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SUMMARY

Global patterns of DNAmethylation, mediated by the
DNA methyltransferases (DNMTs), are disrupted in
all cancers by mechanisms that remain largely un-
known, hampering their development as therapeutic
targets. Combinatorial acute depletion of all DNMTs
in a pluripotent human tumor cell line, followed by
epigenome and transcriptome analysis, revealed
DNMT functions in fine detail. DNMT3B occupancy
regulatesmethylation during differentiation, whereas
an unexpected interplay was discovered in which
DNMT1 and DNMT3B antithetically regulate methyl-
ation and hydroxymethylation in gene bodies, a
finding confirmed in other cell types. DNMT3B medi-
ated non-CpG methylation, whereas DNMT3L influ-
enced the activity of DNMT3B toward non-CpG
versus CpG site methylation. Altogether, these data
reveal functional targets of each DNMT, suggesting
that isoform selective inhibition would be therapeuti-
cally advantageous.
INTRODUCTION

DNA methylation (5-methylcytosine [5mC]) is an epigenetic

modification occurring most commonly at cytosines within

CpG dinucleotides, which confers genomic stability and regu-

lates transcription dependent on the cytosine dinucleotide

context (CpG versus non-CpG) and genomic locality. The cur-

rent paradigm in normal cells places a majority (�80%) of 5mC

at repetitive centromeric sequences and transposable elements

to maintain chromosomal stability. Conversely, 5mC is largely

absent at transcription start sites (TSSs) flanked by CpG islands

(CGIs), whose methylation status is generally inversely related

to transcriptional activity. These patterns undergo significant

reversal in cancers in which global hypomethylation of repetitive
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DNA contributes to genomic instability and tumor suppressor

gene CGI promoter hypermethylation effectively extinguishes

transcription. Much effort has been devoted to understanding

the regulation of gene transcription as a consequence of methy-

lation changes and the subsequent contribution to cancer

progression. The past few years have added additional layers

of regulatory complexity, including non-CpG methylation and

DNA hydroxymethylation (5-hydroxymethylcytosine [5hmC])

to the dynamics of cytosine modification. However, there is

still much to be learned about the regulation of 5mC patterning,

knowledge that is essential for understanding how the non-

random patterns of aberrant methylation arise in cancer. Central

to understanding the regulation of 5mC is determining how the

coordinated efforts of the enzymes responsible for this modifi-

cation, the DNA methyltransferases (DNMTs), contribute to the

5mC profile genome-wide.

DNMT1, the maintenance methyltransferase, is preferentially

recruited to hemimethylated DNA by UHRF1 to maintain 5mC

following DNA replication (Sharif et al., 2007). DNMT3A and

DNMT3B, the de novo methyltransferases, are crucial for

establishing methylation patterns early in development and

for initiating cell-type-specific methylation patterns during dif-

ferentiation. DNMT3L, a fourth member of the DNMT family

that lacks catalytic activity, is crucial for proper development

of primordial germ cells and establishment of maternal

genomic imprints (Bourc’his et al., 2001). Complete genetic

inactivation of the catalytically active DNMTs results in embry-

onic (DNMT1 and DNMT3B) and postnatal (DNMT3A) lethality

(Li et al., 1992; Okano et al., 1999), demonstrating that they

are essential for development. Indeed, hypomorphic mutations

in human DNMT3B lead to a rare, autosomal recessive devel-

opmental disorder: immunodeficiency, centromeric instability,

facial anomalies syndrome (Hansen et al., 1999). DNMT3A is

essential for hematopoietic stem cell lineage differentiation

through silencing of lineage-specific genes (Challen et al.,

2012). Taken together, these studies show that DNMT3A

and DNMT3B mediate 5mC patterns essential for regulating

distinct lineage-differentiation pathways, yet the mechanisms
hors
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regulating their recruitment are perhaps more enigmatic than

for DNMT1.

Dysregulation of the DNMTs, including isoforms of DNMT3A

and DNMT3B, has been observed in many types of cancer and

is believed to contribute to aberrant 5mC patterns. DNMT1 is

required for cell survival and specific promoter hypermethyla-

tion in colorectal cancer (Egger et al., 2006). Mutations in

DNMT3A occur in over 20% of acute myeloid leukemia patients

and are associated with poor prognosis (Yamashita et al.,

2010). DNMT3B, like DNMT1, promotes and sustains prolifera-

tion in colon cancers (Linhart et al., 2007). Alternatively spliced

isoforms of DNMT3B, such as DNMT3B7, have opposing roles

dependent on the cancer type; expression of this truncated

isoform suppresses neuroblastoma growth but enhances

lymphomagenesis (Ostler et al., 2012; Shah et al., 2010).

