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ABSTRACT. – We consider the strong maximum principle and the compact support principle for
quasilinear elliptic differential inequalities, under generally weak assumptions on the quasilinear operators
and the nonlinearities involved. This allows us to give necessary and sufficient conditions for the validity of
both principles. 2000 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

We are interested in the strong maximum principle and the compact support principle for
quasilinear elliptic differential inequalities, under generally weak assumptions on the quasilinear
operators in question. We consider in particular the canonical divergence structure differential
inequalities:

div
{
A
(|Du|)Du}− f (u)6 0, u> 0,(1.1)

and

div
{
A
(|Du|)Du}− f (u)> 0, u> 0,(1.2)

in a domainD, possibly unbounded, ofRn, n > 2. Here we assume throughout the paper the
following conditions on the operatorA=A(t) and the nonlinearityf = f (u),

(A1) A ∈C(0,∞),
(A2) t 7→ tA(t) is strictly increasing in(0,∞) andtA(t)→ 0 ast→ 0,
(F1) f ∈C[0,∞),
(F2) f (0)= 0 andf is non-decreasing on some interval[0, δ), δ > 0.

Condition (A2) is a minimal requirement for ellipticity of (1.1)–(1.2). Furthermore, it allows
singular and degenerate behavior of the operatorA at t = 0, that is at critical points ofu. We
emphasize that no assumptions of differentiability are made on eitherA or f when dealing with
the canonical models (1.1) and (1.2).

By asolutionof (1.1) or (1.2) inD we mean a non-negative functionu ∈ C1(D) which satisfies
(1.1) or (1.2) in the distribution sense.
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With the notationΩ(t)= tA(t) whent > 0, andΩ(0)= 0, we introduce the function

H(t)= tΩ(t)−
t∫

0

Ω(s)ds, t > 0.(1.3)

Letting Ω−1(ω) be the inverse of the strictly increasing functionΩ(t), then from Stieltjes
integration it is easy to see that

H(t)=
Ω(t)∫
0

Ω−1(ω)dω, t > 0.(1.4)

ThereforeH is strictly increasing on[0,∞).
For the Laplace operator, that is when (1.1) takes the classical form

1u− f (u)6 0, u> 0,

we haveA(t) ≡ 1 andH(t) = 1
2t

2. Similarly, for the degeneratem-Laplace operator,m > 1,
we haveA(t) = tm−2 and H(t) = (m − 1)tm/m, while for the mean curvature operator,
A(t)= 1/

√
1+ t2 andH(t)= 1− 1/

√
1+ t2.

It is also worth observing that (1.1), when equality holds, is precisely the Euler–Lagrange
equation for the variational integral

I [u] =
∫
D

{
G
(|Du|)+ F(u)}dx, F (u)=

u∫
0

f (s)ds,

whereG andA are related byA(t)=G′(t)/t , t > 0. In this caseH(t)= tG′(t)−G(t), the pre-
Legendre transform ofG. Further comments and other examples of operators satisfying (A1),
(A2) are given in [6].

By the strong maximum principle for (1.1) we mean the statement thatif u is a solution of
(1.1)with u(x0)= 0 for somex0 ∈D, thenu≡ 0 in D.

We can now state our main results.

THEOREM 1. – In order for the strong maximum principle to hold for(1.1)it is necessary and
sufficient either thatf (s)≡ 0 for s ∈ [0,µ), µ> 0, or thatf (s) > 0 for s ∈ (0, δ) and

δ∫
0

ds

H−1(F (s))
=∞.(1.5)

The background and literature for Theorem 1 is fairly complicated and deserves a number of
comments:

Necessity.For the case of the Laplace operator the necessity of (1.5) is due to Benilan, Brezis
and Crandall [1], while for them-Laplacian it is due to Diaz and Herrero, see [2]. In these cases
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we observe that (1.5) reduces respectively to

δ∫
0

ds√
F(s)

=∞ and

δ∫
0

ds

[F(s)]1/m =∞.

For general operators satisfying (A1), (A2), necessity is due to Diaz [2, Theorem 1.4], see also [6,
Corollary 1].

