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Introduction and notation

We will start by recalling a classical problem of finding invariants of conjugacy classes of matrices,
a solution of which is known for more than a century. Let K be an infinite field of arbitrary char-
acteristic, GL(n) be the general linear group and g be its Lie algebra. A function f € K[g] is called
an invariant if it has the same value on each conjugacy class of matrices. For an n x n matrix M,
denote by o;(M) the i-th coefficient of the characteristic polynomial of M; in particular o1(M) is
the trace of M and o0, (M) is the determinant of M. Chevalley restriction theorem (see Theorem 1.5.7
of [8] or [4]) gives an isomorphism of the ring of invariants K[g]°“™ and the ring of symmetric func-
tions in n variables, say X1, ..., xp. This isomorphism is given by restriction on a subset consisting
of all diagonal matrices with pairwise different eigenvalues. Generators of K[g]®“™ corresponding
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to coefficients of the characteristic polynomial of such matrices are given by elementary symmetric
polynomials.

This classical result was extended to the case of the general linear supergroup GL(m|n) in charac-
teristic zero by Kantor and Trishin [3]. Before formulating their results, we will introduce the general
linear supergroup G = GL(m|n). Let K be an algebraically closed field of characteristic zero or posi-
tive characteristic p > 2. Let K[c;;j] be a commutative superalgebra freely generated by elements c;;
for 1 <i, j <m+n, where ¢;; is even if either 1 <i,j<morm+1<i,j<m+n, and ¢j; is odd
otherwise. Denote by C the generic matrix (Cij)1<i, j<m+n and write it as a block matrix

(Coo C01>
Cio Cnn )’

where entries of Coop and Cq; are even and entries of Cg; and Cqio are odd. The localization of
K[cij] by elements det(Cgp) and det(Cqq) is the coordinate superalgebra K[G] of the general lin-
ear supergroup G = GL(m|n). The general linear supergroup G = GL(m|n) is a group functor from
the category SAlgy of commutative superalgebras over K to the category of groups, represented by
its coordinate ring K[G], that is G(A) = Homgspg, (K[G], A) for A € SAlgk. Here, for g € G(A) and

f € K[G] we define f(g)= g(f). Denote by Ber(C) = det(Cog — Co1 Cfll C10)det(C11)~! the Berezinian
element. The Berezinian plays a role analogous to that of the ordinary determinant in the classical
case GL(n).

The algebra R of invariants with respect to the adjoint action of G is a set of functions f € K[G]
satisfying f(g; lg,g1) = f(gy) for any g1, 82 € G(A) and any commutative superalgebra A over K.
The algebra Rp, of polynomial invariants is a subalgebra of R consisting of polynomial func-
tions.

In the case when the characteristic of the ground field K is zero, Kantor and Trishin [3] de-
scribed generators of Ry, using supertraces. To explain their result we will need the following
definition.

If V is a G-supermodule with a homogeneous basis {v1,..., Va, Vat1, ..., Vatp} such that v; is
even for 1 <i<a and v; is odd for a+1<i<a+b>b, and the image py (v;) of a basis element v;
under a comultiplication py is given as py (v;) = Z1<j<a+b v; ® fji, then the supertrace Tr(V) is
defined as 3y <o fii = 2 ayi<i<ats fii-

Let E be the natural G-supermodule given by basis elements eq,...,en that are even, and
€m+1,---,€m+n that are odd, and by comultiplication pg(e;) = Zl<j<m+n ej @ cji. Denote by A"(E)
the r-th superexterior power of E and by C; the supertrace of A" (E).

If V is a (polynomial) G-supermodule, then Tr(V) is a (polynomial) invariant of G (see Lemma 5.2
of [6]). Therefore elements Cr € Rpo. It was proved in [3] that Ry, is generated by C, and that
the algebra Rp, is isomorphic to the algebra of pseudosymmetric polynomials §2(m,n), which is a
subalgebra of the polynomial ring over K in commuting variables x1,...,Xm, ¥1,..., ¥n, generated
by polynomials Iy = ?1:1 xi‘ - ?:1 yi‘ for k=0,1,2,.... Moreover, it was observed there that this
algebra is not finitely generated. The same algebra was investigated earlier by Stembridge in [9], who
called it an algebra of supersymmetric polynomials.