Collectively, these studies demonstrate not only that DNMTs

directly alter cancer phenotypes in different capacities (tumor

suppressor versus oncogene) but also do so in cell-type-spe-

cific contexts.

The goal of this study was to obtain a comprehensive under-

standing of the role of each DNMT in regulating global CpG

and non-CpG methylation, transcription, differentiation, and

interfacing with other epigenetic marks. To accomplish this, we

assayed 5mC and transcriptional patterns genome-wide in

a cancer and differentiation-relevant model after depleting

DNMT1, DNMT3A, DNMT3B, and DNMT3L alone and in all com-

binations using small interfering RNA (siRNA). Our approach

led to several interesting and unexpected observations. Most

notably, depletion of DNMT3B caused global and specific

‘‘hypermodification’’ events in gene bodies and intergenic

sequences at CpGs prone to dynamic shifts in cytosine modifi-

cation patterning. These ‘‘hot spots’’ of cytosine modification

were most often targeted for hypermethylation or hyperhydrox-

ymethylation upon DNMT3B depletion. In contrast, DNMT1

and DNMT3A depletion caused moderate to mild global DNA

hypomethylation, respectively. CpGs hypomethylated under

DNMT1 depletion conditions overlapped significantly with

CpGs hypermodified uponDNMT3B depletion, revealing an anti-

thetical regulatory interaction between DNMT1, DNMT3B, and

the TETs. Finally, our approach also revealed that DNMT3L reg-

ulates CpG versus non-CpG substrate preference of DNMT3A

and DNMT3B in vivo. Taken together, our results provide insight

into the function of each DNMT in regulating cytosine epigenetic

modifications that have important implications for the regulation

of these marks during differentiation and for developing more-

specific and effective therapeutic strategies to correct or target

aberrant methylation in cancer cells.

RESULTS

Acute DNMT Depletion Causes Differential Effects
on Global 5mC
Using the human embryonic carcinoma (EC) cell line NCCIT as

a model system, we depleted the DNMTs using siRNA both

individually and in combination (Figure 1A) to identify direct

functional target sites in a more comprehensive manner than

has been attempted previously (DNMT1+DNMT3L was omitted

as no published evidence has linked their function). NCCIT cells
Cell Re
are derived from an extragonadal germ cell tumor and demon-

strate expression patterns similar to embryonic stem cells

including high-level DNMT expression (Figure S1A; Jin et al.,

2012). Accordingly, they can be induced to differentiate into

the three embryonic germ layers and extraembryonic lineages

(Jin et al., 2012; Sperger et al., 2003). Due to its pluripotency

and developmental implications, undifferentiated (UD) NCCIT

cells serve as a model to study DNMT function in both develop-

ment and cancer. DNMTswere acutely depleted by siRNA trans-

fection in UD NCCIT cells for 72 hr. After extensive optimization

(not shown), this time point was chosen to observe the most-

immediate impact on 5mC and gene expression and avoid

potential compensatory epigenetic changes (Bachman et al.,

2003; Egger et al., 2006). mRNA transcripts were depleted by

�80% among individual DNMT knockdowns (KDs) compared

to the no-target control (NTC) siRNA, and no off-target effects

on other DNMTs were observed (Figure S1B). Efficiency of the

combination KDs varied. DNMT3B depletion efficiency in com-

bination samples, for example, was typically in the 40%–60%

range (Figure S1B). However, DNMT3B is the most highly ex-

pressed de novo methyltransferase in NCCIT cells (Sperger

et al., 2003), so this level of depletion is still sufficient to observe

robust methylation changes in combination KDs with DNMT3B,

as will be presented later. Depletion of the DNMTs was also

confirmed at the protein level (Figure S1C). Housekeeping genes

(RPL30 and DYNLL1) and pluripotency factors (NANOG and

OCT4) showed little change in expression during the 72 hr KD

period, whereas markers of different germ layers varied in their

expression (Figure S1D), indicating that developmental path-

ways, especially ectodermal, are affected by DNMT depletion.

We also examined TET mRNA expression in our DNMT KDs

(Figure S1D); overall, TET1 expression was maintained whereas

expression of TET2 and TET3 was mildly decreased.