Sufficiency.For the case of the Laplace operator and also for them-Laplacian, the result is due
to Vazquez [8], see also [2]. For general operators satisfying (A1), (A2), sufficiency was proved
in [6, Theorem 1] under an additional technical assumption, see (2.5) in [6], hereafter referred to
as condition I.

Diaz, Saa and Thiel stated a slightly weaker version of Theorem 1, see [3, Theorem 6], but for
completeness, their proof requires a further not trivial argument at the final step, together with
the additional condition I. It turns out that a rigorous treatment of the full sufficiency result of
Theorem 1, avoiding use of the technical assumption I, is fairly tricky, involving a new method
for the solution of differential inequalities whose structure includes driving and amplifying terms
which reinforce each other. At the same time, the new proof uses only standard calculus, requiring
neither fixed point theory (as [6]) nor monotone operator theory (as [8,2,3]). In this sense, it
is closer to the original method of E. Hopf than other more recent proofs. We hope that this
technique could have further applications as well.

In the next result we consider the situation when the integral in (1.5) is convergent. Here the
appropriate hypotheses are thatu satisfies the converse inequality (1.2) and also “vanishes” at
∞, rather than at some finite pointx0 ∈D.

More precisely, by the compact support principle for (1.2) we mean the statement thatif u is
a solution of(1.2) in an exterior domainD, with u(x)→ 0 as |x| →∞, thenu has compact
support inD.

THEOREM 2. – In order for the compact support principle to hold for(1.2)it is necessary and
sufficient thatf (s) > 0 for s ∈ (0, δ) and

δ∫
0

ds

H−1(F (s))
<∞.(1.6)

As in the case of the strong maximum principle it is worth commenting on the background
and literature for Theorem 2.

Necessity.This was first shown in [6, Corollary 1] under the additional condition I. It should
be noted that the proof is not at all easy.

Sufficiency.This is due to [6, Theorem 2], but see also [7] and the remarks following the
statement of Theorem 2 in [6]. For radially symmetric solutions of (1.2) sufficiency was proved
in [4] under the weaker assumption thatF(s) > 0 for s ∈ (0, δ), see [4, Proposition 1.3.1].

If Theorem 2 were an exact analogue of Theorem 1, the conclusion of the compact support
principle would be thatu ≡ 0 in D, but this would be incorrect since (1.2) admits non-trivial
compact support solutions under assumption (1.6), see [6, Theorem 3].

The results described above can be extended to a wider class of differential inequalities by
replacing div{A(|Du|)Du} by the more general operatorDi{aij (x)A(|Du|)Dju} andf (u) by
B(x,u,Du), whereaij (x) is a positive definite symmetric matrix onD and whereB satisfies a
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condition of the form

B(x,u,p)6Const.|p|A(|p|)+ f (u),(1.7)

for x ∈D, u> 0 and allp ∈ Rn with |p| sufficiently small (reverse the inequality sign for the
compact support principle). These extensions are the second purpose of the paper.

In the next section we prove our main results for the canonical models (1.1) and (1.2), while
in Section 3 we consider the case of fully quasilinear inequalities

Di
{
aij (x)A

(|Du|)Dju}−B(x,u,Du)6 0 (> 0)(1.8)

(where the obvious summation convention is used).
Finally, in Section 4 we treat several special cases where the main proof reduces to a simpler

form. As a byproduct of this discussion we obtain a polynomial comparison function for linear
inequalities alternative to the classical exponential function of E. Hopf.

2. Proofs of Theorems 1 and 2

We require several preliminary lemmas.

LEMMA 1. – (i) For any constantσ ∈ [0,1] there holds

F(σu)6 σF(u), u ∈ [0, δ).
(ii) Letw = w(r) be of classC1(r0, r1) with w′(r) > 0. ThenΩ ◦w′ is of classC1(r0, r1) if

and only ifH ◦w′ is of classC1(r0, r1), and in this case{
H
(
w′(r)

)}′ =w′(r){Ω(w′(r))}′ in (r0, r1).

To obtain (i), observe thatσf (σu)6 σf (u) for u ∈ [0, δ), sincef is non-decreasing. Integrating
this relation from 0 tou yields the result.

On the other hand, (ii) is an immediate consequence of (1.4).

