates the horizontal elongation
of the elliptical performance field; however, an elliptical model
cannot capture the robust VMA. Note that measurements of the
conspicuity area have utilized high contrast stimuli of variable spa-
tial content in a detection task (squares of 0.6� and 1.2�, respec-
tively). The fundamental frequency of such stimuli would have
been relatively low. Therefore, those authors may have not found
a VMA because it disappears at lower spatial frequencies where
there is still a reliable HVA (e.g., Cameron, Tai, & Carrasco, 2002;
Carrasco, Talgar, & Cameron, 2001; Liu, Heeger, & Carrasco, 2006).

Fig. 4 also shows an upper to lower visual field asymmetry and
how that asymmetry changes over space. Points in the upper visual
field are reliably less sensitive than points in the lower visual field
within 30� of the vertical meridian. It is clear that what has been
considered to be a general upper versus lower visual field asymme-
try (e.g., He, Cavanagh, & Intriliagator, 1996; Levine & McAnany,
2005; McAnany & Levine, 2007; Previc, 1990; Rubin, Nakayama,
& Shapley, 1996) should be defined as a gradient.

Whereas previous reports have indicated that there is no signif-
icant upper versus lower asymmetry at 45� (e.g., Cameron, Tai, &
Carrasco, 2002; Carrasco, Giordano, & McElree, 2004; Carrasco, Tal-
gar, & Cameron, 2001), and performance has been collapsed across
the four intercardinal isoeccentric locations because no differences
have emerged at those locations in contrast sensitivity (Ling &
Carrasco, 2006; Talgar, Pelli, & Carrasco, 2004) or in acuity (Monta-
gna, Pestilli, & Carrasco, 2009), we found a marginal asymmetry at
45� in the present study. Note, however, that the magnitude of this
marginal asymmetry at 45� is less than half the magnitude of the
asymmetry at the vertical meridian.

What function, then, can describe the relation between the
upper versus lower asymmetry and the angular distance from
the vertical meridian? The relation between the average normal-
ized difference between an upper and lower visual field location
and the angular distance from vertical is satisfactorily defined by
a linear function. Despite some individual variability (see also,
Cameron, Tai, & Carrasco, 2002; Carrasco, Talgar, & Cameron,
2001; Mackeben, 1999; Popple & Levi, 2005; Regan & Beverley,
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1983), the pattern of canonical asymmetries (VMA and HVA;
Fig. 3b and c), as well as improved performance as stimuli are
moved closer to the horizontal meridian is present in all observers.
Thus, the linear relation between asymmetry and angular distance
from the vertical meridian is a helpful generalization for describing
human performance at isoeccentric locations.

Differences in sensitivity at isoeccentric locations in the spatial
(e.g., Carrasco, Talgar, & Cameron, 2001) and temporal (e.g., Carras-
co, Giordano, & McElree, 2004) domains complicate a standard
method of assessing perceptual performance as well as the effects
of attention on perception: testing sensitivity at a fixed eccentric-
ity. In visual search, typical patterns of performance (i.e., set-size
effects on RT) in feature and conjunction searches can be explained
by target eccentricity (Carrasco et al., 1995). Indeed, search pat-
terns that have been attributed to attention may be explained by
simple perceptual limitations at eccentric locations. Ruling out
perceptual explanations, then, can allow for a more complete
understanding of the factors that impact search performance
(e.g., Carrasco & Frieder, 1997; Carrasco, McLean, Katz, & Frieder,
1998; Geisler & Chou, 1995; Verghese & Nakayama, 1994). To com-
bat these effects, many (including ourselves) have presented stim-
uli at a fixed eccentricity in order to get around ‘‘low level’’ sensory
factors (e.g., Cameron et al., 2004; Carrasco & McElree, 2001;
Carrasco et al., 2003; Eckstein, 1998; Moher et al., 2011; Palmer,
Verghese, & Pavel, 2000). However, simply constraining eccentric-
ity does not eliminate differences in sensory limitations.