Multiple independent siRNA KD transfections were pooled

for each sample in subsequent 5mC and gene-transcription an-

alyses. Genome-wide methylation was assayed using Illumina’s

Infinium HumanMethylation450 BeadChip (450K array). DNMT1

depletion (individual/combination) resulted in global hypomethy-

lation, most notably in gene bodies and intergenic sequences

(Figures 1B and 1C). Consistent with previous reports (Rhee

et al., 2002), combined depletion of DNMT1 and DNMT3B

results in the most extensive DNA hypomethylation among all

DNMT1-depleted samples (Figure S1E). The DNMT3 depletions,

however, resulted in more-distinctive global changes in methyl-

ation. Individual depletion of DNMT3B and DNMT3L resulted

in hypermethylation across the genome, whereas DNMT3A

depletion caused a small overall decrease in methylation (Fig-

ure 1B). Consistent with these results, combination depletion

of DNMT3B with DNMT3L (3B+3L), including the addition of

DNMT3A depletion (3A+3B+3L) also induced hypermethylation.

In contrast, siRNA KDs involving DNMT3A (3A+3L and 3A+3B)

resulted in hypomethylation throughout the genome (Figure 1B).

Further examination of methylation changes at specific genomic

features revealed that DNMT3B/DNMT3L KD-induced hyper-

methylation is most prevalent in gene bodies and intergenic

sequences and DNMT3A KD-induced hypomethylation (individ-

ual/combination) is consistent across all genomic features

(Figure 1C). We confirmed reproducibility of the genome-wide
ports 9, 1554–1566, November 20, 2014 ª2014 The Authors 1555



Figure 1. Differential Impact of Single and

Combinatorial DNMT Depletion on Genome-

wide CpG Methylation and Expression

(A) Sample table detailing all siRNA KDs conducted

in NCCIT cells with respective abbreviations used

throughout the text.

(B)Spatial distributionplots across intragenic regions

derived from average b values for 5mC in NCCIT

DNMT-depleted samples obtained from the 450K

array. Top: individual siRNA KDs. Bottom: combina-

tion siRNA KDs. Dashed black box indicates region

magnified (to the right) to more effectively visualize

relative methylation levels among samples.

(C) Box plots representing all Db values for each

sample in the indicated features. Red bar highlights

the zero position (no change in methylation). All

distributions are statistically significant from NTC

(except 3B+3L, 3A+3B+3L in promoter, CpG

islands, and shores).

(D) Total number of genes upregulated/down-

regulated (R1.5-fold change) by microarray anal-

ysis for NCCIT DNMT-depleted samples.

See also Figure S1.
5mC observations by performing two additional independent

biological replicates on a subset of the KDs (siDNMT1,

siDNMT3B, and si3B+3L) followed by 450K array analysis. All

siDNMT1 replicate samples displayed hypomethylation across

all genomic features, whereas siDNMT3B replicate samples

consistently displayed gains in 5mC in gene bodies and inter-

genic sequences (Figure S1F). In general, gene expression

profiles for each DNMT-depleted sample did not correlate with

differentially methylated loci (data not shown); however, redun-

dancy in regulation of particular genes was observed. For

example, more genes were upregulated in individually depleted

DNMT conditions, whereas combination depletion, in general

(with the exception of 3B+3L), resulted in more genes being

downregulated (Figure 1D). Accordingly, hierarchical clustering

of gene-expression profiles grouped the individual DNMT KD

samples together, whereas most of the combination DNMT-

depleted samples clustered together (Figure S1G). Altogether,
1556 Cell Reports 9, 1554–1566, November 20, 2014 ª2014 The Authors
these results demonstrate unique and

cooperative functions for each of the

DNMTs in regulating 5mC across the

genome. Importantly, the most immediate

changes in 5mC induced by depletion

of the DNMTs do not directly alter gene

expression, but rather the DNMTs poten-

tially coregulate expression of genes inde-

pendent of their 5mC writing function.

Depletion of DNMT3B Results
in Specific Hypermethylation
Events that Coincide with DNMT1-
Depletion-Driven Hypomethylation
Events
Next, we examined the most-significantly

differentially methylated CpG sites (p <

0.05) in each DNMT-depleted sample to
define loci most prone to changes in 5mC. Consistent with global

methylation patterns, DNMT1 depletion (individual/combination)

conferred widespread hypomethylation across the genome, with

particular enrichment in gene bodies, 30 UTRs, and intergenic

sequences (Figures 2A, 2B, S2A, and S2B, upper). We inde-

pendently confirmed siDNMT1-associated hypomethylation

using bisulfite genomic sequencing (BGS) for the PTPRN2

(intron), CREBBP (intron/exon), and TACSTD2 (50 UTR) loci

(Figure S2C). Consistent with microarray expression analysis,

correlating changes in expression and methylation were not

observed at these loci (Figure S2D). Overall, hypomethylation

across all genomic features significantly overlapped among

KDs involving DNMT1 (Figure S3A, left). Ontology analysis of

the top 3,000 genes, containing the most significant hypome-

thylated CpG sites located in the gene body, revealed marked

enrichment for pathways associated with development and

cancer (Figure 2C).