The main objective of this paper is to describe generators of invariants of G when the characteristic
p > 2. As in the case of characteristic zero, all elements C, are polynomial invariants. However, in
our case there are additional polynomial invariants 0;(Coo)?, 0j(C11)? and 0 (C11)PBer(C)k € Rpo for
1<i<m,1<j<nand 0<k< p which cannot be expressed solely in terms of the C;’s.

To show that the elements o;(Coo)? and o;(Cy1)P are polynomial invariants of GL(m|n), consider
the Frobenius map F : K[GL(m) x GL(n)] — K[GL(m|n)] given by f — fP. Clearly, if fo is even and
f1 is odd, then F(f = fo + f1) = fé’. By computing images of generators c;j, where 1 <i,j<m
and m+1<1i,j<m+n, it can be verified that the map F is a morphism of Hopf superrings.
Since coadjoint actions are defined over the ring of integers, the Frobenius map F sends coadjoint
GL(m) x GL(n)-invariants to GL(m|n)-invariants. Therefore F(0i(Coo)) = 0;(Coo)? € Rpo for 1 <i<m
and F(0(C11)) =0j(C11)P € Ryo for 1< j<n.
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The element 0,,(C11)P is group-like by Lemma 3.3.1a of [7] and Ber(C) is also group-like by [1].
Therefore an element o,(C11)PBer(C)¥, where 0 < k < p, generates a one-dimensional simple G-
supermodule and it belongs to R. Since the (highest) weight of o,,(C11)PBer(C)* is (k,... klp —
k, ..., p—k), by Theorem 6.5 of [2] it is polynomial. For example, if m =n = 1, then 0,(C17)?Ber(C)¥ =
c’{lcgg" - kclzcngk*lcnc’{]’l is polynomial for 1<k <p —1.

Actually, in the case m =n =1, it is simple to determine the linear basis of Rp,: if p divides r,
then it is given by elements

i i r—i—1
C11Cyp + (r—1i)Cyq C12€21CH;

for 0 <i<r, and if p does not divide r, then it consists of elements

ior—i i1 r—i—1 i—1 r—it+1 : i—2 r—i
C11Cyy + (r—1i)cyy €12€21C5, —C11 Cx + (1 — D)y c12€21C9,
for1<i<r.
Our first result states that the above invariants are generators of algebra R

Theorem 1. The algebra Ry, is generated by elements

Cr. 0i(Co)?,  0(C1)P,  on(Ci1)PBer(O),
where0<r,1<i<m1<j<nand0 <k < p.
A description of the algebra R follows easily from this theorem.
Corollary 1. The algebra R equals Rpoi[01m(Coo) P, 047 (C11) 7 P].

Proof. If f € R, then its multiple by a sufficiently large power of ¢y;,(Cgo)P0,(C11)P is a polynomial
invariant. 0O

The main tool used in the proof of the above theorem is (again) the Chevalley map ¢ : K[G] > A =
K[xlil, .. .,xﬁl,ylﬂ, ..., ¥¥1] defined on entries of a generic matrix C by ¢(cij) = 8ijx; for 1<i<m
and ¢ (cij) = 8ijyi—m for m 4+ 1 <i<m+ n. According to [6] and [3], the restriction of ¢ to R is an
injective map and its image is contained in the algebra As of supersymmetric polynomials which by
definition consists of polynomials f(x|y) = f(x1,...,Xm, ¥1,...,yn) that are symmetric in variables
X1,...,Xm and y1,..., yn separately, such that din(x|y)|X1:y1=T vanishes.

We will show that the image ¢ (R,o) equals As, hence Ry = As.

