Generators of supersymmetric polynomials in positive characteristic

A.N. Grishkov ${ }^{\text {a }}$, F. Marko ${ }^{\text {b,* }}$, A.N. Zubkov ${ }^{\text {c }}$
${ }^{\text {a }}$ Departamento de Matematica, Universidade de Sao Paulo, Caixa Postal 66281, 05315-970 São Paulo, Brazil
${ }^{\text {b }}$ Penn State Hazleton, 76 University Drive, Hazleton, PA 18202, USA
c Omsk State Pedagogical University, Chair of Geometry, 644099 Omsk-99, Tuhachevskogo Embankment 14, Russia

A R T I C L E I N F O

Article history:

Received 19 May 2010
Available online 3 November 2011
Communicated by Efim Zelmanov

Keywords:

Invariants
Supersymmetric polynomials
Pseudosymmetric polynomials
General linear supergroup
Schur superalgebra

Abstract

In Kantor and Trishin (1997) [3], Kantor and Trishin described the algebra of polynomial invariants of the adjoint representation of the Lie superalgebra $g l(m \mid n)$ and a related algebra A_{s} of what they called pseudosymmetric polynomials over an algebraically closed field K of characteristic zero. The algebra A_{s} was investigated earlier by Stembridge (1985) who in [9] called the elements of A_{s} supersymmetric polynomials and determined generators of A_{s}. The case of positive characteristic p of the ground field K has been recently investigated by La Scala and Zubkov (in press) in [6]. We extend their work and give a complete description of generators of polynomial invariants of the adjoint action of the general linear supergroup $G L(m \mid n)$ and generators of A_{s}.

© 2011 Elsevier Inc. All rights reserved.

Introduction and notation

We will start by recalling a classical problem of finding invariants of conjugacy classes of matrices, a solution of which is known for more than a century. Let K be an infinite field of arbitrary characteristic, $G L(n)$ be the general linear group and \mathfrak{g} be its Lie algebra. A function $f \in K$ [g] is called an invariant if it has the same value on each conjugacy class of matrices. For an $n \times n$ matrix M, denote by $\sigma_{i}(M)$ the i-th coefficient of the characteristic polynomial of M; in particular $\sigma_{1}(M)$ is the trace of M and $\sigma_{n}(M)$ is the determinant of M. Chevalley restriction theorem (see Theorem 1.5.7 of [8] or [4]) gives an isomorphism of the ring of invariants $K[\mathfrak{g}]^{G L(n)}$ and the ring of symmetric functions in n variables, say x_{1}, \ldots, x_{n}. This isomorphism is given by restriction on a subset consisting of all diagonal matrices with pairwise different eigenvalues. Generators of $K[\mathfrak{g}]^{G L(n)}$ corresponding

[^0]to coefficients of the characteristic polynomial of such matrices are given by elementary symmetric polynomials.

This classical result was extended to the case of the general linear supergroup $\operatorname{GL}(m \mid n)$ in characteristic zero by Kantor and Trishin [3]. Before formulating their results, we will introduce the general linear supergroup $G=G L(m \mid n)$. Let K be an algebraically closed field of characteristic zero or positive characteristic $p>2$. Let $K\left[c_{i j}\right]$ be a commutative superalgebra freely generated by elements $c_{i j}$ for $1 \leqslant i, j \leqslant m+n$, where $c_{i j}$ is even if either $1 \leqslant i, j \leqslant m$ or $m+1 \leqslant i, j \leqslant m+n$, and $c_{i j}$ is odd otherwise. Denote by C the generic matrix $\left(c_{i j}\right)_{1 \leqslant i, j \leqslant m+n}$ and write it as a block matrix

$$
\left(\begin{array}{ll}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{array}\right)
$$

where entries of C_{00} and C_{11} are even and entries of C_{01} and C_{10} are odd. The localization of $K\left[c_{i j}\right]$ by elements $\operatorname{det}\left(C_{00}\right)$ and $\operatorname{det}\left(C_{11}\right)$ is the coordinate superalgebra $K[G]$ of the general linear supergroup $G=G L(m \mid n)$. The general linear supergroup $G=G L(m \mid n)$ is a group functor from the category SAlg_{K} of commutative superalgebras over K to the category of groups, represented by its coordinate ring $K[G]$, that is $G(A)=\operatorname{Hom}_{\text {SAlg }_{K}}(K[G], A)$ for $A \in \operatorname{SAlg}_{K}$. Here, for $g \in G(A)$ and $f \in K[G]$ we define $f(g)=g(f)$. Denote by $\operatorname{Ber}(C)=\operatorname{det}\left(C_{00}-C_{01} C_{11}^{-1} C_{10}\right) \operatorname{det}\left(C_{11}\right)^{-1}$ the Berezinian element. The Berezinian plays a role analogous to that of the ordinary determinant in the classical case $G L(n)$.

The algebra R of invariants with respect to the adjoint action of G is a set of functions $f \in K[G]$ satisfying $f\left(g_{1}^{-1} g_{2} g_{1}\right)=f\left(g_{2}\right)$ for any $g_{1}, g_{2} \in G(A)$ and any commutative superalgebra A over K. The algebra $R_{p o l}$ of polynomial invariants is a subalgebra of R consisting of polynomial functions.

In the case when the characteristic of the ground field K is zero, Kantor and Trishin [3] described generators of $R_{p o l}$ using supertraces. To explain their result we will need the following definition.

If V is a G-supermodule with a homogeneous basis $\left\{v_{1}, \ldots, v_{a}, v_{a+1}, \ldots, v_{a+b}\right\}$ such that v_{i} is even for $1 \leqslant i \leqslant a$ and v_{i} is odd for $a+1 \leqslant i \leqslant a+b$, and the image $\rho_{V}\left(v_{i}\right)$ of a basis element v_{i} under a comultiplication ρ_{V} is given as $\rho_{V}\left(v_{i}\right)=\sum_{1 \leqslant j \leqslant a+b} v_{j} \otimes f_{j i}$, then the supertrace $\operatorname{Tr}(V)$ is defined as $\sum_{1 \leqslant i \leqslant a} f_{i i}-\sum_{a+1 \leqslant i \leqslant a+b} f_{i i}$.

Let E be the natural G-supermodule given by basis elements e_{1}, \ldots, e_{m} that are even, and e_{m+1}, \ldots, e_{m+n} that are odd, and by comultiplication $\rho_{E}\left(e_{i}\right)=\sum_{1 \leqslant j \leqslant m+n} e_{j} \otimes c_{j i}$. Denote by $\Lambda^{r}(E)$ the r-th superexterior power of E and by C_{r} the supertrace of $\Lambda^{r}(E)$.

If V is a (polynomial) G-supermodule, then $\operatorname{Tr}(V)$ is a (polynomial) invariant of G (see Lemma 5.2 of [6]). Therefore elements $C_{r} \in R_{p o l}$. It was proved in [3] that $R_{p o l}$ is generated by C_{r} and that the algebra $R_{\text {pol }}$ is isomorphic to the algebra of pseudosymmetric polynomials $\Omega(m, n)$, which is a subalgebra of the polynomial ring over K in commuting variables $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}$, generated by polynomials $I_{k}=\sum_{i=1}^{m} x_{i}^{k}-\sum_{j=1}^{n} y_{i}^{k}$ for $k=0,1,2, \ldots$. Moreover, it was observed there that this algebra is not finitely generated. The same algebra was investigated earlier by Stembridge in [9], who called it an algebra of supersymmetric polynomials.