Figure 2. Analysis of Significantly Differen-

tially Methylated CpG Sites Reveals Distinct

Effects of DNMT1 versus DNMT3 Depletion

(A) Percentage of significantly differentially meth-

ylated CpG sites (p < 0.05) classified by methyl-

ation change upon siRNA KD in NCCIT DNMT

siRNA-depleted cells.

(B) Normalized distribution of significantly differ-

entially methylated CpG sites by genomic

feature. Top: DNMT1 depletion (individual/com-

bination). Bottom: DNMT3 depletion (individual/

combination).

(C) Ontology analysis for the top 3,000 most hy-

pomethylated gene bodies (CpG sites with great-

est Db value) upon siRNA depletion of DNMT1.

Left: gene ontology analysis. Right: KEGG

pathway analysis.

(D) Gene ontology for hypermethylated genes in

DNMT3 individual knockdown (at least one CpG

site displaying hypermethylation within gene).

Coloring scheme from (B) is used.

(E) Left: clustered heatmap (Euclidean distance) of

hypermethylated (Db R 0.15) CpG sites for each

DNMT-depleted condition (duplicate CpG sites

removed) stratified by NTC Avgb-value most-

methylated to least-methylated CpG sites. Dashed

red box indicates magnified region (Avgb-value

[0.45–0.75] in NTC). Right: heatmap of Db values

for respective CpG sites from the left.

See also Figure S2 and S3.
Unexpectedly, DNMT3 siRNA KDs, particularly those involv-

ing DNMT3B, showed more significant hypermethylation than

hypomethylation events (Figures 2A, 2B, S2A, and S2B, lower).

Inclusion of two additional independent biological replicates

of the siDNMT3B and si3B+3L KD conditions confirmed this

observation (Figure S3B). Overwhelmingly, DNMT3-depletion-

associated hypermethylation events occurred in gene bodies,

30 UTRs, and intergenic sequences, whereas significantly hypo-

methylated CpG sites were more evenly distributed among

genomic features (Figure 2B, lower). Both hypo- and hyper-

methylated genes significantly overlapped among DNMT3-

depleted samples (Figure S3A, left and middle), with hypome-

thylation events overlapping predominately in promoters and

hypermethylation events overlapping in gene bodies. Although

overlap analysis of genes that gain and lose methylation

(Figure S3A) indicates redundancy in target sites among the

DNMT3s, ontology analysis of hypermethylated loci showed
Cell Reports 9, 1554–1566, No
enrichment of distinct gene sets for

the individual DNMT3-depleted samples

(Figure 2D).

Because siDNMT1-hypomethylated

genes and siDNMT3-hypermethylated

genes showed similar enrichment profiles

(Figure 2B, compare upper left to lower

right), we investigated whether common

loci were targeted. Indeed, significant

overlap was observed, particularly for

siDNMT3B-hypermethylated genes and

siDNMT1-hypomethylated loci, in 50 UTRs
andgenebodies (Figures 2EandS3A, right). Next,we focusedour

analysis on CpG sites that displayed hypermethylation in at least

one DNMT-depleted sample and examined the methylation level

of these loci across all DNMT-depleted samples (Figure 2E).

Consistent with our previous analyses, we observed overlap

of hypermethylation events among the DNMT3B-depleted sam-

ples that coincided with hypomethylation events upon DNMT1

depletion (Figure 2E). Independent biological replicates of the

siDNMT1, siDNMT3B, and si3B+3L KD condition confirmed the

reproducibility of these observations (Figure S3C). Altogether,

these resultsdemonstratedistinct and, insomecases, antithetical

roles for theDNMTs in regulating 5mC,particularly ingenebodies.

DNMT3B Regulation of Non-CpG Methylation in Human
EC Cells
Non-CpG methylation has recently been shown to comprise

up to 25% of all cytosine methylation in embryonic stem cells
vember 20, 2014 ª2014 The Authors 1557



Figure 3. Unique Impact of DNMT3B and

DNMT3L Depletion on Non-CpG Methyl-

ation

(A) Percent of significantly hypomethylated cyto-

sines (p < 0.05) classified by dinucleotide type

(CpG versus non-CpG) for NCCIT DNMT-depleted

samples.

(B) Average b values of methylation at non-

CpG sites from the 450K array across genomic

features.

(C) Histograms of Db values (bin no. = 50) for

non-CpG dinucleotides. Red line indicates zero

(no change in methylation). Values to the left

and right of the red line indicate the number of

non-CpG cytosines that are hypomethylated and

hypermethylated, respectively, compared to the

NTC control transfection.