To find images under ¢ of the previously defined elements from R, consider the standard maxi-
mal torus T in G and a set of characters X(T). Let V be a G-supermodule with weight decomposition
V= EBAGX(T) V,, where A = (A1, ..., Am+tn), and each V, splits into a sum of its even subspace (V)o
and odd subspace (V})1. The (formal) supercharacter ys,,(V) of V is defined as

Xsup(V) =Y (dim(V;)0 — dim(V;)1)x)" .. xpryy™ 1 .y
reX(T)

Then for any G-supermodule V we have ¢(Tr(V)) = xsup(V). In particular, for 0 <r we have

p(C=c= Y (Do, Xm)Pr—i(V1, .- ),

oLi<min(r,m)

where o; is the i-th elementary symmetric function and pj is the j-th complete symmetric function.
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The images of the remaining generators of Ry, under ¢,

¢(0i(Co0)?) =i (x1, ..., Xm)P

for 1<i<m,

¢(0j(C11)P) =01, ..., yn)?

for 1< j<n, and

¢(0n(C11)PBer(O)X) = up(x1y) = om(x1, ..., Xm)*on(y1, ..., yn)P

for 0 <k < p are elements from As.
Theorem 1 will follow from the following description of generators of the algebra As.

Theorem 2. The algebra As is generated by elements ¢, for r > 0, oi(x1,...,Xn)P for 1 <i < m,
oi(y1,..., yn)P for 1 < j<nandug(x|y) for0 <k < p.

We conclude the introduction with the following remarkable observation. It was showed in [3]
that As > Ry is not finitely generated if the characteristic of the field K equals zero. We will show
that if the characteristic of K is positive, then the algebra As = Ry, is finitely generated.

1. Proof of Theorem 1

In this section we will compare algebras corresponding to different values of m,n and apply the
Schur functor. Therefore we adjust the notation slightly to reflect the dependence on m, n. For exam-
ple, we will write R(m|n) instead of R and Ag(m|n) instead of As.

Denote by R;o,(mm) a subalgebra of Ry, (m|n) generated by elements C;, 0;(Coo)?, 0j(C11)? and
0n(C11)PBer(C)¥, where 0<r, 1<i<m,1<j<nand 0 <k < p.

Further, denote by Ans(m|n) a subalgebra of As(m|n) generated by polynomials ¢, (m|n), oj(x,m)P? =
oi(x1, ..., xm)P, 0j(y,mP =0j(y1,..., yn)? and ux(mn) = on(x, m¥on(y,mP~* for 1<i<m, 1<
j<nand 0 <k <p.

There is the following commutative diagram

¢
Rpor(m|n) —— As(m|n)

]

¢
R;;o[(m In) —— Aps(min)

where the vertical maps are inclusions and horizontal maps are given by restrictions of the Chevalley
morphism ¢.

Both horizontal maps in the above diagram are monomorphisms. The bottom map is an epi-
morphism by definition of R;m,(mln) and Aps(m|n), hence an isomorphism. We will produce three
proofs of Theorem 1. For the first proof, we will show in Proposition 1.3 that ¢ (Rpo(m|n)) = Ans(m|n)
and it implies Rpo(mn) = R;O,(mln). The second proof uses the equality Aps(m|n) = Ag(m|n) from
Theorem 2. From the above diagram it follows that Ry, (m|n) = R;o,(mln). An elementary proof of
Theorem 2 will provide the third proof of Theorem 1.

Denote by A,s(m|n,t) the homogeneous component of Aps(m|n) of degree t. For any inte-
gers M > m, N > n there is a graded superalgebra morphism pe : K[x1,...,Xm, Y1,..-, YN] =
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K[x1,...,Xm, Y1,.-., yn] that maps x; — x; for i <m, yj~ y; for j<n and the remaining gener-
ators x;, y;j to zero. Clearly the image of A;(M|N) under p. is a subset of As(m[n).

Lemma 1.1. The morphism p, maps Aps(M|N) to Aps(m|n).