The main objective of this paper is to describe generators of invariants of G when the characteristic $p>2$. As in the case of characteristic zero, all elements C_{r} are polynomial invariants. However, in our case there are additional polynomial invariants $\sigma_{i}\left(C_{00}\right)^{p}, \sigma_{j}\left(C_{11}\right)^{p}$ and $\sigma_{n}\left(C_{11}\right)^{p} \operatorname{Ber}(C)^{k} \in R_{p o l}$ for $1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$ and $0<k<p$ which cannot be expressed solely in terms of the C_{r} 's.

To show that the elements $\sigma_{i}\left(C_{00}\right)^{p}$ and $\sigma_{j}\left(C_{11}\right)^{p}$ are polynomial invariants of $G L(m \mid n)$, consider the Frobenius map $F: K[G L(m) \times G L(n)] \rightarrow K[G L(m \mid n)]$ given by $f \mapsto f^{p}$. Clearly, if f_{0} is even and f_{1} is odd, then $F\left(f=f_{0}+f_{1}\right)=f_{0}^{p}$. By computing images of generators $c_{i j}$, where $1 \leqslant i, j \leqslant m$ and $m+1 \leqslant i, j \leqslant m+n$, it can be verified that the map F is a morphism of Hopf superrings. Since coadjoint actions are defined over the ring of integers, the Frobenius map F sends coadjoint $G L(m) \times G L(n)$-invariants to $G L(m \mid n)$-invariants. Therefore $F\left(\sigma_{i}\left(C_{00}\right)\right)=\sigma_{i}\left(C_{00}\right)^{p} \in R_{\text {pol }}$ for $1 \leqslant i \leqslant m$ and $F\left(\sigma_{j}\left(C_{11}\right)\right)=\sigma_{j}\left(C_{11}\right)^{p} \in R_{\text {pol }}$ for $1 \leqslant j \leqslant n$.

The element $\sigma_{n}\left(C_{11}\right)^{p}$ is group-like by Lemma 3.3.1a of [7] and $\operatorname{Ber}(C)$ is also group-like by [1]. Therefore an element $\sigma_{n}\left(C_{11}\right)^{p} \operatorname{Ber}(C)^{k}$, where $0<k<p$, generates a one-dimensional simple G supermodule and it belongs to R. Since the (highest) weight of $\sigma_{n}\left(C_{11}\right)^{p} \operatorname{Ber}(C)^{k}$ is $(k, \ldots, k \mid p-$ $k, \ldots, p-k)$, by Theorem 6.5 of [2] it is polynomial. For example, if $m=n=1$, then $\sigma_{n}\left(C_{11}\right)^{p} \operatorname{Ber}(C)^{k}=$ $c_{11}^{k} 2_{22}^{p-k}-k c_{12} c_{22}^{p-k-1} c_{21} c_{11}^{k-1}$ is polynomial for $1 \leqslant k \leqslant p-1$.

Actually, in the case $m=n=1$, it is simple to determine the linear basis of $R_{p o l}$: if p divides r, then it is given by elements

$$
c_{11}^{i} c_{22}^{r-i}+(r-i) c_{11}^{i-1} c_{12} c_{21} c_{22}^{r-i-1}
$$

for $0 \leqslant i \leqslant r$, and if p does not divide r, then it consists of elements

$$
c_{11}^{i} c_{22}^{r-i}+(r-i) c_{11}^{i-1} c_{12} c_{21} c_{22}^{r-i-1}-c_{11}^{i-1} c_{22}^{r-i+1}+(i-1) c_{11}^{i-2} c_{12} c_{21} c_{22}^{r-i}
$$

for $1 \leqslant i \leqslant r$.
Our first result states that the above invariants are generators of algebra $R_{\text {pol }}$.
Theorem 1. The algebra $R_{\text {pol }}$ is generated by elements

$$
C_{r}, \quad \sigma_{i}\left(C_{00}\right)^{p}, \quad \sigma_{j}\left(C_{11}\right)^{p}, \quad \sigma_{n}\left(C_{11}\right)^{p} \operatorname{Ber}(C)^{k},
$$

where $0 \leqslant r, 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$ and $0<k<p$.
A description of the algebra R follows easily from this theorem.
Corollary 1. The algebra R equals $R_{\text {pol }}\left[\sigma_{m}\left(C_{00}\right)^{-p}, \sigma_{n}\left(C_{11}\right)^{-p}\right]$.
Proof. If $f \in R$, then its multiple by a sufficiently large power of $\sigma_{m}\left(C_{00}\right)^{p} \sigma_{n}\left(C_{11}\right)^{p}$ is a polynomial invariant.

The main tool used in the proof of the above theorem is (again) the Chevalley map $\phi: K[G] \rightarrow A=$ $K\left[x_{1}^{ \pm 1}, \ldots, x_{m}^{ \pm 1}, y_{1}^{ \pm 1}, \ldots, y_{n}^{ \pm 1}\right]$ defined on entries of a generic matrix C by $\phi\left(c_{i j}\right)=\delta_{i j} x_{i}$ for $1 \leqslant i \leqslant m$ and $\phi\left(c_{i j}\right)=\delta_{i j} y_{i-m}$ for $m+1 \leqslant i \leqslant m+n$. According to [6] and [3], the restriction of ϕ to R is an injective map and its image is contained in the algebra A_{s} of supersymmetric polynomials which by definition consists of polynomials $f(x \mid y)=f\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ that are symmetric in variables x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{n} separately, such that $\left.\frac{d}{d T} f(x \mid y)\right|_{x_{1}=y_{1}=T}$ vanishes.

We will show that the image $\phi\left(R_{\text {pol }}\right)$ equals A_{s}, hence $R_{p o l} \cong A_{s}$.
To find images under ϕ of the previously defined elements from $R_{p o l}$, consider the standard maximal torus T in G and a set of characters $X(T)$. Let V be a G-supermodule with weight decomposition $V=\bigoplus_{\lambda \in X(T)} V_{\lambda}$, where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m+n}\right)$, and each V_{λ} splits into a sum of its even subspace $\left(V_{\lambda}\right)_{0}$ and odd subspace $\left(V_{\lambda}\right)_{1}$. The (formal) supercharacter $\chi_{\text {sup }}(V)$ of V is defined as

$$
\chi_{\text {sup }}(V)=\sum_{\lambda \in X(T)}\left(\operatorname{dim}\left(V_{\lambda}\right)_{0}-\operatorname{dim}\left(V_{\lambda}\right)_{1}\right) x_{1}^{\lambda_{1}} \ldots x_{m}^{\lambda_{m}} y_{1}^{\lambda_{m+1}} \ldots y_{n}^{\lambda_{m+n}} .
$$

Then for any G-supermodule V we have $\phi(\operatorname{Tr}(V))=\chi_{\text {sup }}(V)$. In particular, for $0 \leqslant r$ we have

$$
\phi\left(C_{r}\right)=c_{r}=\sum_{0 \leqslant i \leqslant \min (r, m)}(-1)^{r-i} \sigma_{i}\left(x_{1}, \ldots, x_{m}\right) p_{r-i}\left(y_{1}, \ldots, y_{n}\right),
$$

where σ_{i} is the i-th elementary symmetric function and p_{j} is the j-th complete symmetric function.

