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In Kantor and Trishin (1997) [3], Kantor and Trishin described the
algebra of polynomial invariants of the adjoint representation of
the Lie superalgebra gl(m|n) and a related algebra As of what they
called pseudosymmetric polynomials over an algebraically closed
field K of characteristic zero. The algebra As was investigated ear-
lier by Stembridge (1985) who in [9] called the elements of As

supersymmetric polynomials and determined generators of As .
The case of positive characteristic p of the ground field K has been
recently investigated by La Scala and Zubkov (in press) in [6]. We
extend their work and give a complete description of generators
of polynomial invariants of the adjoint action of the general linear
supergroup GL(m|n) and generators of As .

© 2011 Elsevier Inc. All rights reserved.

Introduction and notation

We will start by recalling a classical problem of finding invariants of conjugacy classes of matrices,
a solution of which is known for more than a century. Let K be an infinite field of arbitrary char-
acteristic, GL(n) be the general linear group and g be its Lie algebra. A function f ∈ K [g] is called
an invariant if it has the same value on each conjugacy class of matrices. For an n × n matrix M ,
denote by σi(M) the i-th coefficient of the characteristic polynomial of M; in particular σ1(M) is
the trace of M and σn(M) is the determinant of M . Chevalley restriction theorem (see Theorem 1.5.7
of [8] or [4]) gives an isomorphism of the ring of invariants K [g]GL(n) and the ring of symmetric func-
tions in n variables, say x1, . . . , xn . This isomorphism is given by restriction on a subset consisting
of all diagonal matrices with pairwise different eigenvalues. Generators of K [g]GL(n) corresponding
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to coefficients of the characteristic polynomial of such matrices are given by elementary symmetric
polynomials.

This classical result was extended to the case of the general linear supergroup GL(m|n) in charac-
teristic zero by Kantor and Trishin [3]. Before formulating their results, we will introduce the general
linear supergroup G = GL(m|n). Let K be an algebraically closed field of characteristic zero or posi-
tive characteristic p > 2. Let K [ci j] be a commutative superalgebra freely generated by elements ci j

for 1 � i, j � m + n, where ci j is even if either 1 � i, j � m or m + 1 � i, j � m + n, and ci j is odd
otherwise. Denote by C the generic matrix (ci j)1�i, j�m+n and write it as a block matrix

(
C00 C01
C10 C11

)
,

where entries of C00 and C11 are even and entries of C01 and C10 are odd. The localization of
K [ci j] by elements det(C00) and det(C11) is the coordinate superalgebra K [G] of the general lin-
ear supergroup G = GL(m|n). The general linear supergroup G = GL(m|n) is a group functor from
the category SAlgK of commutative superalgebras over K to the category of groups, represented by
its coordinate ring K [G], that is G(A) = HomSAlgK

(K [G], A) for A ∈ SAlgK . Here, for g ∈ G(A) and

f ∈ K [G] we define f (g) = g( f ). Denote by Ber(C) = det(C00 − C01C−1
11 C10)det(C11)

−1 the Berezinian
element. The Berezinian plays a role analogous to that of the ordinary determinant in the classical
case GL(n).

The algebra R of invariants with respect to the adjoint action of G is a set of functions f ∈ K [G]
satisfying f (g−1

1 g2 g1) = f (g2) for any g1, g2 ∈ G(A) and any commutative superalgebra A over K .
The algebra Rpol of polynomial invariants is a subalgebra of R consisting of polynomial func-
tions.

In the case when the characteristic of the ground field K is zero, Kantor and Trishin [3] de-
scribed generators of Rpol using supertraces. To explain their result we will need the following
definition.

If V is a G-supermodule with a homogeneous basis {v1, . . . , va, va+1, . . . , va+b} such that vi is
even for 1 � i � a and vi is odd for a + 1 � i � a + b, and the image ρV (vi) of a basis element vi

under a comultiplication ρV is given as ρV (vi) = ∑
1� j�a+b v j ⊗ f ji , then the supertrace Tr(V ) is

defined as
∑

1�i�a f ii − ∑
a+1�i�a+b f ii .

Let E be the natural G-supermodule given by basis elements e1, . . . , em that are even, and
em+1, . . . , em+n that are odd, and by comultiplication ρE(ei) = ∑

1� j�m+n e j ⊗ c ji . Denote by Λr(E)

the r-th superexterior power of E and by Cr the supertrace of Λr(E).
If V is a (polynomial) G-supermodule, then Tr(V ) is a (polynomial) invariant of G (see Lemma 5.2

of [6]). Therefore elements Cr ∈ Rpol . It was proved in [3] that Rpol is generated by Cr and that
the algebra Rpol is isomorphic to the algebra of pseudosymmetric polynomials Ω(m,n), which is a
subalgebra of the polynomial ring over K in commuting variables x1, . . . , xm, y1, . . . , yn , generated
by polynomials Ik = ∑m

i=1 xk
i − ∑n

j=1 yk
i for k = 0,1,2, . . . . Moreover, it was observed there that this

algebra is not finitely generated. The same algebra was investigated earlier by Stembridge in [9], who
called it an algebra of supersymmetric polynomials.