LEMMA 2. –Supposef (s) > 0 for 0< s < δ and

δ∫
0

ds

H−1(F (s))
=∞.(2.1)

Then for any positive numbersk, `, R, and forε ∈ (0, δ), the ordinary differential inequality

[
Ω
(|v′|)]′ + k

r
Ω
(|v′|)+ f̀ (v)6 0(2.2)

has aC1 solutionv = v(r) in the interval[R/2,R], with

v(R)= 0, v′(R)=−α < 0(2.3)

and

0< v < ε in [R/2,R),(2.4)

providedα is sufficiently small.
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In stating condition (2.1) we assume, without loss of generality, that the valueδ is so small
thatF(δ) ∈H [0,∞). This is automatic for the Laplace andm-Laplace operators, since for these
casesH [0,∞) = [0,∞), but for the mean curvature operator there holdsH [0,∞) = [0,1),
which gives the restrictionF(δ) < 1. The same remarks of course apply to conditions (1.5)
and (1.6).

Proof of Lemma 2. –It is enough to treat the case`= 1, since by Lemma 1(i) the integral

δ∫
0

ds

H−1(`F (s))

diverges if and only if (2.1) is satisfied.
The strategy for obtaining the required solution will be, first, to construct for eachα > 0 a

candidatev(r) for the solution of (2.2), having one of the following three properties:
(i) v(r) is defined on[R/2,R] and satisfies (2.3), (2.4),
(ii) v(r) is defined on some interval[R,R], R ∈ [R/2,R), satisfies (2.3),

0< v < ε in (R,R)(2.5)

and alsov(R)= ε, or
(iii) v(r) is defined on some interval(R,R], R ∈ [R/2,R), satisfies (2.3), (2.5) and also

lim
r→R

v′(r)=−∞.

Step 1. Construction ofv(r). We use a recursive continuation procedure, backwards from
the pointr =R. The starting point will be the construction of an “initial” functionv = v1, defined
to be theC1 solution of [

Ω
(|v′|)]′ + 2k

r
Ω
(|v′|)= 0,(2.6)

(2.7)1 v(R)= 0, v′(R)=−α
on themaximal intervalI1= (R1,R], R1 ∈ [R/2,R), for which both the inequalities

06 v < ε(2.8)

and
k

r
Ω
(|v′|)> f (v)(2.9)

are satisfied.
To show that such a functionv = v1 and maximal intervalI1 exist, we observe by direct

integration that (2.6), (2.7)1 imply

Ω
(|v′|)= Cr−2k, v′ < 0,(2.10)

whereC = C1=R2kΩ(α). Hence

v′(r)=−Ω−1(Cr−2k),(2.11)
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from whichv(r) is immediately obtained by quadrature (and the fact thatv(R)= 0). Also, either
by (2.6) or (2.11), one sees thatv is convex, whencev > 0, v′ < 0 onI1. The existence ofI1 is
now obvious, and moreover bothv(R1) > 0 andv′(R1) < 0 exist (finite).

If R1= R/2 or v(R1)= ε we stop, having obtained a solution of either type (i) or (ii), in the
latter case withR =R1.

The remaining possibility is thatR1>R/2, that (2.8) holds on the full interval[R1,R], while
(2.9) fails atr =R1, namely

k

R1
Ω
(∣∣v′(R1)

∣∣)= f (v(R1)
)
.

In this case, the continuation switches to a new maximal intervalJ2 = (R2,R1], on which the
functionv = v2 is defined as the solution of the problem[

Ω
(|v′|)]′ + 3f (v)= 0,(2.12)

(2.13)2 v(R1)= v1(R1), v′(R1)=−α1= v′1(R1) < 0,

subject to the conditions (2.8) and

k

r
Ω
(|v′|)< 2f (v).(2.14)

Here it is important to note that both (2.8) and (2.14) are satisfied at the “initial” pointR1 of J2.
Again it must be shown that the solutionv = v2 and the maximal intervalJ2 exist. However,

as in the case of (2.6), (2.7)1, the problem (2.12), (2.13)2 allows direct integration. Indeed, with
the help of Lemma 1, (2.12) implies[

H
(|v′|)]′ = 3f (v)v′ = 3

[
F(v)

]′
and in turn

H
(|v′|)= 3F(v)+ const.

