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• CSP� is reduced in ME7-animals during disease progression.
• CSP� heterozygosity does not accelerate behavioural changes in ME7-animals.
• Prion disease pathology is not altered by reduced CSP� expression.
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a b s t r a c t

Infection of mice with the ME7 prion agent results in well-characterised neuropathological changes,
which includes vacuolation, neurodegeneration and synaptic degeneration. Presynaptic dysfunction and
degeneration is apparent through the progressive reduction in synaptic vesicle proteins and eventual loss
of synapses. Cysteine string protein alpha (CSP�), which regulates refolding pathways at the synapse,
exhibits an early decline during chronic neurodegeneration implicating it as a mediator of disease mech-
anisms. CSP� null mice develop a progressive neuronal dysfunction through disruption of the integrity
of presynaptic function. In this study, we investigated whether reduced expression of CSP� would exac-
erbate ME7 prion disease. Wild type (+/+) and heterozygous (+/−) mice, which express about a ∼50%
reduction in CSP�, were used as a distinct genetic background on which to impose prion disease. +/+
and +/ − mice were inoculated with brain homogenate from either a normal mouse brain (NBH) or from
the brain of a mouse which displayed clinical signs of prion disease (ME7). Behavioural tests, western
blotting and immunohistochemistry, which resolve key elements of synaptic dysfunction, were used to
assess the effect of reduced CSP� on disease. Behavioural tests revealed no change in the progression of
disease in ME7–CSP� +/− animals compared to ME7–CSP� +/+ animals. In addition, the accumulation of
misfolded PrPSc, the diseased associated gliosis or synaptic loss were not different. Thus, the misfolding
events that generate synaptic dysfunction and lead to synaptic loss are unlikely to be mediated by a
disease associated decrease in the refolding pathways associated with CSP�.

© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Prion diseases, are a group of rare and fatal neurodegenerative
diseases of human and animals [1] involving the conversion of the
cellular prion protein (PrPc) into a misfolded form (PrPSc), which
accumulates and deposits as amyloid plaques [2]. Characteristics
of these diseases include gliosis, spongiform changes, and synaptic
loss which proceeds neuronal death [3–6]. Prion diseases can occur
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sporadically, be genetically inherited or transmitted infectiously
[7]. This infectious capacity, unique amongst neurodegenerative
diseases, was successfully exploited in the development of mod-
els of chronic neurodegeneration [8,9]. Pathology in prion-infected
mice develops in a well-defined and predictable manner, over a
time course dependent on the prion strain used. This well-defined
temporal progression renders prion-based models ideal for inves-
tigating significant disease events and underlying mechanisms of
pathology [5,6,10,11].

One murine model, utilising the ME7 prion agent, involves
bilateral injection of ME7-infected brain homogenate into the dor-
sal hippocampus of C57BL/6J mice [5] and this paradigm leads
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to hippocampal pathology shared by several strains [12,13]. This
sequence of progression includes PrPSc deposits, hypertrophied
astrocytes and activated microglia, followed shortly after by synap-
tic loss in the stratum radiatum of the hippocampus [5,6]. However,
neuronal loss is not seen until late-stage disease [5]. The early
synaptic loss appears to selectively involve the presynaptic com-
partment, with reduced expression of a number of presynaptic
proteins [6]. One such synaptic protein which shows an early and
progressive reduction in the hippocampus of ME7-animals is CSP�
[6] and in view of its role in synaptic re-folding suggests potential
for a direct role in disease progression.

CSP� is a synaptic vesicle protein and functions as a molecular
chaperone in conjunction with Hsc70 and a small glutamine-rich
tetratricopeptide repeat (TRP)-containing protein (SGT) [14] which
controls the conformational folding of the SNARE protein, SNAP-25
[15]. CSP� null mice are normal at birth but develop a progressive
muscle weakness and sensorimotor deficit between 2 and 4 weeks
of age [16]. At about ∼P15 these mice stop gaining weight, become
lethargic and begin to die in the second postnatal month [16]. There
is however, no obvious difference between wildtype (+/+) and het-
erozygous (+/−) CSP� mice, which suggests that reduced levels
(∼50%) of CSP� is not sufficient to cause a neurodegenerative phe-
notype. In contrast, mutations that reduce the human CSP� gene
DNAJC5’s function cause ceroid-lipofuscinosis that coincides with
accelerated age-dependent neurodegeneration [17]. Finally, CSP�
and associated chaperone activities are also more widely impli-
cated in proteostasis [18]. This led us to reason that the ME7 prion
disease pathology would, via direct synaptic dysfunction or defi-
cient proteostasis, be exacerbated in CSP� +/− mice. To test this we
used behavioural assays and molecular changes that act as sensi-
tive measures of disease evolution in cohorts of CSP� +/+ and CSP�
+/− animals infected with ME7.