Proof. Verify that

Pe(0i(x. M)) =0oi(x,m) ifi<m and pe(o;(x,M))=0 ifi>m,
Pe(oj(y,N)) =0j(y,n) ifj<n and pe(oj(y,N))=0 ifj>n,
pe(cr(M,N)) =c(mln) ifr<m,n and pe(c:(M,N))=0 ifr>morr=>n,

and

pe(ur(MIN)) = 0.
The claim follows. O

For the integers M > m, N > n consider the Schur superalgebra S(M|N,r) and its idempotent
e= Zu &,, where the sum is over all weights w for which ©; =0 whenever m <i <M or M +n <
i <M+ N. Then S(m|n,r) ~eS(M|N,r)e and there is a natural Schur functor S(M|N,r) — mod —
S(m|n,r) — mod given by V — eV. If V is an S(M|N, r)-supermodule, then eV is a supersubspace of
V and therefore, eV has a canonical S(m|n, r)-supermodule structure.

Let V= {V} be a collection of polynomial G-supermodules. Such a collection is called good if for
any simple polynomial G-supermodule L there is V €V such that L is a composition factor of V and
the highest weights of all remaining composition factors of V are strictly smaller than the highest
weight of L. Clearly, the collection of all simple polynomial G-supermodules is good. The collection of
all costandard supermodules is also good. We will use repeatedly Theorem 5.3 from [6] which states
that if {V'} is a good collection of polynomial G-supermodules, then R, is spanned by Tr(V).

Lemma 1.2. The map p. induces an epimorphism of graded algebras ¢ (Rpoi(MIN)) — ¢ (Rpoi(m|n)).

Proof. Applying the Chevalley map ¢ to the collection of all simple polynomial G-supermodules L
and using Theorem 5.3 of [6] we obtain that the algebra ¢ (R,o) is spanned by the supercharacters
Xsup(L). If & is the highest weight of L, then xs,(L) is a homogeneous polynomial of degree r = [A| =
Z1<i<m+n Ai. By a standard property of a Schur functor, there is a simple S(M|N, r)-supermodule L’
such that el’ ~ L. Since pe(Xsup(L")) = Xsup(L), the claim follows. O

Proposition 1.3. The image ¢ (Rpoi(m|n)) equals Aps(m|n).

Proof. Fix a homogeneous element f € ¢(Rpo(m|n)) of degree r and choose M > m strictly greater
than r. By Lemma 1.2, there is a homogeneous polynomial f’ € ¢(Rpo(M|n)) of degree r such that
pe(f’) = f. Using the Chevalley map, and applying Theorem 5.3 of [6] to the collection of all co-
standard polynomial modules V(u), we obtain that f’ is a linear combination of supercharacters
Xsup(V (1)), or alternatively of supercharacters xsup(L(w)), where p runs over polynomial domi-
nant weights with |u| =r. We can write x5,(V(w)) = anu Cu,r Xsup(L(T)) and  xsup(L()) =
dzﬂgﬂ ciﬂ.ﬂxsup(V(n)), where coefficients ¢,  and d, r are non-negative integers, and ¢y , =
o = 1+

Denote by I} a finite set of all polynomial dominant weights w such that |u| <r. Define a partial
order on I by A < u if and only if |A| < || or A < u (recall that A < p implies |[A| = |u]). Then
Xsup(V (7)) € Aps(M|n) for all w < p is equivalent to xsup(L(77)) € Aps(M|n) for all w < L.
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Consider w € I and assume that x5,y (V(7)) € Ags(M|n) for any 7 < w, 7w # . The assumption
M > r, Theorem 5.4 and Proposition 5.6 of [5] imply that for the highest weight © = (uy|u—) we
have p_ = pjx for some weight [z, and V(1) ~ V(u4|0) ® F(V(&x)), where F is the Frobenius map
and V(jx) is the costandard GL(n)-module with the highest weight fi. Therefore

Xsup (V) = xsup(V(12410)) x (V ()P

and x(V(x))? is a polynomial in oj(y,m)P. If pu_ # 0 then, by the inductive hypothesis,

Xsup(V(1L+10)) € Aps(M|n). Otherwise, u = (14]0).
An exterior power A'(E(M|n)) for t < M has a unique maximal weight (1¢|0). Consequently, an
S(Mi|n, r)-supermodule

V= AM(E(M|n))®MM ® AM—](E(Mln))®(MM—1_MM) Q- ® A](E(Mm))@(//-l—uz)

has a unique maximal weight @ and the supercharacter

H1—pn2 UM-1—HUM MM
1 ...C v -

Xsup(V)=¢ M—1

The module V has a composition series with a unique section that is isomorphic to L(u) and the
remaining sections isomorphic to L(k), where « < . By the inductive hypothesis, all xsup(L(k)) €
Ans(M|n) and therefore, xsup(L(1)) € Aps(M|n). O
Corollary 1.4. The morphism p, maps Aps(M|N, t) onto Aps(m|n, t).