One then finds
v(r)∫

ds

H−1(3F(s)+ const.)
= r + const.,

implicitly defining the solutionv = v2(r). By (2.12) and the monotonicity ofΩ it is easy to see
thatv is convex as long as (2.8) holds, and even more, by using the “initial” conditions (2.13)2,
that v > 0 andv′ < 0. Thus again the existence of the maximal intervalJ2 follows at once.
Moreover it is clear that the end valuesv(R2) > 0 andv′(R2) < 0 exist.

If R2=R/2 orv(R2)= ε we stop, again having attained (i) or (ii).
Otherwise, (2.14) fails at the left endpointr =R2>R/2 of J2, and the continuation switches

to a new maximal intervalI3= (R3,R2] on which the functionv = v3 is defined as the solution
of the problem (2.6), (2.8), (2.9), with “initial” data:

(2.7)3 v(R2)= v2(R2), v′(R2)=−α2= v′2(R2) < 0

given at the right endpointR2 of I3. Note again that (2.8) and (2.9) are satisfied atR2.
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Thus, as before, the existence of the solutionv = v3 and the maximal intervalI3 are easily
established, along with the convexity ofv and the existence of the endvaluesv(R3) > 0 and
v′(R3) < 0.

We continue this recursive switching procedure to successive maximal intervalsJ4, I5, J6, . . .

such that the respective conditions (2.12), (2.13)i, (2.8) and (2.14) hold onJi , i even, and (2.6),
(2.7)i, (2.8) and (2.9) hold onIi , i odd.

The functionsvi, i > 1, are convex on the respective intervalsI1, J2, I3, J4, . . . . Since
the continued functionv is of classC1 in view of the matching conditions (2.7)i, (2.13)i at the
endpointsRi , it follows thatv is convex on the entire continuation, and so alsov > 0, v′ < 0
along the continuation.

The continuation stops ifRi =R/2 orv(Ri)= ε for somei > 1, in which case either (i) or (ii)
is satisfied. Otherwise it continues indefinitely. In the latter case, the endpointsRi clearly have
an accumulation point

R0= lim
i→∞Ri >R/2.

At the same time,v is convex on(R0,R], so that

v(Ri)→ v(R0), v′(Ri)→ v′(R0)

with v(R0)6 ε andv′(R0) < 0 or possiblyv′(R0)=−∞. We assert that in factv′(R0)=−∞.
Assuming this so, it follows thatv is of one of the types (i), (ii) or (iii).

Thus supposev′(R0) is finite. Using (2.9) and (2.14) then gives (in the limit asi tends to∞)

Ω
(∣∣v′(R0)

∣∣)= k

R0
f
(
v(R0)

)= 2k

R0
f
(
v(R0)

)
.

It follows thatf (v(R0))= 0. But then by monotonicity off we getf (u)= 0 for 06 u6 v(R0).
This is a contradiction since it implies thatI1 is the only interval in the continuation (see (2.9)).

This completes the construction of the functionv(r). Note however that it has not yet been
shown that inequality (2.2) is satisfied. We shall do this in the final Step 3.

Step 2. We show next that ifα is sufficiently small, then cases (ii), (iii) cannot occur.
To this end, observe that (2.12) holds on any intervalJi , i > 2 even, while on any interval
Ii = (Ri, Ri−1], i > 3 odd,

−[Ω(|v′|)]′ = 2k

r
Ω
(|v′|)= 2k

r
·Cr−2k (by (2.10)),

where

C = Ci =R2k
i−1Ω

(∣∣v′(Ri−1)
∣∣)=R2k

i−1 ·
2Ri−1

k
f
(
v(Ri−1)

)
since (2.14) fails at the left endpointRi−1 of Ji−1. Consequently,

−[Ω(|v′|)]′ = 4

(
Ri−1

r

)2k+1

f
(
v(Ri−1)

)
6 22k+3f

(
v(Ri−1)

)
6 22k+3f (v)

sincef is non-decreasing on[0, ε] andv(r) > v(Ri−1) on Ii . Hence at any pointr ∈ (R,R1],
whether in an interval of typeI or of typeJ, i > 2, we have