2. Materials and methods

2.1. Animal husbandry

CSP� +/+ and +/− mice were generated as described [16,19,20]
and crossed and maintained on a C57BL/6J Charles River back-
ground [21]. The cohort of 26 animals (13 CSP� +/+ and 13 CSP�
+/−) used in this study were generated from a common set of lit-
termates. All animals were housed according to UK Home office
regulations, on a standard 12 h: 12 h light–dark cycle at an ambient
room temperature of 21 ± 2 ◦C, with food and water provided ad
libitum.

2.2. ME7 prion disease

All procedures were carried out under a UK Home Office licence
and in accordance with the United Kingdom Animals (Scientific
Procedures) Act, 1986. Surgical procedures were carried out as
previously described [5]. CSP� +/+ and +/− female animals 8–13
weeks of age were anaesthetized and bilaterally injected into the
dorsal hippocampus with either 1 �l of NBH or ME7 homogenate,
using the stereotaxic co-ordinates anteroposterior +2.0 mm, lat-
eral ±1.7 mm and depth −1.6 mm measured at Bregma. Eleven
weeks post-inoculation (w.p.i.) NBH- and ME7-animals were sub-
jected to behavioural tests, widely used to define preclinical and
clinical disease. These tests included burrowing, glucose consump-
tion and open field as measure of affective behaviour as previously
described [5,10,21]. In addition, muscle strength and co-ordination
were measured using an inverted screen as described previously
[10,21]. The experiments followed a schedule of inverted screen
tests preceding early afternoon open field tests, followed by late
afternoon two hour burrowing tests. 24 h burrowing was then

tested overnight in conjunction with glucose consumption. All ani-
mals used in the study were killed at a humane endpoint at 21 w.p.i.
regardless of treatment or genetic background. At this point all ani-
mals were terminally anaesthetized with sodium pentobarbital and
perfused transcardially with heparinised saline.

2.3. General tissue processing

For western blotting hippocampal tissue was micro-dissected
on dry ice as described [21]. Brain tissue for immunohistochemistry
was perfused and post-fixed with 10% neutral buffered formalin
and subsequently paraffin-embedded as detailed elsewhere [6].

2.4. Western blotting

The dissected hippocampi from animals sacrificed at 21 w.p.i.
were homogenised in 5 volumes (w/v) of RNase-free 1 × PBS sup-
plemented with a protease and phosphatase inhibitor cocktail
(Thermo Scientific). Each hippocampal homogenate was combined
with an equal volume of lysis buffer (40 mM HEPES pH 7.4, 250 mM
NaCl, 4% v/v SDS supplemented with a protease and phosphatase
inhibitor cocktail (Thermo Scientific)). Samples were heated at
95 ◦C and subsequently centrifuged. The supernatant was collected
and the protein concentration determined using the Bio-Rad Dc
protein assay (Bio-Rad). Hippocampal homogenates were then
diluted equivalently. Equal amounts of protein were resolved by
SDS-PAGE and subjected to fluorescent-based western blotting or
stained with colloidal Coomassie Blue [6]. Following blocking in
5% w/v non-fat milk, nitrocellulose membranes were incubated in
5% w/v bovine serum albumin (BSA) containing 0.1% v/v Tween-20
and one of the following primary antibodies: anti-CSP� (1:1,000;
Abcam); anti-GFAP (1:5,000; Dako); anti-PrP (1:5,000; 6H4 Pri-
onics); anti-Synapsin (1:1,000; Chemicon); anti-Synaptophsyin
(1:1,000; Abcam) and anti-VAMP-2 (1:1,000; Synaptic Systems).
Membranes were then probed with the appropriate fluorescent-
coupled goat anti-mouse or anti-rabbit secondary antibody (Licor).
Immunoreactivity of protein bands was determined using a Licor
Odyssey infrared detection system (Licor). The signal obtained for
each antigen was normalised to total protein, as measured by
the signal obtained from scanning individual lanes of colloidal
Coomassie stained gels.