(D) Non-CpG methylation is regulated by the

coordinated efforts of the DNMT3 family. Deple-

tion of DNMT3A or DNMT3B results in non-CpG

hypomethylation. Depletion of DNMT3L, however,

has the opposite effect, where non-CpG sites

become hypermethylated, suggesting it restricts

the activity of DNMT3A and DNMT3B toward

non-CpG sites. Lollipop shading reflects the

relative amount of methylation at the indicated

cytosine (black, methylated; white, unmethylated).

See also Figure S4.
(ESCs) and to accumulate specifically during neuronal matura-

tion (Lister et al., 2009, 2013). Given its potential importance

but poorly understood regulation, we analyzed non-CpGmethyl-

ation levels among our DNMT-depleted samples to determine

the relative contribution of each DNMT to the writing of this

mark. The 450K array interrogates 3,091 non-CpGdinucleotides,

allowing us to examine the role of the DNMTs in regulating

this mark at single-nucleotide resolution across the genome,

albeit at low density. In NCCIT cells depleted of DNMT3B

(alone or in combination), cytosine hypomethylation occurred

primarily at non-CpG sites, with the single exception of

the 3B+3L-depleted sample (Figure 3A). Average methylation

across genomic features (Avgb-value) revealed an interesting

pattern, where DNMT3B depletion results in hypomethylation

of non-CpG sites across all regions but depletion of DNMT3L

results in hypermethylation of non-CpG sites (Figure 3B). The

DNMT3A depletion also follows this trend, although to a lesser

extent. DNMT3A siRNA KD combined with depletion of DNMT3L
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(3A+3L) in contrast results in hypermethy-

lation at non-CpG sites. Indeed, histo-

grams of Db values for all 450K array

non-CpG sites reveal that DNMT3A

depletion results in a shift toward

hypomethylation; however, DNMT3L

depletion has the opposite effect where

non-CpG sites gain methylation (Fig-

ure 3C). Combined depletion of DNMT3A

and DNMT3L overall results in the crea-

tion of more hypermethylated cytosines;

however, the majority of sites shift toward
the baseline (that is, no change in methylation [Db = 0]). A similar

pattern was observed with DNMT3B depletion but to a much

larger extent where most non-CpG sites on the 450k array

become broadly (�0.4–0.0) hypomethylated. Depletion of all

DNMT3 family members results in the hypomethylation of

almost all non-CpG sites (Figure 3C). We verified these

observations with clone-based BGS of target genes identified

via the 450K array analysis for DROSHA, USP14, UBR4, and

SIN3A (Figure S4A). For DROSHA, non-CpG hypomethyla-

tion is observed in all depletions involving DNMT3B and

hypermethylation is observed with depletion of DNMT3L

alone. Expression of these genes was not significantly altered

(Figure S4B). Notably, CpG sites within the assayed regions

became hypermethylated in the DNMT3B single-depletion

sample (Figure S4A). Independent biological replicates of the

siDNMT1, siDNMT3B, and si3B+3L confirmed that non-CpG

hypomethylation specifically occurs upon depletion of DNMT3B

(Figure S4C).



Collectively, these results indicate that DNMT3B, and to a

lesser extent DNMT3A, plays an important role in promoting

non-CpG methylation at sites that can be interrogated by the

450K array in human EC cells, whereas DNMT3L plays an

opposing role (Figure 3D). Depletion of DNMT3L alone results

in hypermethylation of non-CpG cytosines (Figures 3B, 3C,

and S4A), most likely due to altered control of DNMT3B and

DNMT3A in its absence. DNMT3L depletion in combination

with DNMT3A further emphasizes DNMT3L’s role in regulating

non-CpG methylation, as the combined depletion also displays

increased 5mC at non-CpG cytosines (Figure 3C), most likely

due to the unrestricted activity of DNMT3B in their absence.

DNMT3B Target Loci Are Epigenomic Hot Spots
for Dynamic Regulation of DNA Modifications
Given the unexpected result of DNA hypermethylation upon

DNMT3B depletion and the fact that standard bisulfite-based

methods cannot distinguish between 5mC and 5hmC, we inves-

tigated the regulation of DNA modifications (both 5mC and

5hmC) at selected DNMT3B target loci identified from the

450K array analysis at single CpG resolution using BGS and

Tet-assisted bisulfite sequencing (TAB-seq) (Yu et al., 2012),

respectively. Analysis of cytosine modifications at the HOXA9

locus upon DNMT3B depletion revealed not only an increase

of 5mC but also a gain in 5hmC, notably at an exon-intron junc-

tion (Figure 4A). Cytosine modification analysis of the GPX6

locus (Figure 4B), however, revealed increased 5mC only;