The images of the remaining generators of $R_{p o l}$ under ϕ,

$$
\phi\left(\sigma_{i}\left(C_{00}\right)^{p}\right)=\sigma_{i}\left(x_{1}, \ldots, x_{m}\right)^{p}
$$

for $1 \leqslant i \leqslant m$,

$$
\phi\left(\sigma_{j}\left(C_{11}\right)^{p}\right)=\sigma_{j}\left(y_{1}, \ldots, y_{n}\right)^{p}
$$

for $1 \leqslant j \leqslant n$, and

$$
\phi\left(\sigma_{n}\left(C_{11}\right)^{p} \operatorname{Ber}(C)^{k}\right)=u_{k}(x \mid y)=\sigma_{m}\left(x_{1}, \ldots, x_{m}\right)^{k} \sigma_{n}\left(y_{1}, \ldots, y_{n}\right)^{p-k}
$$

for $0<k<p$ are elements from A_{s}.
Theorem 1 will follow from the following description of generators of the algebra A_{s}.
Theorem 2. The algebra A_{s} is generated by elements c_{r} for $r \geqslant 0, \sigma_{i}\left(x_{1}, \ldots, x_{m}\right)^{p}$ for $1 \leqslant i \leqslant m$, $\sigma_{j}\left(y_{1}, \ldots, y_{n}\right)^{p}$ for $1 \leqslant j \leqslant n$ and $u_{k}(x \mid y)$ for $0<k<p$.

We conclude the introduction with the following remarkable observation. It was showed in [3] that $A_{s} \simeq R_{\text {pol }}$ is not finitely generated if the characteristic of the field K equals zero. We will show that if the characteristic of K is positive, then the algebra $A_{s} \simeq R_{p o l}$ is finitely generated.

1. Proof of Theorem 1

In this section we will compare algebras corresponding to different values of m, n and apply the Schur functor. Therefore we adjust the notation slightly to reflect the dependence on m, n. For example, we will write $R(m \mid n)$ instead of R and $A_{s}(m \mid n)$ instead of A_{s}.

Denote by $R_{\text {pol }}^{\prime}(m \mid n)$ a subalgebra of $R_{p o l}(m \mid n)$ generated by elements $C_{r}, \sigma_{i}\left(C_{00}\right)^{p}, \sigma_{j}\left(C_{11}\right)^{p}$ and $\sigma_{n}\left(C_{11}\right)^{p} \operatorname{Ber}(C)^{k}$, where $0 \leqslant r, 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$ and $0<k<p$.

Further, denote by $A_{n s}(m \mid n)$ a subalgebra of $A_{s}(m \mid n)$ generated by polynomials $c_{r}(m \mid n), \sigma_{i}(x, m)^{p}=$ $\sigma_{i}\left(x_{1}, \ldots, x_{m}\right)^{p}, \sigma_{j}(y, n)^{p}=\sigma_{j}\left(y_{1}, \ldots, y_{n}\right)^{p}$ and $u_{k}(m \mid n)=\sigma_{m}(x, m)^{k} \sigma_{n}(y, n)^{p-k}$ for $1 \leqslant i \leqslant m, 1 \leqslant$ $j \leqslant n$ and $0<k<p$.

There is the following commutative diagram

where the vertical maps are inclusions and horizontal maps are given by restrictions of the Chevalley morphism ϕ.

Both horizontal maps in the above diagram are monomorphisms. The bottom map is an epimorphism by definition of $R_{p o l}^{\prime}(m \mid n)$ and $A_{n s}(m \mid n)$, hence an isomorphism. We will produce three proofs of Theorem 1. For the first proof, we will show in Proposition 1.3 that $\phi\left(R_{\text {pol }}(m \mid n)\right)=A_{n s}(m \mid n)$ and it implies $R_{p o l}(m \mid n)=R_{p o l}^{\prime}(m \mid n)$. The second proof uses the equality $A_{n s}(m \mid n)=A_{s}(m \mid n)$ from Theorem 2. From the above diagram it follows that $R_{p o l}(m \mid n)=R_{p o l}^{\prime}(m \mid n)$. An elementary proof of Theorem 2 will provide the third proof of Theorem 1.

Denote by $A_{n s}(m \mid n, t)$ the homogeneous component of $A_{n s}(m \mid n)$ of degree t. For any integers $M \geqslant m, N \geqslant n$ there is a graded superalgebra morphism $p_{e}: K\left[x_{1}, \ldots, x_{M}, y_{1}, \ldots, y_{N}\right] \rightarrow$
$K\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$ that maps $x_{i} \mapsto x_{i}$ for $i \leqslant m, y_{j} \mapsto y_{j}$ for $j \leqslant n$ and the remaining generators x_{i}, y_{j} to zero. Clearly the image of $A_{s}(M \mid N)$ under p_{e} is a subset of $A_{s}(m \mid n)$.

Lemma 1.1. The morphism p_{e} maps $A_{n s}(M \mid N)$ to $A_{n s}(m \mid n)$.

Proof. Verify that

$$
\begin{gathered}
p_{e}\left(\sigma_{i}(x, M)\right)=\sigma_{i}(x, m) \quad \text { if } i \leqslant m \quad \text { and } \quad p_{e}\left(\sigma_{i}(x, M)\right)=0 \quad \text { if } i>m, \\
p_{e}\left(\sigma_{j}(y, N)\right)=\sigma_{j}(y, n) \quad \text { if } j \leqslant n \quad \text { and } \quad p_{e}\left(\sigma_{j}(y, N)\right)=0 \quad \text { if } j>n, \\
p_{e}\left(c_{r}(M, N)\right)=c_{r}(m \mid n) \quad \text { if } r \leqslant m, n \quad \text { and } \quad p_{e}\left(c_{r}(M, N)\right)=0 \quad \text { if } r>m \text { or } r>n,
\end{gathered}
$$

and

$$
p_{e}\left(u_{k}(M \mid N)\right)=0
$$

The claim follows.

For the integers $M \geqslant m, N \geqslant n$ consider the Schur superalgebra $S(M \mid N, r)$ and its idempotent $e=\sum_{\mu} \xi_{\mu}$, where the sum is over all weights μ for which $\mu_{i}=0$ whenever $m<i \leqslant M$ or $M+n<$ $i \leqslant M+N$. Then $S(m \mid n, r) \simeq e S(M \mid N, r) e$ and there is a natural Schur functor $S(M \mid N, r)-\bmod \rightarrow$ $S(m \mid n, r)-m o d$ given by $V \mapsto e V$. If V is an $S(M \mid N, r)$-supermodule, then $e V$ is a supersubspace of V and therefore, $e V$ has a canonical $S(m \mid n, r)$-supermodule structure.

Let $\mathbf{V}=\{V\}$ be a collection of polynomial G-supermodules. Such a collection is called good if for any simple polynomial G-supermodule L there is $V \in \mathbf{V}$ such that L is a composition factor of V and the highest weights of all remaining composition factors of V are strictly smaller than the highest weight of L. Clearly, the collection of all simple polynomial G-supermodules is good. The collection of all costandard supermodules is also good. We will use repeatedly Theorem 5.3 from [6] which states that if $\{V\}$ is a good collection of polynomial G-supermodules, then $R_{p o l}$ is spanned by $\operatorname{Tr}(V)$.

Lemma 1.2. The map p_{e} induces an epimorphism of graded algebras $\phi\left(R_{\text {pol }}(M \mid N)\right) \rightarrow \phi\left(R_{\text {pol }}(m \mid n)\right)$.