2.5. Immunohistochemistry

10 �m paraffin-embedded coronal hippocampal sections were
cut on a microtome, and subsequently dewaxed in xylene and
rehydrated through a decreasing series of ethanol concentrations.
Non-specific endogenous peroxidase activity was eliminated by
incubation with 1% H2O2 and antigen retrieval was performed
using citrate buffer (pH 6) and microwaving, or autoclaving-
formic acid treatment for PrPSc [5,6]. Non-specific antibody binding
was blocked by incubation with the appropriate serum. Subse-
quently, sections were incubated in a humid chamber with one
of the following primary antibodies: anti-GFAP (1:1000; Dako),
anti-IBA1 (1:500; Abcam); anti-PrP (1:4000; 6H4 Prionics) and
anti-Synaptophysin (1:100; Abcam). Specific binding was detected
using a biotinylated secondary antibody (Vector Laboratories), fol-
lowed by incubation in ABC (Vector Laboratories) and visualisation
using DAB. Nuclei were counterstained with Harris hematoxylin.

2.6. Statistical analysis

For behavioural tests, repeated measures two-way ANOVA was
used with Bonferroni post-analysis. Unpaired t-test was used for
biochemical data. The statistical analysis was performed using
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Fig. 1. Behavioural changes in CSP� +/+ and +/− NBH- and ME7-animals.
Burrowing behaviour (A and B), glucose consumption (C), distance travelled (D), rears (E) and inverted screen strength (F) were tested. There were no significant differences
in the behaviours between CSP� +/+ or +/− animals infected with ME7. The baseline levels for CSP� +/− animals are higher for burrowing, glucose consumption, distance
travelled and rears compared to CSP� +/+ animals. Data in graphs represents mean ± /SEM from n = 4 animals (NBH) and n = 8 animals (ME7). *P ≤ 0.05, repeated measures
two-way ANOVA with Bonferonni post-analysis. +/+, wildtype; +/−, heterozygous.

Graph Pad Prism (version 6, Graph Pad Software Inc.). Quantifi-
cation values were expressed as the mean ± standard error of the
mean (S.E.M.), with a p value of ≤0.05 considered as statistically
significant. Behavioural tests, n = 4 (NBH) and n = 8 (ME7); western
blotting, n = 3 (NBH) and n = 4 (ME7) and immunohistochemistry,
n = 2 (NBH and ME7).

3. Results

3.1. Reduced expression of CSP˛ does not exacerbate behavioural
changes in ME7-animals

Previous behavioural studies in ME7-animals show a progres-
sive decrease from 12 w.p.i. onwards in the number of pellets
burrowed compared to NBH-animals, concurrent with a decrease
in glucose consumption and an increase in distance travelled and
rears [5,10,21]. Additionally, at 18 w.p.i., motor deficits become
apparent, as evidenced by declining performance in the inverted
screen test [10,21]. This decline in behavioural performance as a
consequence of prion disease is apparent in the behavioural tests
performed as part of this study, with both ME7–CSP� +/+ and +/−
animals showing progressively decreasing burrowing behaviour
(Fig. 1A and B) and glucose consumption (Fig. 1C), increased dis-
tance travelled (Fig. 1D) and rears (Fig. 1E) and reduced strength
(Fig. 1F) compared to NBH-animals. Although CSP� +/− animals
have a higher baseline level in the number of pellets burrowed in
2 h (Fig. 1A) and overnight (Fig. 1B), the amount of glucose con-
sumed (Fig. 1C), distance travelled (Fig. 1D) and rears (Fig. 1E), there
was no difference in the progression of the behavioural decline in
ME7-animals between CSP� genotypes (Fig. 1A–F).

Protein expression of markers of prion pathology reveals no
difference between CSP� +/+ and +/− animals infected with ME7.