5hmC was absent. To further enhance our understanding of

5mC/5hmC dynamics at DNMT3B target loci, we performed

methylated DNA immunoprecipitation (MeDIP)/hydroxymethy-

lated DNA immunoprecipitation (hMeDIP)-quantitative PCR to

specifically assay 5mC/5hmC levels, respectively, in DNMT1

and DNMT3B individually depleted samples. We first validated

the specificity of our MeDIP/hMeDIP assay in several ways (Fig-

ures S5A–S5C). MeDIP analysis for the DNMT1-depleted sample

displayed reduced 5mC levels at all loci tested (Figure S5D, left),

consistent with the 450K array (Figures 1B, 1C, 2A, and 2B) and

BGS (Figures S2C and 4) results. 5hmC showed minor changes

upon DNMT1 depletion with the assayed loci displaying small

increases (APOA4), decreases (HOXA9), or no change (EIF4G3

and ZNF311) in levels of the mark (Figure S5D, right). DNMT3B

KD resulted in dynamic shifts of both 5mC and 5hmC levels

(Figure S5E). Some loci revealed that changes in 5mC were

dominant (PDZK1 and EIF4G3), whereas at other loci, increases

in 5hmC (FCGR2A, PDE4DIP, and ZNF311) dominated the cyto-

sine modification changes under DNMT3B KD conditions (Fig-

ure S5E). At other loci, such as APOA4 and HOXA9, levels of

both 5mC and 5hmC increased (Figure S5E), consistent with

BGS/TAB-seq results for the HOXA9 locus (Figure 4A). To gain

further evidence for the specificity and reproducibility of these

effects on cytosine modifications, we performed a ‘‘rescue’’

experiment. Ectopic expression of murine FLAG-tagged Dnmt1

(Figure S5F) or Dnmt3b1 (Figure S5G), coupled with our siRNA

transfection protocol, rescued the siRNA-induced changes to

5mC/5hmC levels and returned them to the level of the control

sample, as assayed by MeDIP/hMeDIP (Figures 4C and 4D).

Notably, ectopic expression of murine FLAG-Dnmt3b1 in the

presence of endogenous DNMT3B resulted in reduced 5mC
Cell Re
levels at all assayed loci (Figure 4D), supporting the notion that

DNMT3B is recruited to these CpGs and limits access of other

DNA modifiers. Taken together, these results indicate that dy-

namic regulation of cytosine modifications occur at CpG sites

targeted by DNMT3B, in which DNMT3B appears to protect

these loci from modification with 5mC or 5hmC deposition by

other DNMT and TET enzymes.

MBD-Seq Analysis following DNMT3B Depletion
Supports Key 450K Array Findings and Reveals that
Hypermethylation Events Occur at Highly Expressed
Genes Marked by H3K36me3
Because our observation of significant hypermethylation events

in DNMT3B-depleted samples was unexpected, we sought

to gain a more comprehensive, genome-wide view of 5mC

changes under this experimental condition by performing

methyl-CpG-binding domain (MBD)-seq on the DNMT3B siKD

sample. MBD-seq (utilizing the methyl-binding domain isolated

from MBD2) preferentially binds 5mC over 5hmC by a 5-fold

margin, providing specificity for analyzing 5mC distribution

(Hashimoto et al., 2012). Overall, hypomethylation (R2-fold

change in 5mC) was observed across all genomic features

(Figure 5A). However, increasing stringency by evaluating larger

magnitude changes in 5mC (R4-fold) revealed features (e.g.,

introns and gene bodies) in which hypermethylation events

were more numerous than hypomethylation events (Figure 5A),

consistent with 450K array results. Next, we sought to decipher

the functional implications of gene body hypermethylation

events upon DNMT3B depletion. As actively transcribed genes

are associated with gene body methylation (Lister et al., 2009)

and trimethylation of lysine 36 on histone H3 (H3K36me3) (Kola-

sinska-Zwierz et al., 2009), we compared genes with R4-fold

change in methylation upon DNMT3B depletion with gene

expression stratified into three tiers (high, medium, and low

expression in the siDNMT3B KD sample) and H3K36me3 locali-

zation in NCCIT UD cells previously published by our laboratory

(Jin et al., 2012). Indeed, gene body hypermethylation events

under DNMT3B KD conditions significantly overlapped with

highly expressed H3K36me3-marked genes, whereas genes

with low expression were largely excluded (Figure 5B). Ontology

analysis of genes in common with all three parameters revealed

marked enrichment for functions in RNA splicing, translation,

and protein ubiquitination (Figure 5C). Collectively, these results

demonstrate targeted hypermethylation upon DNMT3B deple-

tion to gene bodies of highly expressed genes and potential

functional implications for stabilizing expression of protein

fidelity pathways.