The main objective of this paper is to describe generators of invariants of G when the characteristic
p > 2. As in the case of characteristic zero, all elements Cr are polynomial invariants. However, in
our case there are additional polynomial invariants σi(C00)

p , σ j(C11)
p and σn(C11)

pBer(C)k ∈ Rpol for
1 � i � m, 1 � j � n and 0 < k < p which cannot be expressed solely in terms of the Cr ’s.

To show that the elements σi(C00)
p and σ j(C11)

p are polynomial invariants of GL(m|n), consider
the Frobenius map F : K [GL(m) × GL(n)] → K [GL(m|n)] given by f �→ f p . Clearly, if f0 is even and
f1 is odd, then F ( f = f0 + f1) = f p

0 . By computing images of generators ci j , where 1 � i, j � m
and m + 1 � i, j � m + n, it can be verified that the map F is a morphism of Hopf superrings.
Since coadjoint actions are defined over the ring of integers, the Frobenius map F sends coadjoint
GL(m) × GL(n)-invariants to GL(m|n)-invariants. Therefore F (σi(C00)) = σi(C00)

p ∈ Rpol for 1 � i � m
and F (σ j(C11)) = σ j(C11)

p ∈ Rpol for 1 � j � n.
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The element σn(C11)
p is group-like by Lemma 3.3.1a of [7] and Ber(C) is also group-like by [1].

Therefore an element σn(C11)
pBer(C)k , where 0 < k < p, generates a one-dimensional simple G-

supermodule and it belongs to R . Since the (highest) weight of σn(C11)
pBer(C)k is (k, . . . ,k|p −

k, . . . , p−k), by Theorem 6.5 of [2] it is polynomial. For example, if m = n = 1, then σn(C11)
pBer(C)k =

ck
11cp−k

22 − kc12cp−k−1
22 c21ck−1

11 is polynomial for 1 � k � p − 1.
Actually, in the case m = n = 1, it is simple to determine the linear basis of Rpol: if p divides r,

then it is given by elements

ci
11cr−i

22 + (r − i)ci−1
11 c12c21cr−i−1

22

for 0 � i � r, and if p does not divide r, then it consists of elements

ci
11cr−i

22 + (r − i)ci−1
11 c12c21cr−i−1

22 − ci−1
11 cr−i+1

22 + (i − 1)ci−2
11 c12c21cr−i

22

for 1 � i � r.
Our first result states that the above invariants are generators of algebra Rpol .

Theorem 1. The algebra Rpol is generated by elements

Cr, σi(C00)
p, σ j(C11)

p, σn(C11)
pBer(C)k,

where 0 � r, 1 � i � m, 1 � j � n and 0 < k < p.

A description of the algebra R follows easily from this theorem.

Corollary 1. The algebra R equals Rpol[σm(C00)
−p, σn(C11)

−p].

Proof. If f ∈ R , then its multiple by a sufficiently large power of σm(C00)
pσn(C11)

p is a polynomial
invariant. �

The main tool used in the proof of the above theorem is (again) the Chevalley map φ : K [G] → A =
K [x±1

1 , . . . , x±1
m , y±1

1 , . . . , y±1
n ] defined on entries of a generic matrix C by φ(ci j) = δi j xi for 1 � i � m

and φ(ci j) = δi j yi−m for m + 1 � i � m + n. According to [6] and [3], the restriction of φ to R is an
injective map and its image is contained in the algebra As of supersymmetric polynomials which by
definition consists of polynomials f (x|y) = f (x1, . . . , xm, y1, . . . , yn) that are symmetric in variables
x1, . . . , xm and y1, . . . , yn separately, such that d

dT f (x|y)|x1=y1=T vanishes.
We will show that the image φ(Rpol) equals As , hence Rpol

∼= As .
To find images under φ of the previously defined elements from Rpol , consider the standard maxi-

mal torus T in G and a set of characters X(T ). Let V be a G-supermodule with weight decomposition
V = ⊕

λ∈X(T ) Vλ , where λ = (λ1, . . . , λm+n), and each Vλ splits into a sum of its even subspace (Vλ)0
and odd subspace (Vλ)1. The (formal) supercharacter χsup(V ) of V is defined as

χsup(V ) =
∑

λ∈X(T )

(
dim(Vλ)0 − dim(Vλ)1

)
xλ1

1 . . . xλm
m y

λm+1
1 . . . yλm+n

n .