Proof of Theorem 1. Recall that the restriction of ¢ on R is a monomorphism. Since ¢(C;) = c;,
¢ (0i1(Co0)P) = 0i(X1, ..., Xm)?, ¢(0j(C11)P) = 0j(y1, ..., yn)P and ¢(0n(C11)PBer(C)¥) = uy(x|y), the
statement follows from Proposition 1.3. O

2. Proof of Theorem 2

We will need the following crucial observation.

Lemma 2.1. If f € As(m|n) is divisible by xn,, then f is divisible by a nonconstant element of Aps(m|n).
Proof. We can assume f # 0 and use the symmetricity of f in variables xy,...,x, and y1,...,¥n

to write f = x‘l'...xfnyll’...ygg, where exponents a > 0, b > 0, and polynomial g, such that
Zlxm=ya=0 # 0, are unique. Then

__ ra+b,a a b b
Flam=ya=T =T7X] ... X _1Y1 -+ Yn_18lxm=yn=T
+b b b +b+1 b b
=T X Y] Ve 180+ TP xS X 1yl Y181,

where we write gly,—y,=1 = 80 + Tg1. The requirement glx,—y,—0 # 0 implies go # 0. Since
%flxm:ynzr = 0, this is only possible if a + b =0 (mod p). Since a > 0, the polynomial
x‘}...x%y’{...yﬁ is not constant, and is a product of op(x,m)P, o,(y,n)? and u,(m|n), all of which
belong to A,s(m|n). In fact, since a > 0, we have that f is divisible either by o,;(x, m)? or by some
ug(min). O

Proof of Theorem 2. The statement of the theorem is equivalent to the equality As(m|n) =
Ans(m|n).
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Fix n and assume that m is minimal, such that there exists a polynomial f € As(m|n) \ Aps(m|n),
and choose f that is homogeneous and of the minimal degree. Then its reduction flx,—0 €
Aps(m — 1|n) is a nonzero polynomial h(c;(m — 1|n), o;(x,m — 1)?,oj(y,m)P, ux(m — 1|n)) in ele-
ments c.(m — 1|n), oj(x,m — DP, oj(y,n)P and ux(m —1,n) where t >0, 1<i<m—-1,1<j<n
and 0 < k < p. By Corollary 1.4 there are elements vy € Aps(m|n) of degree mk + (p — k)n such
that vi|x,=0 = ux(m — 1in). Since c;(m|n)|x,=0 = c:(m — 1|n), oi(x, m)?|x,=0 = o;(x,m — 1) and
0j(y,MP|x,—0 = 0j(y,n)P, the polynomial | = f — h(cc(m|n), o;(x,m)?, oj(y,n)P, vi(m|n)) satisfies
l|x,=0 = 0. Since the degree of | does not exceed the degree of f, | € As(m|n) and xp divides I,
Lemma 2.1 implies that | = [gl;, where Iy € Ays(m|n) and the degree of Iy is strictly less than the
degree of f. But l; € Ag(m|n) \ Aps(m|n) which is a contradiction with our choice of f. O

3. Elementary proof of Theorem 2

A closer look at the proof of Theorem 2 reveals that Corollary 1.4 is the only result from Section 1
that was used in the proof of Theorem 2. Actually, only the following weaker statement was required
in the proof of Theorem 2.

Proposition 3.1. For each 0 < k < p there is a polynomial vy € Aps(m|n) of degree (m — 1)k + (p — k)n such
that vi|x,=o0 = ux(m — 1|n).

In this section we give a constructive elementary proof of Proposition 3.1 that bypasses the use of
the Schur functor and the results about costandard modules derived in [5].