−[Ω(|v′|)]′ 6 (µ− 1)f (v), µ= 22k+3+ 1> 9,
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that is, using Lemma 1,[
H
(|v′|)]′ > (µ− 1)

[
F(v)

]′
, R < r 6R1.(2.15)

Integrating (2.15) on[r,R1], we get

H
(∣∣v′(r)∣∣)6 (µ− 1)F

(
v(r)

)+H(α1),

or, invertingH , ∣∣v′(r)∣∣6H−1((µ− 1)F
(
v(r)

)+H(α1)
)
, R < r 6R1.(2.16)

It follows that|v′| is bounded on the continuation (recallv 6 ε), so that case (iii) cannot occur.
Consider next case (ii), that is (2.5) holds andv(R)= ε. Let α0> 0 be such that

α1< 2ε/R(2.17)

wheneverα 6 α0. This can be done since (recalling thatα1 is defined in condition (2.13)2)

α1 =
∣∣v′1(R1)

∣∣=Ω−1(C1R
−2k
1

)
by (2.11)

= Ω−1((R/R1)
2kΩ(α)

)
6Ω−1(22kΩ(α)

)
6 22kα,

(2.18)

by Lemma 1 withF replaced byΩ and withσ = 2−2k. Then forα 6 α0 we have by the convexity
of v and by (2.17)

v(R1)=
R∫

R1

|v′|ds 6
R∫

R1

α1 ds 6 α1R/2< ε = v(R).(2.19)

In turn, necessarilyR <R1.
We now divide into two cases, first, whenf (u) ≡ 0 for 0< u < τ , for someτ ∈ (0, δ], and

second, whenf (u) > 0 for 0< u < δ. In the first instance, assuming without loss of generality
that δ = τ , it is clear that (2.9) necessarily holds on the entire continuation, so thatR1 = R, a
contradiction.

Thus we assume from here on (the main case) thatf (u) > 0 for 0< u < δ. ConsequentlyF(u)
is strictly increasing on 06 u < δ and so has a strictly increasing inverseF−1 on the interval
[0,F (δ)). This being the case, we may add a further condition onα0, namely that

H(α1) < F(ε) whenα1< α0.(2.20)

For simplicity in what follows, putv1 = v(R1), F1 = F(v1), H1= H(α1). We now define (the
purpose will appear later)

γ =
 v1 if F1>H1,

F−1(H1) if F1<H1,
(2.21)

(in the second line, recall thatH1<F(ε) < F(δ) so thatF−1(H1) is well defined).
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We claim that

v16 γ < ε.(2.22)

Whenγ = v1 this is obvious sincev1< ε by (2.19). On the other hand, in caseγ = F−1(H1) we
haveF(γ )=H1>F1 sov1< γ , while alsoF(γ )=H1<F(ε) by (2.20), thus yieldingγ < ε.
Note also thatF(γ )>H1 in both cases of (2.21).

Now let ρ be defined byγ = v(ρ), this being possible because of (2.22) and the facts that
v(R)= ε andv′ < 0. ClearlyR < ρ 6R1.

Then forR < r 6 ρ we have

F
(
v(r)

)
> F

(
v(ρ)

)= F(γ )>H1.(2.23)

It follows from (2.16) and (2.23) that

|v′|<H−1(µF(v)), R < r 6 ρ.

In turn, sinceµ> 1, we see by the first part of Lemma 1, withσ = 1/µ, that

|v′|<H−1(F(µv)), R < r 6 ρ.(2.24)

(Here, one can assume without loss of generality thatε < δ/µ.) Integrating fromR to ρ then
yields

ε∫
γ

dv

H−1(F (µv))
6 R

2

after changing to the natural variablev of integration. A further change of variabless = µv gives
finally

µε∫
µγ

ds

H−1(F (s))
6 µR

2
.(2.25)

We assert thatγ → 0 asα→ 0. Indeed ifγ = v1 then by (2.19) we haveγ 6 α1R/2. But
from (2.18) one obtainsα1→ 0 asα→ 0, giving the required result. Next, ifγ = F−1(H1) the
assertion is obvious, sinceH1=H(α1)→ 0 asα→ 0.

This being shown, the principal divergence condition (2.1) applied to (2.25) yields an
immediate contradiction asα, and soγ , tends to 0. Thus case (ii) also cannot happen, and the
constructed functionv is therefore of type (i).