Then for any G-supermodule V we have φ(Tr(V )) = χsup(V ). In particular, for 0 � r we have

φ(Cr) = cr =
∑

0�i�min(r,m)

(−1)r−iσi(x1, . . . , xm)pr−i(y1, . . . , yn),

where σi is the i-th elementary symmetric function and p j is the j-th complete symmetric function.
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The images of the remaining generators of Rpol under φ,

φ
(
σi(C00)

p) = σi(x1, . . . , xm)p

for 1 � i � m,

φ
(
σ j(C11)

p) = σ j(y1, . . . , yn)
p

for 1 � j � n, and

φ
(
σn(C11)

pBer(C)k) = uk(x|y) = σm(x1, . . . , xm)kσn(y1, . . . , yn)p−k

for 0 < k < p are elements from As .
Theorem 1 will follow from the following description of generators of the algebra As .

Theorem 2. The algebra As is generated by elements cr for r � 0, σi(x1, . . . , xm)p for 1 � i � m,
σ j(y1, . . . , yn)p for 1 � j � n and uk(x|y) for 0 < k < p.

We conclude the introduction with the following remarkable observation. It was showed in [3]
that As � Rpol is not finitely generated if the characteristic of the field K equals zero. We will show
that if the characteristic of K is positive, then the algebra As � Rpol is finitely generated.

1. Proof of Theorem 1

In this section we will compare algebras corresponding to different values of m,n and apply the
Schur functor. Therefore we adjust the notation slightly to reflect the dependence on m,n. For exam-
ple, we will write R(m|n) instead of R and As(m|n) instead of As .

Denote by R ′
pol(m|n) a subalgebra of Rpol(m|n) generated by elements Cr , σi(C00)

p , σ j(C11)
p and

σn(C11)
pBer(C)k , where 0 � r, 1 � i � m, 1 � j � n and 0 < k < p.

Further, denote by Ans(m|n) a subalgebra of As(m|n) generated by polynomials cr(m|n), σi(x,m)p =
σi(x1, . . . , xm)p , σ j(y,n)p = σ j(y1, . . . , yn)p and uk(m|n) = σm(x,m)kσn(y,n)p−k for 1 � i � m, 1 �
j � n and 0 < k < p.

There is the following commutative diagram

Rpol(m|n)
φ

As(m|n)

R ′
pol(m|n)

φ
Ans(m|n)

where the vertical maps are inclusions and horizontal maps are given by restrictions of the Chevalley
morphism φ.

Both horizontal maps in the above diagram are monomorphisms. The bottom map is an epi-
morphism by definition of R ′

pol(m|n) and Ans(m|n), hence an isomorphism. We will produce three
proofs of Theorem 1. For the first proof, we will show in Proposition 1.3 that φ(Rpol(m|n)) = Ans(m|n)

and it implies Rpol(m|n) = R ′
pol(m|n). The second proof uses the equality Ans(m|n) = As(m|n) from

Theorem 2. From the above diagram it follows that Rpol(m|n) = R ′
pol(m|n). An elementary proof of

Theorem 2 will provide the third proof of Theorem 1.
Denote by Ans(m|n, t) the homogeneous component of Ans(m|n) of degree t . For any inte-

gers M � m, N � n there is a graded superalgebra morphism pe : K [x1, . . . , xM , y1, . . . , yN ] →
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K [x1, . . . , xm, y1, . . . , yn] that maps xi �→ xi for i � m, y j �→ y j for j � n and the remaining gener-
ators xi , y j to zero. Clearly the image of As(M|N) under pe is a subset of As(m|n).

Lemma 1.1. The morphism pe maps Ans(M|N) to Ans(m|n).

Proof. Verify that

pe
(
σi(x, M)

) = σi(x,m) if i � m and pe
(
σi(x, M)

) = 0 if i > m,

pe
(
σ j(y, N)

) = σ j(y,n) if j � n and pe
(
σ j(y, N)

) = 0 if j > n,

pe
(
cr(M, N)

) = cr(m|n) if r � m,n and pe
(
cr(M, N)

) = 0 if r > m or r > n,

and

pe
(
uk(M|N)

) = 0.

The claim follows. �
For the integers M � m, N � n consider the Schur superalgebra S(M|N, r) and its idempotent

e = ∑
μ ξμ , where the sum is over all weights μ for which μi = 0 whenever m < i � M or M + n <

i � M + N . Then S(m|n, r) � eS(M|N, r)e and there is a natural Schur functor S(M|N, r) − mod →
S(m|n, r) − mod given by V �→ eV . If V is an S(M|N, r)-supermodule, then eV is a supersubspace of
V and therefore, eV has a canonical S(m|n, r)-supermodule structure.