Fix 0 <k < p and denote s = [ﬁ}. Then for i =0,...,s — 1 define kj = (i + 1)k — ip > 0 and
kp =sp — (s + 1)k > 0. The relations

ki+(p—k) =ki_1, ky+k=s(p—k, ki +kp=(6—-0(p—k)

will be used without explicit reference.

A symbol Z will denote a nondecreasing sequence (i1 < --- < iy) of natural numbers, where
0<t<s. We denote |Z|| =t and |Z| = Z?:] ij. In particular, we allow 7 =@ with [|#J|| = [¢| = 0.
Additionally, denote by Supp(Z) the set of all elements (without repetitions) appearing in Z. If
i € Supp(Z), then by slightly abusing notation we define Z \ i to be a sequence obtained from 7
by deleting one arbitrary element equal to i and define Z Ui to be a sequence obtained from Z by
adding an extra element equal to i.

Fix an arbitrary sequence (ar, ..., a;) of length j < M. Denote by ¥; the symmetric group acting
on j symbols, and by Y its Young subgroup which preserves the fibers of the map j > a;. Then there
is a unique symmetric polynomial in X1, ..., xp that has integral coefficients, with the coefficient of
the monomial x’;l ‘..xj." equal to 1. This polynomial is denoted Sym, (a1, ..., a;) and is defined as

N a1 aj
Symx,M(aL s, aj) = Z Z Xko'(]) .. 'Xkom’

{k1,..., l{j}C{l,...,M} O’EY\Ej

where the first sum is over all subsets {ki,...,k;} of {1,..., M} of cardinality j, and the second sum
is over representatives of the left cosets of X' over its Young subgroup Y.
The symmetric polynomial Symy,N(b1 ,...,bj) in variables y1, ..., yn, that has integral coefficients,

with the coefficient of the monomial y?l ...yl;j equal to 1, is defined analogously.

For simplicity we will use a multiplicative notation, and instead of Sym, y(,...,a,...,z,...,2),
’ —— ——
mg my

we will write Sym, p(a™...z"2). We will use analogous multiplicative notation for Sym,, y.
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Further, denote

A, mn = Symy (KM ki, . ki) Symy y ((p — N7 k)

for0<||Z||=t<Mand 0< j<N, and A(Z,D)yn=0ift >M or j>N;

B(Z, j)m.n = Symy p (KM ~"ki, ... ki, ) Sym,, n ((p — )N )

forO<||Z|=t<Mand 0< j<N, and B(Z, j)un=0ift>M or j> N;

C(Z. 1, ymn = Symy (KM~ (lp — ki, ... ki,) Symy, n ((p — )N ™)
for0<|Z|=t<Mand 0< j< N and any [, and C(Z,1, j)yn=0if t > M or j > N.
For simplicity write A(Z, j), B(Z, j) and C(Z,1, j) short for A(Z, j) m—1.n-1, B(Z, j)m—1,n—1 and
CZ,1, m-1,n-1.
For f e K[X1,...,Xm, ¥1,...,ynl define ¥ (f) = flxp=y,=r and for g,h € K[x1,...,Xm—1,¥1,...,
Yn-1, T] write g =h if and only if %(g —h)=0.

Lemma 3.2. The following relations are valid:

Y (C@, L, mn) =T C, L, j— 1)+ TEDCOB(T, j) + TPV (T, j - 1)

+ Y (ThC@\i.lLj—1)+Th1C@\iL j))
ieSupp(Z)

and

V(AT Dma) =TFAT. j- D+ TP B, j)+ D (TNA@\i.j—1)+TH1A@\j)
ieSupp(Z)

+TCDPRB(T\ i, j)).

Proof. It is easy to see that for j=0,...,n we have

(Syn((p—0" ) =1 =8;)TP*Sy n1((p — " 1) + (1= 8j,0)Sy.n—1((p — k)" )

and for j=0,...,n—1 we have

U (Syn((p =" kp)) = TR Sy 1 ((p — ") + (1 = 80— TP*Sy o1 ((p — )" 27 Tky)
+(1=8,0)Syn-1((p — k" k).