Proof. Applying the Chevalley map ϕ to the collection of all simple polynomial G-supermodules L and using Theorem 5.3 of [6] we obtain that the algebra $\phi\left(R_{p o l}\right)$ is spanned by the supercharacters $\chi_{\sup }(L)$. If λ is the highest weight of L, then $\chi_{\sup }(L)$ is a homogeneous polynomial of degree $r=|\lambda|=$ $\sum_{1 \leqslant i \leqslant m+n} \lambda_{i}$. By a standard property of a Schur functor, there is a simple $S(M \mid N, r)$-supermodule L^{\prime} such that $e L^{\prime} \simeq L$. Since $p_{e}\left(\chi_{\sup }\left(L^{\prime}\right)\right)=\chi_{\text {sup }}(L)$, the claim follows.

Proposition 1.3. The image $\phi\left(R_{\text {pol }}(m \mid n)\right)$ equals $A_{n s}(m \mid n)$.

Proof. Fix a homogeneous element $f \in \phi\left(R_{\text {pol }}(m \mid n)\right)$ of degree r and choose $M \geqslant m$ strictly greater than r. By Lemma 1.2, there is a homogeneous polynomial $f^{\prime} \in \phi\left(R_{p o l}(M \mid n)\right)$ of degree r such that $p_{e}\left(f^{\prime}\right)=f$. Using the Chevalley map, and applying Theorem 5.3 of [6] to the collection of all costandard polynomial modules $\nabla(\mu)$, we obtain that f^{\prime} is a linear combination of supercharacters $\chi_{\text {sup }}(\nabla(\mu))$, or alternatively of supercharacters $\chi_{\text {sup }}(L(\mu))$, where μ runs over polynomial dominant weights with $|\mu|=r$. We can write $\chi_{\text {sup }}(\nabla(\mu))=\sum_{\pi \leqslant \mu} c_{\mu, \pi} \chi_{\text {sup }}(L(\pi))$ and $\chi_{\text {sup }}(L(\mu))=$ $\sum_{\pi \leqslant \mu} d_{\mu, \pi} \chi_{\sup }(\nabla(\pi))$, where coefficients $c_{\mu, \pi}$ and $d_{\mu, \pi}$ are non-negative integers, and $c_{\mu, \mu}=$ $d_{\mu, \mu}=1$.

Denote by Γ_{r} a finite set of all polynomial dominant weights μ such that $|\mu| \leqslant r$. Define a partial order on Γ_{r} by $\lambda \prec \mu$ if and only if $|\lambda|<|\mu|$ or $\lambda \leqslant \mu$ (recall that $\lambda \leqslant \mu$ implies $|\lambda|=|\mu|$). Then $\chi_{\sup }(\nabla(\pi)) \in A_{n s}(M \mid n)$ for all $\pi \prec \mu$ is equivalent to $\chi_{\text {sup }}(L(\pi)) \in A_{n s}(M \mid n)$ for all $\pi \prec \mu$.

Consider $\mu \in \Gamma_{r}$ and assume that $\chi_{\text {sup }}(\nabla(\pi)) \in A_{n s}(M \mid n)$ for any $\pi \prec \mu, \pi \neq \mu$. The assumption $M>r$, Theorem 5.4 and Proposition 5.6 of [5] imply that for the highest weight $\mu=\left(\mu_{+} \mid \mu_{-}\right)$we have $\mu_{-}=p \bar{\mu}$ for some weight $\bar{\mu}$, and $\nabla(\mu) \simeq \nabla\left(\mu_{+} \mid 0\right) \otimes F(\bar{\nabla}(\bar{\mu}))$, where F is the Frobenius map and $\bar{\nabla}(\bar{\mu})$ is the costandard $G L(n)$-module with the highest weight $\bar{\mu}$. Therefore

$$
\chi_{\sup }(\nabla(\mu))=\chi_{\sup }\left(\nabla\left(\mu_{+} \mid 0\right)\right) \chi(\bar{\nabla}(\bar{\mu}))^{p}
$$

and $\chi(\bar{\nabla}(\bar{\mu}))^{p}$ is a polynomial in $\sigma_{j}(y, n)^{p}$. If $\mu_{-} \neq 0$ then, by the inductive hypothesis, $\chi_{\text {sup }}\left(\nabla\left(\mu_{+} \mid 0\right)\right) \in A_{n s}(M \mid n)$. Otherwise, $\mu=\left(\mu_{+} \mid 0\right)$.

An exterior power $\Lambda^{t}(E(M \mid n))$ for $t \leqslant M$ has a unique maximal weight ($\left.1^{t} \mid 0\right)$. Consequently, an $S(M \mid n, r)$-supermodule

$$
V=\Lambda^{M}(E(M \mid n))^{\otimes \mu_{M}} \otimes \Lambda^{M-1}(E(M \mid n))^{\otimes\left(\mu_{M-1}-\mu_{M}\right)} \otimes \cdots \otimes \Lambda^{1}(E(M \mid n))^{\otimes\left(\mu_{1}-\mu_{2}\right)}
$$

has a unique maximal weight μ and the supercharacter

$$
\chi_{\sup }(V)=c_{1}^{\mu_{1}-\mu_{2}} \ldots c_{M-1}^{\mu_{M-1}-\mu_{M}} c_{M}^{\mu_{M}}
$$

The module V has a composition series with a unique section that is isomorphic to $L(\mu)$ and the remaining sections isomorphic to $L(\kappa)$, where $\kappa<\mu$. By the inductive hypothesis, all $\chi_{\text {sup }}(L(\kappa)) \in$ $A_{n s}(M \mid n)$ and therefore, $\chi_{\text {sup }}(L(\mu)) \in A_{n s}(M \mid n)$.

Corollary 1.4. The morphism p_{e} maps $A_{n s}(M \mid N, t)$ onto $A_{n s}(m \mid n, t)$.

Proof of Theorem 1. Recall that the restriction of ϕ on R is a monomorphism. Since $\phi\left(C_{r}\right)=c_{r}$, $\phi\left(\sigma_{i}\left(C_{00}\right)^{p}\right)=\sigma_{i}\left(x_{1}, \ldots, x_{m}\right)^{p}, \phi\left(\sigma_{j}\left(C_{11}\right)^{p}\right)=\sigma_{j}\left(y_{1}, \ldots, y_{n}\right)^{p}$ and $\phi\left(\sigma_{n}\left(C_{11}\right)^{p} \operatorname{Ber}(C)^{k}\right)=u_{k}(x \mid y)$, the statement follows from Proposition 1.3.

2. Proof of Theorem 2

We will need the following crucial observation.
Lemma 2.1. If $f \in A_{s}(m \mid n)$ is divisible by x_{m}, then f is divisible by a nonconstant element of $A_{n s}(m \mid n)$.