Let V = {V } be a collection of polynomial G-supermodules. Such a collection is called good if for
any simple polynomial G-supermodule L there is V ∈ V such that L is a composition factor of V and
the highest weights of all remaining composition factors of V are strictly smaller than the highest
weight of L. Clearly, the collection of all simple polynomial G-supermodules is good. The collection of
all costandard supermodules is also good. We will use repeatedly Theorem 5.3 from [6] which states
that if {V } is a good collection of polynomial G-supermodules, then Rpol is spanned by Tr(V ).

Lemma 1.2. The map pe induces an epimorphism of graded algebras φ(Rpol(M|N)) → φ(Rpol(m|n)).

Proof. Applying the Chevalley map φ to the collection of all simple polynomial G-supermodules L
and using Theorem 5.3 of [6] we obtain that the algebra φ(Rpol) is spanned by the supercharacters
χsup(L). If λ is the highest weight of L, then χsup(L) is a homogeneous polynomial of degree r = |λ| =∑

1�i�m+n λi . By a standard property of a Schur functor, there is a simple S(M|N, r)-supermodule L′
such that eL′ � L. Since pe(χsup(L′)) = χsup(L), the claim follows. �
Proposition 1.3. The image φ(Rpol(m|n)) equals Ans(m|n).

Proof. Fix a homogeneous element f ∈ φ(Rpol(m|n)) of degree r and choose M � m strictly greater
than r. By Lemma 1.2, there is a homogeneous polynomial f ′ ∈ φ(Rpol(M|n)) of degree r such that
pe( f ′) = f . Using the Chevalley map, and applying Theorem 5.3 of [6] to the collection of all co-
standard polynomial modules ∇(μ), we obtain that f ′ is a linear combination of supercharacters
χsup(∇(μ)), or alternatively of supercharacters χsup(L(μ)), where μ runs over polynomial domi-
nant weights with |μ| = r. We can write χsup(∇(μ)) = ∑

π�μ cμ,πχsup(L(π)) and χsup(L(μ)) =∑
π�μ dμ,πχsup(∇(π)), where coefficients cμ,π and dμ,π are non-negative integers, and cμ,μ =

dμ,μ = 1.
Denote by Γr a finite set of all polynomial dominant weights μ such that |μ| � r. Define a partial

order on Γr by λ ≺ μ if and only if |λ| < |μ| or λ � μ (recall that λ � μ implies |λ| = |μ|). Then
χsup(∇(π)) ∈ Ans(M|n) for all π ≺ μ is equivalent to χsup(L(π)) ∈ Ans(M|n) for all π ≺ μ.
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Consider μ ∈ Γr and assume that χsup(∇(π)) ∈ Ans(M|n) for any π ≺ μ, π �= μ. The assumption
M > r, Theorem 5.4 and Proposition 5.6 of [5] imply that for the highest weight μ = (μ+|μ−) we
have μ− = pμ for some weight μ, and ∇(μ) � ∇(μ+|0) ⊗ F (∇(μ)), where F is the Frobenius map
and ∇(μ) is the costandard GL(n)-module with the highest weight μ. Therefore

χsup
(∇(μ)

) = χsup
(∇(μ+|0)

)
χ

(∇(μ)
)p

and χ(∇(μ))p is a polynomial in σ j(y,n)p . If μ− �= 0 then, by the inductive hypothesis,
χsup(∇(μ+|0)) ∈ Ans(M|n). Otherwise, μ = (μ+|0).

An exterior power Λt(E(M|n)) for t � M has a unique maximal weight (1t |0). Consequently, an
S(M|n, r)-supermodule

V = ΛM(
E(M|n)

)⊗μM ⊗ ΛM−1(E(M|n)
)⊗(μM−1−μM ) ⊗ · · · ⊗ Λ1(E(M|n)

)⊗(μ1−μ2)

has a unique maximal weight μ and the supercharacter

χsup(V ) = cμ1−μ2
1 . . . c

μM−1−μM
M−1 cμM

M .

The module V has a composition series with a unique section that is isomorphic to L(μ) and the
remaining sections isomorphic to L(κ), where κ < μ. By the inductive hypothesis, all χsup(L(κ)) ∈
Ans(M|n) and therefore, χsup(L(μ)) ∈ Ans(M|n). �
Corollary 1.4. The morphism pe maps Ans(M|N, t) onto Ans(m|n, t).