Hippocampi taken from brains extracted at 21 w.p.i. were
homogenised and used for western blotting to study expres-
sion levels of CSP� (Fig. 2A), total PrP (Fig. 2B), the astrocyte
marker GFAP (Fig. 2C) and the presynaptic proteins Synaptophysin

(Fig. 2D), Synapsin (Fig. 2E) and VAMP-2 (Fig. 2F). Western blots
for CSP� showed that CSP� +/− animals (Fig. 2A) displayed a ∼50%
reduction in protein as a consequence of their heterozygous genetic
background. In contrast, there are no differences in the expression
of any of the other three presynaptic proteins (Fig. 2D–F) between
CSP� +/+ and +/− NBH animals. This indicates that the reduced level
of CSP� is not due to a decrease in the number of synaptic vesicles
but rather a fall in the complement of CSP� molecules per vesicle.

As shown in previous work there was a decrease in CSP� levels
during disease [6]. This is seen when comparing relative levels of
the CSP� in ME7-animals compared to CSP� +/+ and CSP� +/− NBH-
animals. In the latter case a decrease from an already reduced level
of CSP�. Similar measurements of the presynaptic proteins Synap-
tophysin (Fig. 2D), Synapsin (Fig. 2E) and VAMP-2 (Fig. 2F) showed
the reduced levels in ME7-animals compared to NBH-animals in
both CSP� genotypes. Consistent with previous observations, the
robustness of the presynaptic protein reduction due to ME7 was
more marked for Synapsin and VAMP-2 [6,22].

Total PrP immunoreactivity (Fig. 2B) acts to indicate ME7
infection and prion disease development. There was a significant
increase in PrP expression of un-, mono- and diglycosylated forms
in both CSP� +/+ and +/− animals infected with ME7- compared to
NBH-animals (Fig. 2B). However, there is no significant difference
seen in its expression between ME7- and CSP� +/+ and +/− animals
(Fig. 2B). Our previous data indicates that ME7 related increase in
total prion immunoreactivity is a good correlate of misfolded pro-
tein [6]. Western blotting of GFAP showed an increase in its levels
in ME7-animals compared to NBH-animals (Fig. 2C). However, like
PrP, there was no significant difference in levels of its expression
levels between ME7–CSP� +/+ and +/− animals (Fig. 2C).

We then performed immunohistochemistry to determine if
there were any discernible changes in protein expression of some
of these markers in different regions of the hippocampus. Coro-
nal sections containing the hippocampus were taken from NBH-
and ME7-animals at 21 w.p.i. The sections were immunostained
for PrPSc, GFAP, the microglia marker IBA1 and Synaptophysin



M.J. Davies et al. / Neuroscience Letters 589 (2015) 138–143 141

Fig. 2. Analysis of prion pathology in ME7–CSP� +/+ and +/− animals.
Quantitative western blotting of CSP� (A), total PrP (B), GFAP (C), Synaptophysin (D), Synapsin (E) and VAMP-2 (F) in hippocampal homogenates from CSP� +/+ and +/− mice
inoculated with either NBH or ME7. Representative western blots are shown. (A) A decrease in CSP� expression is seen in +/− animals compared to +/+. CSP� expression
is further reduced in ME7-animals compared to NBH-animals. (B) Significant differences in total PrP immunoreactivity were seen between NBH- and ME7-animals, but no
difference was seen between CSP� +/+ and +/− animals injected with ME7. (C) ME7 infection causes increased expression of the astrocyte marker GFAP. However, there is
no difference in expression between ME7–CSP� +/+ and +/− animals. (D–F) The levels of the three presynaptic proteins Synaptophysin (D), Synapsin (E) and VAMP-2 (F) are
reduced in ME7-animals compared to NBH-animals. There is no change in the expression of these three proteins between ME7–CSP� +/+ and +/− animals. Data in bar charts
represents mean ± SEM from n = 3 animals (NBH) and n = 4 animals (ME7). *P < 0.05 and **P <0.01, unpaired t-test. +/+, wildtype; +/−, heterozygous.