Differentiation-Induced Changes in Gene Expression
and 5mC Patterns Mirror Those Observed upon
siRNA Depletion of DNMT3B
Because it is well established that the DNMTs are crucial for

development (Li et al., 1992; Okano et al., 1999) and NCCIT cells

also serve as a model for differentiation (Jin et al., 2012), we next

compared gene expression and 5mC patterns from the DNMT

depletions with differential gene expression and 5mC data

derived from NCCIT cells differentiated with retinoic acid for

7 days (DF). A significant percent of genes (p < 0.0001)
ports 9, 1554–1566, November 20, 2014 ª2014 The Authors 1559
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Figure 5. Hypermethylation Events Result-

ing from DNMT3B Depletion Correlate with

Highly Expressed H3K36me3-Marked Genes

(A) Number of genes with respective fold changes

in methylation (using MBD-seq) across genomic

features for the NCCIT DNMT3B knockdown.

(B) Overlap analysis of genes with R4-fold 5mC

changes (by MBD-seq) in the features indicated

(30, 30 UTR; 50, 50 UTR; B, body; E, exon; I, intron;
P, promoter) with gene expression stratified by level

(high, medium, and low) and H3K36me3 occupancy

in NCCIT UD cells.

(C) Venn diagram illustrating overlap between

hypermethylated introns (R4-fold by MBD-seq),

high-expressing genes, and H3K36me3. Color

scale from Figure 5B applies. Ontology analysis of

genes that concurrently gain 5mC upon DNMT3B

depletion, are marked by H3K36me3, and are

highly expressed.
upregulated in singly depleted DNMT1, DNMT3B, and DNMT3L

conditions overlapped with genes that become upregulated dur-

ing differentiation (Figure 6A, left). Overlapping genes among

DNMT-depleted and NCCIT DF data sets are enriched in pro-

cesses involved in cell proliferation (data not shown). Genes

downregulated during NCCIT differentiation significantly overlap

among nearly all DNMT-depleted samples (Figure 6A, right) and

show enrichment for ectoderm differentiation and amino acid

biosynthesis and transport pathways (data not shown). Changes

in expression of select genes in the siDNMT-depleted samples

and NCCIT differentiation sample based on microarray analysis

were confirmed by qRT-PCR (Figure S6A).

Next, we evaluated the most significant changes (p < 0.05)

in 5mC in DF NCCIT cells for their distribution across the

genome. Hypomethylation events did not show enrichment in
Figure 4. Single CpG Resolution Analysis of Cytosine Modifications with BGS and TAB Analys

(A) The HOXA9 locus is hypomethylated upon depletion of DNMT1 but CpG hypermethylated (based on 450

DNMT3B depletion. Red brackets indicate the region of hyperhydroxymethylation, and a blow-up of this r

indicates the percentage of modified (black) and unmodified (white) CpGs for a single CpG site among at lea

structure for the region analyzed is shown directly below the BGS plots. BGS-amplified region is indicated by

green bar, CGI). b values of 450KCpG loci forHOXA9 (scaled to length of the gene) are presented below the g

conditions to permit comparison of 450K array and BGS-based results.

(B) TheGPX6 locus demonstrates hypomethylation upon depletion of DNMT1 and hypermethylation uponDN

450K array analysis. 5hmC was not detected. At least ten (25 for TAB) clones were sequenced.

(C and D) Rescue experiment. (h)MeDIP analysis of NCCIT siRNA-depletion cells transfected with expressio

FLAG-Dnmt3b1 resistant to the human siRNAs. Gene structures highlighting (h)MeDIP assayed regions (red

sites on the 450K array present in each locus (scaled to length of the gene) are presented below the gene

See also Figure S5.
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any particular genomic feature (Fig-

ure 6B, top). In contrast, hypermethyla-

tion events, which accounted for �70%

of significant methylation changes (data

not shown), predominately occurred in

gene bodies, 30 UTRs, and intergenic se-

quences (Figure 6B, bottom), an enrich-

ment profile that resembles hypermethy-

lation events occurring upon DNMT3

depletion (Figure 2B, bottom right). Over-
lap analysis of DF NCCIT gene 5mC with 5mC patterns in