Proof. We can assume $f \neq 0$ and use the symmetricity of f in variables x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{n} to write $f=x_{1}^{a} \ldots x_{m}^{a} y_{1}^{b} \ldots y_{n}^{b} g$, where exponents $a>0, b \geqslant 0$, and polynomial g, such that $\left.g\right|_{x_{m}=y_{n}=0} \neq 0$, are unique. Then

$$
\begin{aligned}
\left.f\right|_{x_{m}=y_{n}=T} & =\left.T^{a+b} x_{1}^{a} \ldots x_{m-1}^{a} y_{1}^{b} \ldots y_{n-1}^{b} g\right|_{x_{m}=y_{n}=T} \\
& =T^{a+b} x_{1}^{a} \ldots x_{m-1}^{a} y_{1}^{b} \ldots y_{n-1}^{b} g_{0}+T^{a+b+1} x_{1}^{a} \ldots x_{m-1}^{a} y_{1}^{b} \ldots y_{n-1}^{b} g_{1}
\end{aligned}
$$

where we write $\left.g\right|_{x_{m}=y_{n}=T}=g_{0}+T g_{1}$. The requirement $\left.g\right|_{x_{m}=y_{n}=0} \neq 0$ implies $g_{0} \neq 0$. Since $\left.\frac{d}{d T} f\right|_{x_{m}=y_{n}=T}=0$, this is only possible if $a+b \equiv 0(\bmod p)$. Since $a>0$, the polynomial $x_{1}^{a} \ldots x_{m}^{a} y_{1}^{b} \ldots y_{n}^{b}$ is not constant, and is a product of $\sigma_{m}(x, m)^{p}, \sigma_{n}(y, n)^{p}$ and $u_{k}(m \mid n)$, all of which belong to $A_{n s}(m \mid n)$. In fact, since $a>0$, we have that f is divisible either by $\sigma_{m}(x, m)^{p}$ or by some $u_{k}(m \mid n)$.

Proof of Theorem 2. The statement of the theorem is equivalent to the equality $A_{s}(m \mid n)=$ $A_{n s}(m \mid n)$.

Fix n and assume that m is minimal, such that there exists a polynomial $f \in A_{s}(m \mid n) \backslash A_{n s}(m \mid n)$, and choose f that is homogeneous and of the minimal degree. Then its reduction $\left.f\right|_{x_{m}=0} \in$ $A_{n s}(m-1 \mid n)$ is a nonzero polynomial $h\left(c_{t}(m-1 \mid n), \sigma_{i}(x, m-1)^{p}, \sigma_{j}(y, n)^{p}, u_{k}(m-1 \mid n)\right)$ in elements $c_{t}(m-1 \mid n), \sigma_{i}(x, m-1)^{p}, \sigma_{j}(y, n)^{p}$ and $u_{k}(m-1, n)$ where $t \geqslant 0,1 \leqslant i \leqslant m-1,1 \leqslant j \leqslant n$ and $0<k<p$. By Corollary 1.4 there are elements $v_{k} \in A_{n s}(m \mid n)$ of degree $m k+(p-k) n$ such that $\left.v_{k}\right|_{x_{m}=0}=u_{k}(m-1 \mid n)$. Since $\left.c_{t}(m \mid n)\right|_{x_{m}=0}=c_{t}(m-1 \mid n),\left.\sigma_{i}(x, m)^{p}\right|_{x_{m}=0}=\sigma_{i}(x, m-1)^{p}$ and $\left.\sigma_{j}(y, n)^{p}\right|_{x_{m}=0}=\sigma_{j}(y, n)^{p}$, the polynomial $l=f-h\left(c_{t}(m \mid n), \sigma_{i}(x, m)^{p}, \sigma_{j}(y, n)^{p}, v_{k}(m \mid n)\right)$ satisfies $\left.l\right|_{x_{m}=0}=0$. Since the degree of l does not exceed the degree of $f, l \in A_{s}(m \mid n)$ and x_{m} divides l, Lemma 2.1 implies that $l=l_{0} l_{1}$, where $l_{0} \in A_{n s}(m \mid n)$ and the degree of l_{1} is strictly less than the degree of f. But $l_{1} \in A_{s}(m \mid n) \backslash A_{n s}(m \mid n)$ which is a contradiction with our choice of f.

3. Elementary proof of Theorem 2

A closer look at the proof of Theorem 2 reveals that Corollary 1.4 is the only result from Section 1 that was used in the proof of Theorem 2. Actually, only the following weaker statement was required in the proof of Theorem 2.

Proposition 3.1. For each $0<k<p$ there is a polynomial $v_{k} \in A_{n s}(m \mid n)$ of degree ($m-1$) $k+(p-k) n$ such that $\left.v_{k}\right|_{x_{m}=0}=u_{k}(m-1 \mid n)$.

In this section we give a constructive elementary proof of Proposition 3.1 that bypasses the use of the Schur functor and the results about costandard modules derived in [5].

Fix $0<k<p$ and denote $s=\left\lceil\frac{k}{p-k}\right\rceil$. Then for $i=0, \ldots, s-1$ define $k_{i}=(i+1) k-i p>0$ and $k_{p}=s p-(s+1) k \geqslant 0$. The relations

$$
k_{i}+(p-k)=k_{i-1}, \quad k_{p}+k=s(p-k), \quad k_{i}+k_{p}=(s-i)(p-k)
$$

will be used without explicit reference.
A symbol \mathcal{I} will denote a nondecreasing sequence ($i_{1} \leqslant \cdots \leqslant i_{t}$) of natural numbers, where $0 \leqslant t<s$. We denote $\|\mathcal{I}\|=t$ and $|\mathcal{I}|=\sum_{j=1}^{t} i_{j}$. In particular, we allow $\mathcal{I}=\emptyset$ with $\|\emptyset\|=|\emptyset|=0$. Additionally, denote by $\operatorname{Supp}(\mathcal{I})$ the set of all elements (without repetitions) appearing in \mathcal{I}. If $i \in \operatorname{Supp}(\mathcal{I})$, then by slightly abusing notation we define $\mathcal{I} \backslash i$ to be a sequence obtained from \mathcal{I} by deleting one arbitrary element equal to i and define $\mathcal{I} \cup i$ to be a sequence obtained from \mathcal{I} by adding an extra element equal to i.

Fix an arbitrary sequence $\left(a_{1}, \ldots, a_{j}\right)$ of length $j \leqslant M$. Denote by Σ_{j} the symmetric group acting on j symbols, and by Y its Young subgroup which preserves the fibers of the map $j \mapsto a_{j}$. Then there is a unique symmetric polynomial in x_{1}, \ldots, x_{M} that has integral coefficients, with the coefficient of the monomial $x_{1}^{a_{1}} \ldots x_{j}^{a_{j}}$ equal to 1 . This polynomial is denoted $S y m_{x, M}\left(a_{1}, \ldots, a_{j}\right)$ and is defined as

$$
\operatorname{Sym}_{x, M}\left(a_{1}, \ldots, a_{j}\right)=\sum_{\left\{k_{1}, \ldots, k_{j}\right\} \subset\{1, \ldots, M\}} \sum_{\sigma \in Y \backslash \Sigma_{j}} x_{k_{\sigma(1)}}^{a_{1}} \ldots x_{k_{\sigma(j)}}^{a_{j}}
$$

where the first sum is over all subsets $\left\{k_{1}, \ldots, k_{j}\right\}$ of $\{1, \ldots, M\}$ of cardinality j, and the second sum is over representatives of the left cosets of Σ_{j} over its Young subgroup Y.

The symmetric polynomial $\operatorname{Sym}_{y, N}\left(b_{1}, \ldots, b_{j}\right)$ in variables y_{1}, \ldots, y_{N}, that has integral coefficients, with the coefficient of the monomial $y_{1}^{b_{1}} \ldots y_{j}^{b_{j}}$ equal to 1 , is defined analogously.

For simplicity we will use a multiplicative notation, and instead of $\operatorname{Sym}_{x, M}(\underbrace{a, \ldots, a}_{m_{a}}, \ldots, \underbrace{z, \ldots, z}_{m_{z}})$, we will write $\operatorname{Sym}_{\chi, M}\left(a^{m_{a}} \ldots . z^{m_{z}}\right)$. We will use analogous multiplicative notation for $\operatorname{Sym}_{y, N}$.