Proof of Theorem 1. Recall that the restriction of φ on R is a monomorphism. Since φ(Cr) = cr ,
φ(σi(C00)

p) = σi(x1, . . . , xm)p , φ(σ j(C11)
p) = σ j(y1, . . . , yn)p and φ(σn(C11)

pBer(C)k) = uk(x|y), the
statement follows from Proposition 1.3. �
2. Proof of Theorem 2

We will need the following crucial observation.

Lemma 2.1. If f ∈ As(m|n) is divisible by xm, then f is divisible by a nonconstant element of Ans(m|n).

Proof. We can assume f �= 0 and use the symmetricity of f in variables x1, . . . , xm and y1, . . . , yn

to write f = xa
1 . . . xa

m yb
1 . . . yb

n g , where exponents a > 0, b � 0, and polynomial g , such that
g|xm=yn=0 �= 0, are unique. Then

f |xm=yn=T = T a+bxa
1 . . . xa

m−1 yb
1 . . . yb

n−1 g|xm=yn=T

= T a+bxa
1 . . . xa

m−1 yb
1 . . . yb

n−1 g0 + T a+b+1xa
1 . . . xa

m−1 yb
1 . . . yb

n−1 g1,

where we write g|xm=yn=T = g0 + T g1. The requirement g|xm=yn=0 �= 0 implies g0 �= 0. Since
d

dT f |xm=yn=T = 0, this is only possible if a + b ≡ 0 (mod p). Since a > 0, the polynomial
xa

1 . . . xa
m yb

1 . . . yb
n is not constant, and is a product of σm(x,m)p , σn(y,n)p and uk(m|n), all of which

belong to Ans(m|n). In fact, since a > 0, we have that f is divisible either by σm(x,m)p or by some
uk(m|n). �
Proof of Theorem 2. The statement of the theorem is equivalent to the equality As(m|n) =
Ans(m|n).
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Fix n and assume that m is minimal, such that there exists a polynomial f ∈ As(m|n) \ Ans(m|n),
and choose f that is homogeneous and of the minimal degree. Then its reduction f |xm=0 ∈
Ans(m − 1|n) is a nonzero polynomial h(ct(m − 1|n),σi(x,m − 1)p, σ j(y,n)p, uk(m − 1|n)) in ele-
ments ct(m − 1|n), σi(x,m − 1)p , σ j(y,n)p and uk(m − 1,n) where t � 0, 1 � i � m − 1, 1 � j � n
and 0 < k < p. By Corollary 1.4 there are elements vk ∈ Ans(m|n) of degree mk + (p − k)n such
that vk|xm=0 = uk(m − 1|n). Since ct(m|n)|xm=0 = ct(m − 1|n), σi(x,m)p|xm=0 = σi(x,m − 1)p and
σ j(y,n)p |xm=0 = σ j(y,n)p , the polynomial l = f − h(ct(m|n),σi(x,m)p, σ j(y,n)p, vk(m|n)) satisfies
l|xm=0 = 0. Since the degree of l does not exceed the degree of f , l ∈ As(m|n) and xm divides l,
Lemma 2.1 implies that l = l0l1, where l0 ∈ Ans(m|n) and the degree of l1 is strictly less than the
degree of f . But l1 ∈ As(m|n) \ Ans(m|n) which is a contradiction with our choice of f . �
3. Elementary proof of Theorem 2

A closer look at the proof of Theorem 2 reveals that Corollary 1.4 is the only result from Section 1
that was used in the proof of Theorem 2. Actually, only the following weaker statement was required
in the proof of Theorem 2.

Proposition 3.1. For each 0 < k < p there is a polynomial vk ∈ Ans(m|n) of degree (m − 1)k + (p − k)n such
that vk|xm=0 = uk(m − 1|n).

In this section we give a constructive elementary proof of Proposition 3.1 that bypasses the use of
the Schur functor and the results about costandard modules derived in [5].

Fix 0 < k < p and denote s = � k
p−k �. Then for i = 0, . . . , s − 1 define ki = (i + 1)k − ip > 0 and

kp = sp − (s + 1)k � 0. The relations

ki + (p − k) = ki−1, kp + k = s(p − k), ki + kp = (s − i)(p − k)

will be used without explicit reference.
A symbol I will denote a nondecreasing sequence (i1 � · · · � it) of natural numbers, where

0 � t < s. We denote ‖I‖ = t and |I| = ∑t
j=1 i j . In particular, we allow I = ∅ with ‖∅‖ = |∅| = 0.

Additionally, denote by Supp(I) the set of all elements (without repetitions) appearing in I . If
i ∈ Supp(I), then by slightly abusing notation we define I \ i to be a sequence obtained from I
by deleting one arbitrary element equal to i and define I ∪ i to be a sequence obtained from I by
adding an extra element equal to i.