Step 3.It remains to show thatv satisfies the inequality (2.2) in[R/2,R]. First, on any interval
of typeI we have from (2.6)

[
Ω
(|v′|)]′ + k

r
Ω
(|v′|)+ f (v)=−k

r
Ω
(|v′|)+ f (v) < 0,

where at the last step we have used (2.9). On the other hand, on any interval of typeJ we see
from (2.12) that [

Ω
(|v′|)]′ + k

r
Ω
(|v′|)+ f (v)= k

r
Ω
(|v′|)− 2f (v) < 0

by (2.14). This completes the proof of the lemma.2
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LEMMA 3 (Weak comparison principle). –Let u and v be respective solutions of(1.1)
and(1.2) in a bounded domainD. Suppose also thatu andv are continuous inD, with v < δ in
D andu> v on ∂D. Thenu> v in D.

For proof, see [6, Lemma 3].
Now we are ready to prove Theorem 1. We first show that the functionv(x)= v(r), r = |x|,

wherev is given by Lemma 2, satisfies the differential inequality (1.2) in

ER =
{
x ∈Rn: R/26 |x|6R}.

This is a consequence of the calculation:

div
{
A
(|Dv|)Dv}− f (v) = div

{
A
(|v′|)v′x/r}− f (v)

= −{Ω(|v′|)}′ − (n− 1)

r
Ω
(|v′|)− f (v)> 0,

(2.26)

where we recall thatv′ < 0 and use Lemma 2 withk = n− 1, `= 1.
This being shown, the proof of sufficiency is now exactly the same as in the standard

demonstration of the strong maximum principle (see [5, proof of Theorem 3.5 on page 35]),
since the comparison functionv satisfies the conditions, see [5, proof of Lemma 3.4 on page 34]:

(i) v > 0 inER,
(ii) v = 0 when|x| =R,
(iii) ∂v/∂ν = v′ < 0 when|x| =R, whereν is the outer normal to∂ER,
(iv) v < ε when|x| =R/2,

whereε, R > 0 can be taken arbitrarily small and the origin of coordinates can be chosen
arbitrarily in D. Note that the use of the weak maximum principle (Corollary 3.2 of [5]) is
here replaced by application of Lemma 3. This completes the proof of the sufficiency part of
Theorem 1.

As remarked in the introduction, the necessity is due to Diaz. Hence Theorem 1 is proved.

Remark. – The necessity of condition (1.5) can be obtained under weaker hypothesis than (F2).
In fact, it is enough to replace (F2) by

(F2)′ f (0)= 0 and F(s) > 0 for s ∈ (0, δ).

This is because the principal construction required for Diaz’ proof uses only condition (F2)′;
see also [6, construction of the functionw =w(r), r = x1, in the proof of Theorem 2].

Proof of Theorem 2. –Sufficiency was shown in [6, Theorem 2].
To prove necessity, suppose (1.6) fails. We letu be a non-trivial solution of (2.1) in the domain

DR = {x ∈ Rn: |x|> R} such thatu(x)→ 0 as|x| →∞. (The existence of such a solutionu,
indeed with equality in (2.1), is guaranteed by Theorem 3 of [6].) By Theorem 1, since (1.5) must
hold it is clear thatu > 0 inDR , but this violates the compact support principle. Hence (1.6) is
necessary, completing the proof of Theorem 2.2

Remark. – The simplicity of this proof is deceptive. Theorem 3 of [6] in particular is quite
difficult to prove: one would wish a simpler demonstration in which the required solution of
(2.1) inDR is obtained by some more elementary means.
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3. Fully quasilinear case

Let D be a domain inRn. Let {aij (x)}, i, j = 1, . . . , n, be a continuously differentiable,
symmetric coefficient matrix onD, which is uniformly elliptic in the sense that

aij (x)ξiξj > λ|ξ |2, x ∈D, ξ ∈Rn,

for some positive numberλ. Moreover, letB(x,u,p) be a continuous function onD×R+0 ×Rn.
Consider the differential inequality

Di
{
aij (x)A

(|Du|)Dju}−B(x,u,Du)6 0, u> 0, x ∈D.(3.1)

We shall suppose that the operatorA = A(t) satisfies the following strengthened versions of
(A1), (A2), namely:

(A1)′ A ∈ C1(0,∞),
(A2)′ Ω ′(t) > 0 for t > 0, andΩ(t)→ 0 ast→ 0;

we also continue to assume that the nonlinearityf obeys (F1) and (F2).