Further, denote

$$
A(\mathcal{I}, j)_{M, N}=\operatorname{Sym}_{x, M}\left(k^{M-t} k_{i_{1}} \ldots k_{i_{t}}\right) \operatorname{Sym}_{y, N}\left((p-k)^{N-j-1} k_{p}\right)
$$

for $0 \leqslant\|\mathcal{I}\|=t \leqslant M$ and $0 \leqslant j<N$, and $A(\mathcal{I}, l)_{M, N}=0$ if $t>M$ or $j \geqslant N$;

$$
B(\mathcal{I}, j)_{M, N}=\operatorname{Sym}_{x, M}\left(k^{M-t} k_{i_{1}} \ldots k_{i_{t}}\right) \operatorname{Sym}_{y, N}\left((p-k)^{N-j}\right)
$$

for $0 \leqslant\|\mathcal{I}\|=t \leqslant M$ and $0 \leqslant j \leqslant N$, and $B(\mathcal{I}, j)_{M, N}=0$ if $t>M$ or $j>N$;

$$
C(\mathcal{I}, l, j)_{M, N}=\operatorname{Sym}_{x, M}\left(k^{M-t-1}(l p-l k) k_{i_{1}} \ldots k_{i_{t}}\right) \operatorname{Sym}_{y, N}\left((p-k)^{N-j}\right)
$$

for $0 \leqslant\|\mathcal{I}\|=t<M$ and $0 \leqslant j \leqslant N$ and any l, and $C(\mathcal{I}, l, j)_{M, N}=0$ if $t \geqslant M$ or $j>N$.
For simplicity write $A(\mathcal{I}, j), B(\mathcal{I}, j)$ and $C(\mathcal{I}, l, j)$ short for $A(\mathcal{I}, j)_{m-1, n-1}, B(\mathcal{I}, j)_{m-1, n-1}$ and $C(\mathcal{I}, l, j)_{m-1, n-1}$.

For $f \in K\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$ define $\psi(f)=\left.f\right|_{x_{m}=y_{n}=T}$ and for $g, h \in K\left[x_{1}, \ldots, x_{m-1}, y_{1}, \ldots\right.$, $\left.y_{n-1}, T\right]$ write $g \equiv h$ if and only if $\frac{d}{d T}(g-h)=0$.

Lemma 3.2. The following relations are valid:

$$
\begin{aligned}
\psi\left(C(\mathcal{I}, l, j)_{m, n}\right) \equiv & T^{k} C(\mathcal{I}, l, j-1)+T^{(l+1)(p-k)} B(\mathcal{I}, j)+T^{l(p-k)} B(\mathcal{I}, j-1) \\
& +\sum_{i \in \operatorname{Supp}(\mathcal{I})}\left(T^{k_{i}} C(\mathcal{I} \backslash i, l, j-1)+T^{k_{i-1}} C(\mathcal{I} \backslash i, l, j)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\psi\left(A(\mathcal{I}, j)_{m, n}\right) \equiv & T^{k} A(\mathcal{I}, j-1)+T^{s(p-k)} B(\mathcal{I}, j)+\sum_{i \in \operatorname{Supp}(\mathcal{I})}\left(T^{k_{i}} A(\mathcal{I} \backslash i, j-1)+T^{k_{i-1}} A(\mathcal{I} \backslash i, j)\right. \\
& \left.+T^{(s-i)(p-k)} B(\mathcal{I} \backslash i, j)\right)
\end{aligned}
$$

Proof. It is easy to see that for $j=0, \ldots, n$ we have

$$
\psi\left(S_{y, n}\left((p-k)^{n-j}\right)\right)=\left(1-\delta_{j, n}\right) T^{p-k} S_{y, n-1}\left((p-k)^{n-1-j}\right)+\left(1-\delta_{j, 0}\right) S_{y, n-1}\left((p-k)^{n-j}\right)
$$

and for $j=0, \ldots, n-1$ we have

$$
\begin{aligned}
\psi\left(S_{y, n}\left((p-k)^{n-1-j} k_{p}\right)\right)= & T^{k_{p}} S_{y, n-1}\left((p-k)^{n-1-j}\right)+\left(1-\delta_{j, n-1}\right) T^{p-k} S_{y, n-1}\left((p-k)^{n-2-j} k_{p}\right) \\
& +\left(1-\delta_{j, 0}\right) S_{y, n-1}\left((p-k)^{n-1-j} k_{p}\right)
\end{aligned}
$$

Assume that $l p-l k$ is different from k and all numbers k_{i}. Then we can verify that for $t=0, \ldots, m$ we have

$$
\begin{aligned}
\psi\left(S_{x, m}\left(k^{m-t} k_{i_{1}} \ldots k_{i_{t}}\right)\right)= & \left(1-\delta_{t, m}\right) T^{k} S_{x, m-1}\left(k^{m-1-t} k_{i_{1}} \ldots k_{i_{t}}\right) \\
& +\sum_{u=1}^{t} T^{k_{i_{u}}} S_{x, m-1}\left(k^{m-t} k_{i_{1}} \ldots \widehat{k_{i_{u}}} \ldots k_{i_{t}}\right)
\end{aligned}
$$

and for $t=0, \ldots, m-1$ we have

$$
\begin{aligned}
& \psi\left(S_{x, m}\left(k^{m-1-t}(l p-l k) k_{i_{1}} \ldots k_{i_{t}}\right)\right) \\
& =T^{l p-l k} S_{x, m-1}\left(k^{m-1-t} k_{i_{1}} \ldots k_{i_{t}}\right)+\left(1-\delta_{m-1, t}\right) T^{k} S_{x . m-1}\left(k^{m-2-t}(l p-l k) k_{i_{1}} \ldots k_{i_{t}}\right) \\
& \quad+\sum_{u=1}^{t} T^{k_{i_{u}}} S_{x, m-1}\left(k^{m-1-t}(l p-l k) k_{i_{1}} \ldots \widehat{k_{i_{u}}} \ldots k_{i_{t}}\right) .
\end{aligned}
$$

Even when $l p-l k$ coincides with k or one of k_{i}, the above formulae remain valid.
Using these formulae we obtain readily

$$
\begin{aligned}
& \psi\left(C(\mathcal{I}, l, j)_{m, n}\right) \\
&=\left(1-\delta_{j, n}\right) T^{(l+1)(p-k)} S_{x, m-1}\left(k^{m-1-t} k_{i_{1}} \ldots k_{i_{t}}\right) S_{y, n-1}\left((p-k)^{n-1-j}\right) \\
&+\left(1-\delta_{j, n}\right)\left(1-\delta_{m-1, t}\right) T^{p} S_{x, m-1}\left(k^{m-2-t}(l p-l k) k_{i_{1}} \ldots k_{i_{t}}\right) S_{y, m-1}\left((p-k)^{n-j}\right) \\
&+\left(1-\delta_{j, n}\right) \sum_{u=1}^{t} T^{p-k+k_{i_{u}}} S_{x, m-1}\left(k^{m-1-t}(l p-l k) k_{i_{1}} \ldots \widehat{k_{i_{u}}} \ldots k_{i_{t}}\right) S_{y, n-1}\left((p-k)^{n-1-j}\right) \\
&+\left(1-\delta_{j, 0}\right) T^{l p-l k} S_{x, m-1}\left(k^{m-1-t} k_{i_{1}} \ldots k_{i_{t}}\right) S_{y, n-1}\left((p-k)^{n-j}\right) \\
&+\left(1-\delta_{j, 0}\right)\left(1-\delta_{m-1, t}\right) T^{k} S_{x, m-1}\left(k^{m-2-t}(l p-l k) k_{i_{1}} \ldots k_{i_{t}}\right) S_{y, n-1}\left((p-k)^{n-j}\right) \\
&+\sum_{u=1}^{t} T^{k_{i_{u}}} S_{x, m-1}\left(k^{m-1-t}(l p-l k) k_{i_{1}} \ldots \widehat{k_{i_{u}}} \ldots k_{i_{t}}\right) S_{y, n-1}\left((p-k)^{n-j}\right)
\end{aligned}
$$