Fix an arbitrary sequence (a1, . . . ,a j) of length j � M . Denote by Σ j the symmetric group acting
on j symbols, and by Y its Young subgroup which preserves the fibers of the map j �→ a j . Then there
is a unique symmetric polynomial in x1, . . . , xM that has integral coefficients, with the coefficient of
the monomial xa1

1 . . . x
a j

j equal to 1. This polynomial is denoted Symx,M(a1, . . . ,a j) and is defined as

Symx,M(a1, . . . ,a j) =
∑

{k1,...,k j}⊂{1,...,M}

∑
σ∈Y \Σ j

xa1
kσ (1)

. . . x
a j

kσ ( j)
,

where the first sum is over all subsets {k1, . . . ,k j} of {1, . . . , M} of cardinality j, and the second sum
is over representatives of the left cosets of Σ j over its Young subgroup Y .

The symmetric polynomial Symy,N(b1, . . . ,b j) in variables y1, . . . , yN , that has integral coefficients,

with the coefficient of the monomial yb1
1 . . . y

b j

j equal to 1, is defined analogously.
For simplicity we will use a multiplicative notation, and instead of Symx,M(a, . . . ,a︸ ︷︷ ︸

ma

, . . . , z, . . . , z︸ ︷︷ ︸
mz

),

we will write Symx,M(ama . . . zmz ). We will use analogous multiplicative notation for Symy,N .
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Further, denote

A(I, j)M,N = Symx,M

(
kM−tki1 . . .kit

)
Symy,N

(
(p − k)N− j−1kp

)
for 0 � ‖I‖ = t � M and 0 � j < N , and A(I, l)M,N = 0 if t > M or j � N;

B(I, j)M,N = Symx,M
(
kM−tki1 . . .kit

)
Symy,N

(
(p − k)N− j)

for 0 � ‖I‖ = t � M and 0 � j � N , and B(I, j)M,N = 0 if t > M or j > N;

C(I, l, j)M,N = Symx,M
(
kM−t−1(lp − lk)ki1 . . .kit

)
Symy,N

(
(p − k)N− j)

for 0 � ‖I‖ = t < M and 0 � j � N and any l, and C(I, l, j)M,N = 0 if t � M or j > N .
For simplicity write A(I, j), B(I, j) and C(I, l, j) short for A(I, j)m−1,n−1, B(I, j)m−1,n−1 and

C(I, l, j)m−1,n−1.
For f ∈ K [x1, . . . , xm, y1, . . . , yn] define ψ( f ) = f |xm=yn=T and for g,h ∈ K [x1, . . . , xm−1, y1, . . . ,

yn−1, T ] write g ≡ h if and only if d
dT (g − h) = 0.

Lemma 3.2. The following relations are valid:

ψ
(
C(I, l, j)m,n

) ≡ T kC(I, l, j − 1) + T (l+1)(p−k)B(I, j) + T l(p−k)B(I, j − 1)

+
∑

i∈Supp(I)

(
T ki C(I \ i, l, j − 1) + T ki−1 C(I \ i, l, j)

)

and

ψ
(

A(I, j)m,n
) ≡ T k A(I, j − 1) + T s(p−k)B(I, j) +

∑
i∈Supp(I)

(
T ki A(I \ i, j − 1) + T ki−1 A(I \ i, j)

+ T (s−i)(p−k)B(I \ i, j)
)
.

Proof. It is easy to see that for j = 0, . . . ,n we have

ψ
(

S y,n
(
(p − k)n− j)) = (1 − δ j,n)T p−k S y,n−1

(
(p − k)n−1− j) + (1 − δ j,0)S y,n−1

(
(p − k)n− j)

and for j = 0, . . . ,n − 1 we have

ψ
(

S y,n
(
(p − k)n−1− jkp

)) = T kp S y,n−1
(
(p − k)n−1− j) + (1 − δ j,n−1)T p−k S y,n−1

(
(p − k)n−2− jkp

)
+ (1 − δ j,0)S y,n−1

(
(p − k)n−1− jkp

)
.

Assume that lp − lk is different from k and all numbers ki . Then we can verify that for t = 0, . . . ,m
we have

ψ
(

Sx,m
(
km−tki1 . . .kit

)) = (1 − δt,m)T k Sx,m−1
(
km−1−tki1 . . .kit

)
+

t∑
T kiu Sx,m−1

(
km−tki1 . . . k̂iu . . .kit

)

u=1
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and for t = 0, . . . ,m − 1 we have

ψ
(

Sx,m
(
km−1−t(lp − lk)ki1 . . .kit

))
= T lp−lk Sx,m−1

(
km−1−tki1 . . .kit

) + (1 − δm−1,t)T k Sx.m−1
(
km−2−t(lp − lk)ki1 . . .kit

)
+

t∑
u=1

T kiu Sx,m−1
(
km−1−t(lp − lk)ki1 . . . k̂iu . . .kit

)
.