Fig. 3. Immunostaining of hippocampal coronal sections from NBH- and ME7-injected CSP� +/+ and +/− animals.
ME7 animals show PrPSc deposition in the hilus of the dentate gyrus extending to the CA3 region, increased number and size of both astrocytes and microglia and loss of
synapses in the stratum radiatum of the hippocampus compared to NBH-animals. However, there are no visible differences in any of these pathologies between ME7–CSP�
+/− animals compared to ME7–CSP� +/+. n = 2 animals per genotype and condition. Scale bars, 100 �m except for Synaptophysin images where scale bars are 200 �m and
5× images where scale bars are 300 �m. +/+, wildtype; +/−, heterozygous; CA3, Cornu Ammonis region 3.

(Fig. 3). Whilst there is no PrPSc deposition in the hippocampus
of NBH-animals, we observe the appearance of these formic acid
resistant deposits of PrPSc, in both ME7–CSP� +/+ and +/− ani-
mals (Fig. 3). However, there is no visible difference in the number
or pattern of deposition of PrPSc between CSP� +/+ and +/− ani-
mals. In ME7 hippocampi, GFAP+ astrocytes are generally larger

in number, with more developed processes than in NBH-animals
and often show infiltration of the neuronal layers (Fig. 3). Similarly,
we observe a large increase in the number of visible microglia in
ME7-animals compared to NBH-animals (Fig. 3). In addition, like
astrocytes we also note the increased infiltration of microglia into
the neuronal layers of the hippocampus in ME7-animals (Fig. 3).
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Despite this there is no clear difference in the number or appear-
ance of astrocytes or microglia between ME7–CSP� +/+ and +/−
animals. Previous studies, staining for the synaptic protein Synap-
tophysin revealed disorganized and a relative reduced intensity
of staining in the stratum radiatum of the hippocampus as ME7
pathology progresses [5,6]. In keeping with these findings, our work
revealed reduced and disorganised Synaptophysin staining in the
stratum radiatum in ME7-infected brains 21 w.p.i. (Fig. 3). How-
ever, once again, there was no clear difference between ME7 and
CSP� +/− animals compared to ME7–CSP� +/+ animals (Fig. 3).

4. Discussion

Experimentally induced ME7 prion disease presents a pre-
dictable and well-defined neuropathology enabling the correlation
of cellular and molecular findings with important pathological
events [5]. For example, the loss of synapses in the stratum
radiatum of the hippocampus coincides with the onset of subtle
behavioural changes in animals injected with ME7. In this study,
we have used an established battery of behavioural tests [5,10,21]
that resolve underlying pathological mechanisms at the level of
the whole organism. In particular, we have investigated if the
behavioural decline that marks synaptic dysfunction and mid-stage
disease (burrowing, glucose consumption and open field) or late
stage disease (inverted screen) differs in genetic backgrounds with
different levels of CSP�.

As synaptic degeneration may be a potentially reversible event
in neurodegenerative diseases, significant research has gone into
discovering molecular pathways related to synaptic pathology. We
have previously reported the decreased expression of a number of
presynaptic proteins in ME7-animals including the synaptic chap-
erone CSP� [6]. CSP� knockout mice undergo premature death,
however, animals with only a ∼50% reduction in CSP� levels appear
comparatively normal compared to +/+ animals [16]. This indi-
cates that a ∼50% reduction in CSP� is sufficient to largely preserve
synaptic integrity. However, it is unclear at what point reduced
CSP� expression becomes pathological as the complete knock out
of the gene is post-embryonic lethal [16]. The focus of our study was
to determine whether a genetic background of low CSP� expression
would exacerbate experimentally-induced ME7 prion disease. To
achieve this, we injected CSP� +/+ and +/− mice with either NBH or
ME7-infected brain homogenate, and evaluated the genetic impact
upon prion disease progression via behavioural tests and protein
expression using western blotting and immunohistochemistry.

Given the role of CSP� in preserving synaptic function, it was
hypothesized that the reduced levels of CSP� in CSP� +/− mice may
increase synaptic susceptibility to degeneration and in doing so
amplify the behavioural changes associated with disease. There are
reports of small changes in measures of spontaneous locomotion
associated with the reduction in CSP� expression in the heterozy-
gous mice, however, this is not due to any synaptic loss [16]. This
may underlie the shifted baseline behaviour we noted that was par-
ticularly clear in the glucose consumption test. However, the clear
observation is that the decreased expression of CSP� did not have a
significant effect in the behaviours tested between ME7 and CSP�
+/+ and +/− animals (Fig. 1). These results indicate that reduced
CSP� levels in +/− animals are not sufficient to accelerate disease
progression.