hence

$$
\begin{aligned}
\psi\left(C(\mathcal{I}, l, j)_{m, n}\right) \equiv & T^{(l+1)(p-k)} B(\mathcal{I}, j)+\sum_{u=1}^{t} T^{p-k+k_{i_{u}}} C\left(\mathcal{I} \backslash i_{u}, l, j\right)+T^{l(p-k)} B(\mathcal{I}, j-1) \\
& +T^{k} C(\mathcal{I}, j, j-1)+\sum_{u=1}^{t} T^{k_{i_{u}}} C\left(\mathcal{I} \backslash i_{u}, l, j-1\right)
\end{aligned}
$$

and the formula for $\psi\left(C(\mathcal{I}, l, j)_{m, n}\right)$ follows.
Additionally, we obtain

$$
\begin{aligned}
\psi\left(A(\mathcal{I}, j)_{m, n}\right)= & \left(1-\delta_{t, m}\right) T^{k+k_{p}} S_{x, m-1}\left(k^{m-1-t} k_{i_{1}} \ldots k_{i_{t}}\right) S_{y, n-1}\left((p-k)^{n-1-j}\right) \\
& +\left(1-\delta_{t, m}\right)\left(1-\delta_{n-1, j}\right) T^{p} S_{x, m-1}\left(k^{m-1-t} k_{i_{1}} \ldots k_{i_{t}}\right) S_{y, n-1}\left((p-k)^{n-2-j} k_{p}\right) \\
& +\left(1-\delta_{t, m}\right)\left(1-\delta_{0, j}\right) T^{k} S_{x, m-1}\left(k^{m-1-t} k_{i_{1}} \ldots k_{i_{t}}\right) S_{y, n-1}\left((p-k)^{n-1-j} k_{p}\right) \\
& +\sum_{u=1}^{t} T^{k_{i_{u}}+k_{p}} S_{x, m-1}\left(k^{m-t} k_{i_{1}} \ldots \widehat{k_{i_{u}}} \ldots k_{i_{t}}\right) S_{y, n-1}\left((p-k)^{n-1-j}\right) \\
& +\left(1-\delta_{n-1, j}\right) \sum_{u=1}^{t} T^{k_{i_{u}}+p-k} S_{x, m-1}\left(k^{m-t} k_{i_{1}} \ldots \widehat{k_{i_{u}}} \ldots k_{i_{t}}\right) S_{y, n-1}\left((p-k)^{n-2-j} k_{p}\right)
\end{aligned}
$$

$$
+\left(1-\delta_{0, j}\right) \sum_{u=1}^{t} T^{k_{u}} S_{x, m-1}\left(k^{m-t} k_{i_{1}} \ldots \widehat{k_{i_{u}}} \ldots k_{i_{t}}\right) S_{y, n-1}\left((p-k)^{n-1-j} k_{p}\right)
$$

hence

$$
\begin{aligned}
\psi\left(A(\mathcal{I}, j)_{m, n}\right) \equiv & T^{s(p-k)} B(\mathcal{I}, j)+T^{k} A(\mathcal{I}, j-1)+\sum_{u=1}^{t} T^{k_{i_{u}}+k_{p}} B\left(\mathcal{I} \backslash i_{u}, j\right) \\
& +\sum_{u=1}^{t} T^{k_{i_{u}}+(p-k)} A\left(\mathcal{I} \backslash i_{u}, j\right)+\sum_{u=1}^{t} T^{k_{i_{u}}} A\left(\mathcal{I} \backslash i_{u}, j-1\right)
\end{aligned}
$$

and the formula for $\psi\left(A(\mathcal{I}, j)_{m, n}\right)$ follows.
Let us define

$$
w=\sum_{l=1}^{s-1} \sum_{0 \leqslant|\mathcal{I}| \leqslant l}(-1)^{|\mathcal{I}|+s+l}(s-l) C(\mathcal{I}, l, l-|\mathcal{I}|)_{m, n}+\sum_{0 \leqslant|\mathcal{I}|<s}(-1)^{|\mathcal{I}|} A(\mathcal{I}, s-1-|\mathcal{I}|)_{m, n} .
$$

Then

$$
\psi(w)=\sum_{l=1}^{s-1} \sum_{0 \leqslant|\mathcal{I}| \leqslant l}(-1)^{|\mathcal{I}|+s+l}(s-l) \psi\left(C(\mathcal{I}, l, l-|\mathcal{I}|)_{m, n}\right)+\sum_{0 \leqslant|\mathcal{I}|<s}(-1)^{|\mathcal{I}|} \psi\left(A(\mathcal{I}, s-1-|\mathcal{I}|)_{m, n}\right)
$$

and by Lemma 3.2

$$
\begin{aligned}
\psi(w) \equiv & \sum_{l=1}^{s-1} \sum_{0 \leqslant|\mathcal{I}| \leqslant l}(-1)^{s+l+|\mathcal{I}|}(s-l)\left(T^{k} C(\mathcal{I}, l, l-|\mathcal{I}|-1)+T^{(l+1)(p-k)} B(\mathcal{I}, l-|\mathcal{I}|)\right. \\
& \left.+T^{l(p-k)} B(\mathcal{I}, l-|\mathcal{I}|-1)+\sum_{i \in \operatorname{Supp}(\mathcal{I})}\left(T^{k_{i}} C(\mathcal{I} \backslash i, l, l-|\mathcal{I}|-1)+T^{k_{i-1}} C(\mathcal{I} \backslash i, l, l-|\mathcal{I}|)\right)\right) \\
& +\sum_{0 \leqslant|\mathcal{I}|<s}(-1)^{|\mathcal{I}|}\left(T^{k} A(\mathcal{I}, s-|\mathcal{I}|-2)+T^{s(p-k)} B(\mathcal{I}, s-1-|\mathcal{I}|)\right. \\
& +\sum_{i \in \operatorname{Supp}(\mathcal{I})}\left(T^{k_{i}} A(\mathcal{I} \backslash i, s-|\mathcal{I}|-2)+T^{k_{i-1}} A(\mathcal{I} \backslash i, s-|\mathcal{I}|-1)\right. \\
& \left.\left.+T^{(s-i)(p-k)} B(\mathcal{I} \backslash i, s-|\mathcal{I}|-1)\right)\right) .
\end{aligned}
$$

Lemma 3.3. The element $\psi(w)$ is described by

$$
\psi(w) \equiv(-1)^{s+1} s T^{p-k} B(\emptyset, 0) .
$$

Proof. If $s=1$, then $\psi(w) \equiv T^{p-k} B(\emptyset, 0)$ and the formula is valid. Therefore we will assume $s>1$.
We begin by analyzing coefficients at expressions of the type $T^{k_{i}} A(J, s-2-|J|-i)$ for various sets J and $i=0, \ldots, s-2$.