Even when lp − lk coincides with k or one of ki , the above formulae remain valid.
Using these formulae we obtain readily

ψ
(
C(I, l, j)m,n

)
= (1 − δ j,n)T (l+1)(p−k)Sx,m−1

(
km−1−tki1 . . .kit

)
S y,n−1

(
(p − k)n−1− j)

+ (1 − δ j,n)(1 − δm−1,t)T p Sx,m−1
(
km−2−t(lp − lk)ki1 . . .kit

)
S y,m−1

(
(p − k)n− j)

+ (1 − δ j,n)

t∑
u=1

T p−k+kiu Sx,m−1
(
km−1−t(lp − lk)ki1 . . . k̂iu . . .kit

)
S y,n−1

(
(p − k)n−1− j)

+ (1 − δ j,0)T lp−lk Sx,m−1
(
km−1−tki1 . . .kit

)
S y,n−1

(
(p − k)n− j)

+ (1 − δ j,0)(1 − δm−1,t)T k Sx,m−1
(
km−2−t(lp − lk)ki1 . . .kit

)
S y,n−1

(
(p − k)n− j)

+
t∑

u=1

T kiu Sx,m−1
(
km−1−t(lp − lk)ki1 . . . k̂iu . . .kit

)
S y,n−1

(
(p − k)n− j)

hence

ψ
(
C(I, l, j)m,n

) ≡ T (l+1)(p−k)B(I, j) +
t∑

u=1

T p−k+kiu C(I \ iu, l, j) + T l(p−k)B(I, j − 1)

+ T kC(I, j, j − 1) +
t∑

u=1

T kiu C(I \ iu, l, j − 1)

and the formula for ψ(C(I, l, j)m,n) follows.
Additionally, we obtain

ψ
(

A(I, j)m,n
) = (1 − δt,m)T k+kp Sx,m−1

(
km−1−tki1 . . .kit

)
S y,n−1

(
(p − k)n−1− j)

+ (1 − δt,m)(1 − δn−1, j)T p Sx,m−1
(
km−1−tki1 . . .kit

)
S y,n−1

(
(p − k)n−2− jkp

)
+ (1 − δt,m)(1 − δ0, j)T k Sx,m−1

(
km−1−tki1 . . .kit

)
S y,n−1

(
(p − k)n−1− jkp

)
+

t∑
u=1

T kiu +kp Sx,m−1
(
km−tki1 . . . k̂iu . . .kit

)
S y,n−1

(
(p − k)n−1− j)

+ (1 − δn−1, j)

t∑
T kiu +p−k Sx,m−1

(
km−tki1 . . . k̂iu . . .kit

)
S y,n−1

(
(p − k)n−2− jkp

)

u=1
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+ (1 − δ0, j)

t∑
u=1

T ku Sx,m−1
(
km−tki1 . . . k̂iu . . .kit

)
S y,n−1

(
(p − k)n−1− jkp

)

hence

ψ
(

A(I, j)m,n
) ≡ T s(p−k)B(I, j) + T k A(I, j − 1) +

t∑
u=1

T kiu +kp B(I \ iu, j)

+
t∑

u=1

T kiu +(p−k) A(I \ iu, j) +
t∑

u=1

T kiu A(I \ iu, j − 1)

and the formula for ψ(A(I, j)m,n) follows. �
Let us define

w =
s−1∑
l=1

∑
0�|I|�l

(−1)|I|+s+l(s − l)C
(

I, l, l − |I|)m,n +
∑

0�|I|<s

(−1)|I| A
(

I, s − 1 − |I|)m,n.

Then

ψ(w) =
s−1∑
l=1

∑
0�|I|�l

(−1)|I|+s+l(s − l)ψ
(
C
(

I, l, l − |I|)m,n

) +
∑

0�|I|<s

(−1)|I|ψ
(

A
(

I, s − 1 − |I|)m,n

)

and by Lemma 3.2

ψ(w) ≡
s−1∑
l=1

∑
0�|I|�l

(−1)s+l+|I|(s − l)

(
T kC

(
I, l, l − |I| − 1

) + T (l+1)(p−k)B
(

I, l − |I|)

+ T l(p−k)B
(

I, l − |I| − 1
) +

∑
i∈Supp(I)

(
T ki C

(
I \ i, l, l − |I| − 1

) + T ki−1 C
(

I \ i, l, l − |I|)))

+
∑

0�|I|<s

(−1)|I|
(

T k A
(

I, s − |I| − 2
) + T s(p−k)B

(
I, s − 1 − |I|)

+
∑

i∈Supp(I)

(
T ki A

(
I \ i, s − |I| − 2

) + T ki−1 A
(

I \ i, s − |I| − 1
)

+ T (s−i)(p−k)B
(

I \ i, s − |I| − 1
)))

.