Assume that Ip — Ik is different from k and all numbers k;. Then we can verify that for t =0,...,m
we have

¥ (Sxm (K™ kiy ki) = (1= 8em) T*Sm—1 (K™ ki, .. ki)
t
+ Z THiu Sy 1 (K™ ki, .. I?; ki)

u=1
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and for t=0,...,m—1 we have

1p(sx,m (km_l_t(lp — IRk, .. .k,'t))
= TP S g (K™ ki, ki) + (1= 81,0 T*Sxm—1 (K™ (Ip — o)k, ... ki)
t
+ Z Tkiu Sxm-1 (kmilit(lp — ki, .. k/,: ... ki[)-
u=1

Even when Ip — Ik coincides with k or one of k;, the above formulae remain valid.
Using these formulae we obtain readily

¥ (CT,L Pmn)
=1 =8 )TEVCRS, o (K1 ki, . ki, ) Syn—1 ((p — 0" 1)
+0 =60 ~- (Sm—l,t)Tpsx,m—1 (I<m727t(lp =ik, .. ~kif)5y,m—1 ((p — k)"*j)

t
+ (1 =850) Y TP My (K™ — ok, - Ky, ki) Sy.n1 ((p — k)" )

u=1
+(1=8,0)TP Sy m_1 (K™ ki, .. ki) Sy.n1((p — k)" )
+ (18,001 = 8m-1,0T*Sm—1 (K" >~ (Up — )k, ... ki,)Sy.n—1((p — k)" )

t
+ 3 Thu Sy (KM Up — ok, Ky ki) Syt (P — k)" Y)
u=1
hence

t
Y (CZ.L mn) = THPPOBE, )+ Y TP (@ \ iy, 1 j)+ TP OB, j- 1)
u=1
t
+TCE, j, j— 1+ ) T C@ \iu, L j— 1)

u=1
and the formula for ¥ (C(Z, 1, j)m.n) follows.
Additionally, we obtain
Y (AT, Dmn) =1 = 8em) T Sy g (K™ ki, - ki) Syona ((p — )" 1)
+ (1= 8em) (A =801, NTP Sxme1 (K™ ki .. ki) Sy.n—1((p — )" 2 kp)
+ (1= 8em) (A =80 NT*Sxm—1 (K™ ki, ... ki, ) Syn—1((p — 0" kp)

t
+ ) Thutke s, (K"K, Ky ki) Syt ((p — )"

u=1

t
+ (1 =8p1.p) Y ThtPRs, o (K, Ky ki) Syno1 (0 — "2 kp)

u=1
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t
+ (1 =80) D> TSy m1 (K™ ki, ... ki, .. ki) Sy.n1((0 — k)" k)

u=1

hence

t
Y (AT, ma) =T P OB, j) + THAT, j— 1)+ ) _ TP B(T\ iy, j)

u=1

t t
+ 3 TR AT iy )+ 3 T AT\, 1)

u=1 u=1

and the formula for ¥ (A(Z, j)m.n) follows. O

Let us define

s—1
w=Y" Y (=D hC(Z,L1-17)),, + Y (-nFA(z, s—1-17l),,,
1=1 0<|ZI<I 0<|Z)<s

Then
s—1
ywy=Y" > OFFEH sy (C(Z, L= 1T1),, )+ Y. DY (AT s—1-171),,,)
I=1 0<|ZI<! 0<|Z|<s

and by Lemma 3.2

OOED Y (—1)S+’+‘I‘(s—1)<T’<C(I,1,l—|I|—1) +THDCRB(T,1 7))

1=1 0<|ZI<I

+ TP OB(ZI— 71— 1)+ Y (ThC(Z\i.l1—[Z] - 1)+ Th1C(Z\ i L1 |I|))>
ieSupp(Z)

+ Y (=nH <TkA(I, s—|Z| = 2) + T*P=PB(Z,s — 1 - 7))
0<|Z|<s

+ Y (TMA@Z\is—|Z|-2)+ TN A(Z\i, s — 7] - 1)
ieSupp(Z)

+ TEDPRB(T\ i, 5 —|7] - 1))).
Lemma 3.3. The element v (w) is described by

Y(w) = (=1)T1sTP*B (@, 0).