Indeed, differences in performance at isoeccentric locations can
be as pronounced as those differences across eccentricities. For
example, sensitivity nearly doubles when changing the stimulus
location from 10� to 5� of eccentricity (Virsu & Rovamo, 1979,
Figure 2C). In the present study, with stimuli of a similar spatial
frequency, sensitivity nearly doubles when changing the stimulus
location from the North to the horizontal meridian at a fixed eccen-
tricity. Moreover, in the temporal domain, there are similar differ-
ences that result from changing the stimulus location. With respect
to eccentricity, processing speed is �22% slower at 4� than 9� of
eccentricity (Carrasco et al., 2003). With eccentricity held constant
at 4�, processing speed is �14% slower at the North location than
the horizontal meridian (and these isoeccentric differences are
more pronounced at farther eccentricities, Carrasco, Giordano, &
McElree, 2004). These examples illustrate that location, in general,
rather than eccentricity, in particular, is a major limiting factor in
visual perception. These location-dependent differences in sensi-
tivity and temporal information processing have significant per-
ceptual consequences and will need to be accounted for in
comprehensive neurophysiological and computational models of
visual information processing.

Finally, these behavioral findings are in agreement with anatom-
ical findings in macaque LGN (Connolly & Van Essen, 1984) and V1
(Van Essen, Newsome, & Maunsell, 1984; but see Adams & Horton,
2003). Both studies suggest a greater representation of the area of
the visual field within ±45� of the horizontal meridian, but neither
study addresses why the vertical meridian would be uniquely
insensitive. It is possible that the gradient suggested in previous
anatomical reports (Connolly & Van Essen, 1984; Van Essen, New-
some, & Maunsell, 1984) simply continues, arriving at minimal sen-
sitivity at the vertical midline. Another possibility is that the
splitting of the visual field about the midline leads to a more noisy
representation of stimuli presented there. Specifically, receptive
fields that represent information on the vertical midline must inte-
grate information from both visual fields by means of long distance
connections across the corpus callosum (e.g., Rajimehr & Tootell,
2009). At the present time, any anatomical explanation for uniquely
poor performance on the vertical meridian remains speculative.
Although it is clear that the anatomical representation and behav-
ioral sensitivity are highest along the horizontal meridian and that
the area closer to the vertical meridian is uniquely underrepre-
sented and insensitive, the present study indicates that there is a
gradient of asymmetry that reaches its maximum at the vertical
meridian, which has not been characterized anatomically.
5. Conclusion

This study demonstrates that there is not a general upper versus
lower visual field asymmetry. Instead, performance at the vertical
meridian is uniquely asymmetric whereas performance around the
horizontal meridian is relatively homogenous, relative to neighbor-
ing regions. The upper versus lower field asymmetry decreases as
the angular distance from vertical increases. This gradient of asym-
metry is linear, on average, with no significant asymmetry beyond
30�.

The asymmetric quality of the visual field at isoeccentric loca-
tions is quite striking: the vertical meridian is roughly 63% as sen-
sitive as the horizontal meridian and the upper vertical meridian is
about 65% as sensitive as the lower vertical meridian. Many
observers were at chance performance along the upper vertical
meridian with stimulus contrasts that led to near-ceiling perfor-
mance along the horizontal meridian. Thus, assuming that perfor-
mance is equivalent at isoeccentric locations is grossly inaccurate.
Instead, the quality of visual perception differs tremendously
across eccentricities and at isoeccentric locations. With respect to
a better understanding of visual processing, measurements of vi-
sual field asymmetry at eccentric and isoeccentric locations can
be linked with known anatomical factors (e.g., ganglion cell den-
sity) in order to generate testable models of how information pro-
cessing works in the periphery. These changes in quality follow
predictable patterns and should be kept in mind when modeling
visual performance as well as when designing experiments.

The characterization of visual performance fields has profound
implications for ergonomic and human factors applications. With
respect to interface design, these measurements can permit the
optimization of displays for speed and accuracy. Specifically, the
placement of critical information, as well as the spatio-temporal
properties of that information, can be adjusted to create more
usable displays. Such interfaces are critical for drivers, pilots, radi-
ologists, air traffic controllers, and many others.
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