If $i=0$, then $|J| \leqslant s-2$, and this term appears once with coefficient $(-1)^{|J|}$ as a special term in the second sum which corresponds to the choice $\mathcal{I}=J$, and a second time with coefficient $(-1)^{|J|+1}$ corresponding to the choice $\mathcal{I}=J \cup 1$ (for which $|\mathcal{I}|=s-1$) and both terms cancel out.

If $0<i \leqslant s-2-|J|$, then this term appears twice. The first time it appears with coefficient $(-1)^{|J|+i}$ corresponding to $\mathcal{I}=J \cup i$ (for which $|\mathcal{I}| \leqslant s-2$), and the second time with coefficient $(-1)^{|J|+i+1}$ corresponding to $\mathcal{I}=J \cup i+1$ (for which $|\mathcal{I}| \leqslant s-1$) and both terms cancel out.

Therefore all terms of type $T^{k_{i}} A(J, s-2-|J|-i)$ will cancel out.
Similar argument can be applied to expressions of the type $T^{k_{i}} C(J, l, l-1-|J|-i)$ for any fixed l. In this case there will be two terms, first with coefficient $(-1)^{s+l+|J|+i}$, and second with coefficient $(-1)^{s+l+|J|+i+1}$ and they will cancel out as well.

Finally, we analyze terms of type $T^{s(p-k)} B(\mathcal{I}, s-|J|-1)$. We have $l-1-|J|<s-1-|J|$ and assume that $0<l-1-|J|$. In this first case there are three terms, two of them with coefficients $(s-l)(-1)^{|J|+s+l}$ and $(s-(l-1))(-1)^{|J|+s+(l-1)}$ corresponding to $\mathcal{I}=J$ and the third term with coefficient $(-1)^{|J|+s-l}$ corresponding to the choice $\mathcal{I}=J \cup s-l$ (for which $|\mathcal{I}|<s-1$). Note that in this case $l>1$ and $l-1 \geqslant 1$ is within our range of summation. All these three terms will cancel out.

If $0=l-1-|J|$ and $|J|>0$, then the same argument remains valid since $l>1$.
The only remaining case is when $J=\emptyset$ and $l=1$. The corresponding term $T^{p-k} B(\emptyset, 0)$ appears twice. The first time with coefficient $(s-1)(-1)^{s-1}$ corresponding to $\mathcal{I}=J$, the second time with coefficient $(-1)^{s-1}$ corresponding to $\mathcal{I}=J \cup s-1$. The sum of these two terms equals $(-1)^{s+1} s T^{p-k} B(\emptyset, 0)$. Therefore

$$
\begin{aligned}
\psi(w) & =(-1)^{s+1} s T^{p-k} B(\emptyset, 0) \\
& =(-1)^{s+1} s T^{p-k} \operatorname{Sym}_{x, m-1}\left(k^{m-1}\right) \operatorname{Sym}_{y, n-1}\left((p-k)^{n-1}\right) .
\end{aligned}
$$

We can now easily prove Proposition 3.1.
Proof of Proposition 3.1. Since $s<p$, we can take

$$
v_{k}=\frac{(-1)^{s}}{s} w+\operatorname{Sym}_{x, m}\left(k^{m-1}\right) \operatorname{Sym}_{y, n}\left((p-k)^{n}\right)
$$

Then

$$
\begin{aligned}
\psi\left(v_{k}\right)= & -T^{p-k} \operatorname{Sym}_{x, m-1}\left(k^{m-1}\right) \operatorname{Sym}_{y, n-1}\left((p-k)^{n-1}\right)+\left(\left(1-\delta_{m, 1}\right) T^{k} \operatorname{Sym}_{x, m-1}\left(k^{m-2}\right)\right. \\
& \left.+\operatorname{Sym}_{x, m-1}\left(k^{m-1}\right)\right) T^{p-k} \operatorname{Sym}_{y, n-1}\left((p-k)^{n-1}\right) \equiv 0
\end{aligned}
$$

meaning that $v_{k} \in A_{s}(m \mid n)$.
Observe that $\left.w\right|_{x_{m}=0}=0$ because all numbers $k, l(p-k)$ and each k_{i} are positive. Therefore $\left.v_{k}\right|_{x_{m}=0}=\operatorname{Sym}_{x, m-1}\left(k^{m-1}\right) \operatorname{Sym}_{y, n}\left((p-k)^{n}\right)=u_{k}(m-1 \mid n)$. It remains to observe that v_{k} is homogeneous of degree $(m-1) k+(p-k) n$.

4. Concluding remarks

Let us comment that if the characteristic of K is positive, then the condition that $\left.f\right|_{x_{m}=y_{n}=T}$ does not depend on T is stronger than the condition that $\left.\frac{d}{d T} f\right|_{x_{m}=y_{n}=T}=0$.

Proposition 3.1 of [3] states that, in the case of characteristic zero, the algebra A_{s} is infinitely generated. In the case of positive characteristic we have the following.

Proposition 4.1. The algebra A_{s} is finitely generated.

Proof. The algebra A_{s} is contained in $B=K\left[\sigma_{i}(x \mid m), \sigma_{j}(y \mid n) \mid 1 \leqslant i \leqslant m, \quad 1 \leqslant j \leqslant n\right]$. The algebra B is finitely generated over its subalgebra $B^{\prime}=K\left[\sigma_{i}(x \mid m)^{p}, \sigma_{j}(y \mid n)^{p} \mid 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n\right]$, hence B a Noetherian B^{\prime}-module. However, A_{s} contains B^{\prime} and is therefore a finitely generated B^{\prime}-module. Since B^{\prime} is finitely generated, so is A_{s}.

Acknowledgment

Authors would like to thank the referee for careful reading and helpful suggestions that improved the presentation of this article.

References

[1] F.A. Berezin, Introduction to Superanalysis, D. Reidel Publishing Co., Dordrecht, 1987, expanded translation from the Russian: V.P. Palamodov (Ed.), Introduction to Algebra and Analysis with Anticommuting Variables, Moscow State University, Moscow, 1983.
[2] J. Brundan, J. Kujawa, A new proof of the Mullineux conjecture, J. Algebraic Combin. 18 (2003) 13-39.
[3] I. Kantor, I. Trishin, The algebra of polynomial invariants of the adjoint representation of the Lie superalgebra $g l(m \mid n)$, Comm. Algebra 25 (7) (1997) 2039-2070.
[4] B. Kostant, Lie groups representations on polynomial rings, Amer. J. Math. 85 (1963) 327-404.
[5] R. La Scala, A.N. Zubkov, Costandard modules over Schur superalgebras in characteristic p, J. Algebra Appl. 7 (2) (2008) 147-166.
[6] R. La Scala, A.N. Zubkov, Donkin-Koppinen filtration for general linear supergroup, Algebr. Represent. Theory, in press, see also arXiv:0812.3179v3 [math.RT].
[7] N.J. Muir, Polynomial representations of the general linear Lie superalgebras, PhD thesis, University of London, 1991.
[8] T.A. Springer, Invariant Theory, Lecture Notes in Math., vol. 585, Springer-Verlag, Berlin, New York, 1977.
[9] J.R. Stembridge, A characterization of supersymmetric polynomials, J. Algebra 95 (2) (1985) 439-444.

[^0]: * Corresponding author.

 E-mail addresses: shuragri@gmail.com (A.N. Grishkov), fxm13@psu.edu (F. Marko), a.zubkov@yahoo.com (A.N. Zubkov).