Proof. If s =1, then ¥ (w) = TP~XB(%, 0) and the formula is valid. Therefore we will assume s > 1.
We begin by analyzing coefficients at expressions of the type TXA(J,s —2 — |J| — i) for various
sets Jandi=0,...,5—2.
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If i=0, then |J| <s—2, and this term appears once with coefficient (—1)!/! as a special term in
the second sum which corresponds to the choice Z = J, and a second time with coefficient (—1)//1+1
corresponding to the choice Z = J U1 (for which |Z| =s— 1) and both terms cancel out.

If 0<i<s—2-—]]J|, then this term appears twice. The first time it appears with coefficient
(=1 corresponding to Z = J Ui (for which |Z| < s —2), and the second time with coefficient
(=DHVI*+1 corresponding to Z = J Ui+ 1 (for which |Z] < s — 1) and both terms cancel out.

Therefore all terms of type TXA(J,s — 2 — | J| — i) will cancel out.

Similar argument can be applied to expressions of the type TXC(J,I,1—1—|J|—i) for any fixed .
In this case there will be two terms, first with coefficient (—1)St+1/1+1 and second with coefficient
(=1)stHHI+i+1 3nd they will cancel out as well.

Finally, we analyze terms of type TS*~KMB(Z, s —|J| —1). We have | -1 —|J| <s—1—J| and
assume that 0 <[ — 1 — [|]J]|. In this first case there are three terms, two of them with coefficients
(s = (=DMt and (s — (I — 1))(=1)MI+s+E=D corresponding to Z = J and the third term with
coefficient (—1)/1*5! corresponding to the choice Z = J Us — I (for which |Z| <s — 1). Note that
in this case [ > 1 and | — 1 > 1 is within our range of summation. All these three terms will cancel
out.

If0=I1—1—]J| and |J| > O, then the same argument remains valid since | > 1.

The only remaining case is when J =@ and [ = 1. The corresponding term TP*B(%,0) ap-
pears twice. The first time with coefficient (s — 1)(—=1)5"! corresponding to Z = J, the second
time with coefficient (—1)>~! corresponding to Z = J Us — 1. The sum of these two terms equals
(=1)t1sTP—*B (@, 0). Therefore

Y (w) = (—=1)*"'sTP~*B(®, 0)
= (=D)¥sTP*sym, 0 (K™Y Symy (=01, O
We can now easily prove Proposition 3.1.

Proof of Proposition 3.1. Since s < p, we can take

=y
s

Vi w + Symy (K™ 1) Symy, , ((p — B)").

Then

Y(vi) = =T Symy 1 (K™ 1) Symy o1 ((p = ") + ((1 = 8, 1) TESymy 1 (K™2)
+ Symy 1 (K™ 1) TP Symy, 1 ((p— k)" ) =0

meaning that vy € As(m|n).

Observe that w|y,—0 = 0 because all numbers k, I(p — k) and each k; are positive. Therefore
Vilxn=0 = Symx’m_1(km*1)5ymy$n((p — k)") = up(m — 1|n). It remains to observe that v, is homo-
geneous of degree (m— 1)k+ (p —kn. O

4. Concluding remarks

Let us comment that if the characteristic of K is positive, then the condition that f|y,—y,=r does
not depend on T is stronger than the condition that dirf|xm=yn=T =0.

Proposition 3.1 of [3] states that, in the case of characteristic zero, the algebra A; is infinitely

generated. In the case of positive characteristic we have the following.

Proposition 4.1. The algebra A is finitely generated.
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Proof. The algebra A; is contained in B = K[oj(x|m),oj(y|n) | 1 <i<m, 1< j<n]. The algebra B
is finitely generated over its subalgebra B’ = K[oj(xlm)?, 0j(yIn)? |1 <i<m, 1< j<n], hence B a
Noetherian B’-module. However, As contains B’ and is therefore a finitely generated B’-module. Since
B’ is finitely generated, so is A;. O
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