THEOREM 3 (Strong maximum principle). –Assume that there exists a constantκ > 0 such
that

B(x,u,p)6 κΩ
(|p|)+ f (u)(3.2)

for x ∈ D, u > 0, and all p ∈ Rn with |p| < 1. Suppose finally that eitherf (s) ≡ 0 for
s ∈ [0, τ ), τ > 0, or else(1.5)holds.

If u is aC1 solution of(3.1)with u(x0)= 0 for somex0 ∈D, thenu≡ 0 in D.

This result was obtained in [6, Theorem 1′] under the additional technical assumption [6,
(2.5)]. For comments on earlier work, see [6, Section 4].

To obtain Theorem 3 we require a slightly strengthened version of Lemma 2.

LEMMA 4. –Lemma2 holds with(2.4)replaced by

0< v < ε, −1< v′ < 0 in [R/2,R).(3.3)

Proof. –Without loss of generality we can assume thatε > 0 is so small that

F(ε) < 2−2kH(1).(3.4)

We assert that (3.3) then holds, provided thatα is made even smaller if necessary, so that
α < 2−2k.

There are two cases: first, whenf (u)≡ 0 for 0< u< τ , for someτ ∈ (0, δ], and second, when
f (u) > 0 for 0< u< δ. In the first instance, assuming without loss of generality thatδ = τ , it is
clear that (2.9) necessarily holds on the entire continuation, so thatR1=R/2. Then, as in (2.18),
we get ∣∣v′(R/2)∣∣6 22kα < 1.

Hence (3.3)2 follows sincev′ < 0 andv is convex.
In the second case, we find as in (2.24)∣∣v′(R/2)∣∣6H−1(F(µε))< 1
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by (3.4). This completes the proof of the lemma.2
Proof of Theorem 3. –LetO be an arbitrary origin inD. PutER = {x ∈Rn: R/26 |x|6R}

and define

Λ= max eigenvalue of
{
aij (x)

}
in ER, a =max

∣∣Di aij (x)∣∣ in ER.

It is easy to see that

Di

(
aij (x)

xj

r

)
= (Di aij (x))xj

r
+ a

ij

r

(
δij − xixj

r2

)
,

so

max
ER

∣∣∣∣Di(aij (x)xjr
)∣∣∣∣6 a + n− 1

r
Λ.

Let v = v(r), r = |x|, be the function given by Lemmas 2, 4. Then we have−1< v′ < 0 inER ,
and in turn

Di
{
aij (x)A

(|Dv|)Djv}− κΩ(|Dv|)− f (v)
=−Di

{
aij (x)

xj

r

}
Ω
(|v′|)− aij (x)xixj

r2

{
Ω
(|v′|)}′ − κΩ(|v′|)− f (v)

>−aij (x)xixj
r2

{
Ω
(|v′|)}′ −(a + n− 1

r
Λ+ κ

)
Ω
(|v′|)− f (v)

>−aij (x)xixj
r2

{[
Ω
(|v′|)]′ + k

r
Ω
(|v′|)+ f (v)

λ

}
,

wherek = [(n− 1)Λ+ (a+ κ)R]/λ. Now from Lemma 4 with̀ = 1/λ, together with the main
assumption (1.5), we obtain

[
Ω
(|v′|)]′ + k

r
Ω
(|v′|)+ f (v)

λ
6 0,(3.5)

so in turn

Di
{
aij (x)A

(|Dv|)Djv}− κΩ(|Dv|)− f (v)> 0, v > 0,(3.6)

in ER.
We next require a comparison lemma corresponding to Lemma 3, but applying to the more

general inequality (3.1).

LEMMA 5 (Comparison principle). –Let u andv be respectively solutions of(3.1)and (3.6)
in a bounded domainD. Suppose that|Du| + |Dv|> 0 in D; that u andv are continuous inD;
and that

v < δ in D, u> v on∂D.