Western blots revealed reduced levels of CSP� in CSP� +/− ani-
mals compared to +/+, with a further reduction in ME7-animals
(Fig. 2A). There are estimated to be around ∼2 copies of CSP� per
synaptic vesicle [23]. This would suggest that in the CSP� +/− ani-
mals where there is a ∼50% reduction of CSP�, there would only
be around ∼1 copy of CSP� per synaptic vesicle, as there is no evi-
dence for a reduced synaptic vesicle number in the CSP� +/− mice

[16]. The further reduction of CSP� seen in ME7–CSP� +/− animals
is likely to be due to the synaptic loss which occurs in ME7 [5,6,24].
Overt loss of synapses would reduce the content of synaptic vesicle
proteins as we see in the current study. However, the previously
reported differential loss of presynaptic proteins and the accumu-
lating dysmorphic nature of synaptic vesicle profiles identified in
disease could imply routes to reduced synaptic vesicle content prior
to a more overt synaptic loss.

Although ME7-animals had high levels of total PrP (Fig. 2B) and
deposits of PrPSc (Fig. 3) there were no significant differences in the
levels of PrP or the number or distribution of PrPSc deposits between
ME7 and CSP� +/+ and ME7 and CSP� +/− animals. In addition, there
was no difference between the expression of GFAP (Fig. 2C), the
number of astrocytes and microglia and their appearance (Fig. 3)
between ME7 and CSP� +/+ and ME7–CSP� +/− animals. Despite
this the most likely detrimental effect of reduced CSP� levels in
ME7-animals is reduced synaptic number, given the protein’s role
in chaperoning SNAP-25 and promoting vesicle exocytosis [25]. The
levels of the presynaptic proteins Synaptophysin (Fig. 2D), Synapsin
(Fig. 2 E) and VAMP-2 (Fig. 2F) were reduced in ME7-animals com-
pared to NBH-animals, however, there was no difference in their
expression between ME7–CSP� +/+ and +/− animals. Additionally,
staining for Synaptophysin (Fig. 3) failed to reveal a difference
between ME7-animals of both CSP� genotypes. This indicates that
whatever mechanisms are contributing to synaptic loss seen in
ME7-animals, reduction in CSP� levels is not a critical dose limiting
step. Therefore, whilst a complete absence of the protein is detri-
mental to synaptic health, a compound reduction resulting from a
heterozygous genetic background is insufficient to exacerbate ME7
prion disease.

One explanation for the apparent lack of effect of CSP� reduction
on ME7 prion disease progression may be the neuronal type under-
going synaptic degeneration. In CSP� null mice, the synapses most
strongly affected are those with high activity, necessitating supe-
rior SNARE function [16,26,27]. Previous prion studies proposed
that highly active GABAergic synapses may undergo degeneration,
as there is evidence for severe, selective GABAergic cell loss in
human and experimental Creutzfeldt–Jakob disease [28,29]. How-
ever, studies in ME7 prion disease revealed no significant loss of
parvalbumin (PV)-positive GABAergic inhibitory neurons in the
hippocampus of ME7-animals [30]. In ME7 prion disease synaptic
loss in the hippocampus occurs along the Schaffer Collateral axons
of CA3 pyramidal neurons, which have lower activity and hence
demand for proper SNARE chaperoning. As such, these synapses
may be less susceptible to low CSP� levels than others.

5. Conclusion

Protein expression studies and behavioural assays of disease
progression both failed to provide evidence for an effect of a
CSP�-deficient genetic background on the protein misfolding or
subsequent progression of prion pathology resulting from ME7
infection. This is despite the previously reported detrimental neu-
rological consequences of CSP� absence and reports of reduced
CSP� expression in ME7-infected animals. These results suggest
that reducing CSP� expression to about ∼50% is not sufficient to
enhance synaptic loss and prion disease pathology.
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