Lemma 3.3. The element ψ(w) is described by

ψ(w) ≡ (−1)s+1sT p−k B(∅,0).

Proof. If s = 1, then ψ(w) ≡ T p−k B(∅,0) and the formula is valid. Therefore we will assume s > 1.
We begin by analyzing coefficients at expressions of the type T ki A( J , s − 2 − | J | − i) for various

sets J and i = 0, . . . , s − 2.
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If i = 0, then | J | � s − 2, and this term appears once with coefficient (−1)| J | as a special term in
the second sum which corresponds to the choice I = J , and a second time with coefficient (−1)| J |+1

corresponding to the choice I = J ∪ 1 (for which |I| = s − 1) and both terms cancel out.
If 0 < i � s − 2 − | J |, then this term appears twice. The first time it appears with coefficient

(−1)| J |+i corresponding to I = J ∪ i (for which |I| � s − 2), and the second time with coefficient
(−1)| J |+i+1 corresponding to I = J ∪ i + 1 (for which |I| � s − 1) and both terms cancel out.

Therefore all terms of type T ki A( J , s − 2 − | J | − i) will cancel out.
Similar argument can be applied to expressions of the type T ki C( J , l, l − 1 −| J |− i) for any fixed l.

In this case there will be two terms, first with coefficient (−1)s+l+| J |+i , and second with coefficient
(−1)s+l+| J |+i+1 and they will cancel out as well.

Finally, we analyze terms of type T s(p−k) B(I, s − | J | − 1). We have l − 1 − | J | < s − 1 − | J | and
assume that 0 < l − 1 − | J |. In this first case there are three terms, two of them with coefficients
(s − l)(−1)| J |+s+l and (s − (l − 1))(−1)| J |+s+(l−1) corresponding to I = J and the third term with
coefficient (−1)| J |+s−l corresponding to the choice I = J ∪ s − l (for which |I| < s − 1). Note that
in this case l > 1 and l − 1 � 1 is within our range of summation. All these three terms will cancel
out.

If 0 = l − 1 − | J | and | J | > 0, then the same argument remains valid since l > 1.
The only remaining case is when J = ∅ and l = 1. The corresponding term T p−k B(∅,0) ap-

pears twice. The first time with coefficient (s − 1)(−1)s−1 corresponding to I = J , the second
time with coefficient (−1)s−1 corresponding to I = J ∪ s − 1. The sum of these two terms equals
(−1)s+1sT p−k B(∅,0). Therefore

ψ(w) = (−1)s+1sT p−k B(∅,0)

= (−1)s+1sT p−kSymx,m−1
(
km−1) Symy,n−1

(
(p − k)n−1). �

We can now easily prove Proposition 3.1.

Proof of Proposition 3.1. Since s < p, we can take

vk = (−1)s

s
w + Symx,m

(
km−1) Symy,n

(
(p − k)n).

Then

ψ(vk) = −T p−kSymx,m−1
(
km−1) Symy,n−1

(
(p − k)n−1) + (

(1 − δm,1)T kSymx,m−1
(
km−2)

+ Symx,m−1
(
km−1))T p−kSymy,n−1

(
(p − k)n−1) ≡ 0

meaning that vk ∈ As(m|n).
Observe that w|xm=0 = 0 because all numbers k, l(p − k) and each ki are positive. Therefore

vk|xm=0 = Symx,m−1(k
m−1) Symy,n((p − k)n) = uk(m − 1|n). It remains to observe that vk is homo-

geneous of degree (m − 1)k + (p − k)n. �
4. Concluding remarks

Let us comment that if the characteristic of K is positive, then the condition that f |xm=yn=T does
not depend on T is stronger than the condition that d

dT f |xm=yn=T = 0.
Proposition 3.1 of [3] states that, in the case of characteristic zero, the algebra As is infinitely

generated. In the case of positive characteristic we have the following.

Proposition 4.1. The algebra As is finitely generated.
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Proof. The algebra As is contained in B = K [σi(x|m),σ j(y|n) | 1 � i � m, 1 � j � n]. The algebra B
is finitely generated over its subalgebra B ′ = K [σi(x|m)p, σ j(y|n)p | 1 � i � m, 1 � j � n], hence B a
Noetherian B ′-module. However, As contains B ′ and is therefore a finitely generated B ′-module. Since
B ′ is finitely generated, so is As . �
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