Thenu> v in D.

The main point of Lemma 5 is that if|Du| + |Dv|> 0 inD, then just as for Lemma 3it is not
necessary to have ellipticity at the valuep = 0. For proof of Lemma 5, see [6, Section 5].

The rest of the proof of Theorem 3 is now the same as the sufficiency part of Theorem 1, the
only change being that at the last step we rely on Lemma 5 instead of Lemma 3.2
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There is a corresponding compact support principle for the inequality

Di
{
aij (x)A

(|Du|)Dju}−B(x,u,Du)> 0, u> 0,

where for some constantκ > 0,

B(x,u,p)>−κΩ(|p|)+ f (u),
for x ∈ D, u > 0, and allp ∈ Rn with |p| < 1. For the statement and proof of this principle,
see [6, Theorem 2′].

4. Special cases

4.1.Consider the linear inequality

Di
{
aij (x)Dju

}+ bi(x)Diu+ c(x)u6 0, u> 0,(4.1)

for x ∈D. This is the special case of (3.1) withA(t)≡ 1, B(x,u,p)=−bi(x)pi − c(x)u. Here
we can apply the result Theorem 3, assuming

κ = sup
D

n∑
i=1

∣∣bi(x)∣∣<∞, c=− inf
D

{
c(x), 0

}
<∞,

and definingf (u) = cu. ThenΩ(t) = t , H−1(t) = √2t andF(u) = 1
2cu

2, so that (3.2) and
(1.5) hold as required. This gives the strong maximum principle for (4.1), essentially the classical
theorem of E. Hopf, and moreover leads us to expect that the main proof can be simplified for
the special linear case.

In fact, the construction of the functionv = v(r) in Step 1 of Lemma 2 suggests thatv can be
obtained directly by solving Eq. (2.6). This gives at once

v(r)= αR

θ − 1

[(
R

r

)θ−1

− 1

]
,(4.2)

whereθ = 2k; here we assumek > 1/2 so thatθ > 1. ThenΩ(|v′|)= |v′| = α(R/r)2k and so[
Ω
(|v′|)]′ + k

r
Ω
(|v′|)+ 1

λ
f (v)

=−2kα

R

(
R

r

)θ+1

+ kα
R

(
R

r

)θ+1

+ cαR

λ(θ − 1)

[(
R

r

)θ−1

− 1

]

6 α
r

(
R

r

)2k[
cr2

λ(θ − 1)
− k

]
6 0,

provided that

R26 k(2k − 1)

λc
,(4.3)

that is, (3.5)–(3.6) hold under the conditions (4.3) and

k = (n− 1)
Λ

λ
+ (a + κ)R

λ
.(4.4)
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Thus the polynomial comparison function (4.2) can be used for the linear inequality (4.1),
alternative to the standard exponential function, see [5, page 34],

v(r)= ε(e−αr2 − e−αR2)
.

4.2.A similar simplification can be used for the canonical inequality

1mu− f (u)6 0, u> 0,(4.5)

for them-Laplace operator,m> 1. For our present purpose, we assume also that

f (u)6 cum−1,(4.6)

the borderline case for (1.5).
The comparison functionv = v(r) again can be taken in the form (4.2), with now

θ = 2k

m− 1
, k >

m− 1

2
.

ThenΩ(|v′|)= |v′|m−1= αm−1(R/r)2k, so as above we get

[
Ω
(|v′|)]′ + k

r
Ω
(|v′|)+ 1

λ
f (v)6 α

m−1

r

(
R

r

)2k[
crm

λ(θ − 1)m−1 − k
]
6 0

provided that

R 6 (k/λc)1/m(θ − 1)1/m
′
.(4.7)

Thus to obtain (2.26) it is enough to have (4.7) andk =max{n− 1, m− 1}.
In summary, for the borderline case (4.6) of inequality (4.5), we get an elementary proof of

Vazquez’ strong maximum principle, avoiding the delicate arguments of Section 2 or of [8].

Remark. – It is easy to see that the simple comparison function (4.2) does not suffice for
general operators or for more complicated nonlinearities. This observation indicates the need
for the new construction ofv = v(r) used in the proof of Lemma 2.
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