NCCIT DNMT-depleted samples revealed significant overlap

(p < 0.05) of hypomethylation events, particularly in promoter

regions, and hypermethylation events in gene bodies (Fig-

ure S6B). We next compared the MBD-seq methylation profiles

(R4-fold change in methylation) with DNMT3B chromatin

immunoprecipitation (ChIP)-seq from NCCIT UD and DF cells

published previously (Jin et al., 2012). Genes that became

hypomethylated in promoters and 50 UTRs significantly overlap-

ped with DNMT3B binding in UD NCCIT in these same regions,

linking the altered methylation observed upon DNMT3B

depletion with the presence of DNMT3B. In contrast, siRNA

DNMT3B-induced hypermethylation overlapped significantly

with DNMT3B binding in DF NCCIT cells in gene bodies and

30 UTRs (Figure 6C). The CTSZ and PDZK1 promoters are
is

K array analysis) and hyperhydroxymethylated upon

egion is shown below the BGS plot. Each pie chart

st ten (15 for TAB) clones (red *, 450K probe). Gene

the gray bar and red dashed lines (bent arrow, TSS;

ene structure for siDNMT1 and siDNMT3B depletion

MT3B depletion, confirming results derived from the

n vectors encoding murine (C) FLAG-Dnmt1 and (D)

bars) are shown below each graph. b values for CpG

schematics in graphical form.
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Figure 6. Global Changes in 5mC Patterns

Resulting from DNMT3B siRNA Depletion

MimicMethylation Changes duringDifferen-

tiation

(A) Overlap analysis of DNMT knockdown differ-

entially expressed genes (R1.5-fold change) with

differentially expressed genes in differentiating

(DF) NCCIT cells (following 7 days of retinoic acid

treatment). ‘‘DF Genes’’ (orange bar) represents

the percentage of genes in differentiated NCCIT

cells that are differentially expressed. The ‘‘%

Genes’’ for siDNMT-depleted samples represent

the percent overlap of differentially expressed

genes among the respective siDNMT-depleted

sample with genes differentially expressed in

differentiated NCCIT cells.

(B) Normalized distribution of significantly differ-

entially methylated CpG sites (p < 0.05) by

genomic feature in NCCIT DF cells.

(C) Overlap analysis of genes with R4-fold 5mC

changes (by MBD-seq) for the indicated features

with DNMT3B binding (ChIP-seq) in NCCIT undif-

ferentiated (UD) and differentiated (DF) cells.

(D) Representative browser views of promoters

displaying hypomethylation upon DNMT3B

depletion, are bound by DNMT3B in UD NCCIT

cells, and become hypomethylated upon differ-

entiation (left). Gene body hypermethylation with

DNMT3B depletion coincides with sustained

binding of DNMT3B in DF NCCIT cells (right).

See also Figure S6.
representative of loci that demonstrate hypomethylation upon

DNMT3B depletion and are occupied by DNMT3B in UD NCCIT

cells (Figure 6D). The entire gene body of EIF4G3 and TBL1XR1

display hypermethylation upon DNMT3B depletion that corre-

sponds with DNMT3B occupancy that does not decrease

upon differentiation (Figure 6D). Decreased binding of DNMT3B

in DF cells is observed primarily in gene promoters, indicating

that, as DNMT3B expression is reduced during differentiation,

the remaining DNMT3B binds strongly to gene bodies to regu-

late 5mC patterns through development. Taken together, these

results show that DNMT3B is a critical regulator of 5mC during

early differentiation.

Hypermethylation Events Resulting from DNMT3B
Depletion Are Conserved in Other Cell Types
Next, we sought to determine whether some of the key observa-

tions derived from NCCIT cells were reproducible in other cell

lines. To accomplish this, we evaluated 5mC in the HCT116

colorectal carcinomacell line and its isogenic derivatives inwhich

DNMT1 and/or DNMT3B have been genetically inactivated

or overexpressed (Rhee et al., 2002; Sun et al., 2008; Figures
1562 Cell Reports 9, 1554–1566, November 20, 2014 ª2014 The Authors
S7A). Genome-wide methylation analysis

using the 450K array revealed that global

5mC levels for each sample were similar

to what has been observed in previous

studies and corresponded well with the

known activities of DNMT1 and DNMT3B

(Figure 7A; Rhee et al., 2002).
Themajority of significantly differentially methylated CpG sites

in the 1KO, 3BKO, and DKO cell lines were hypomethylation,

whereas hypermethylation events were the dominant change in

HCT116 cells ectopically expressing DNMT1 and DNMT3B.

Interestingly, however, we observed that almost 40%of differen-

tially methylated CpG sites gained methylation in DNMT3B

KO cells. The distribution of hypomethylation changes among

DNMT1 KO lines revealed enrichment profiles similar to those

observed when DNMT1 was acutely depleted (Figure 7C

compared to Figure 2B). For 3BKO, 1KI, and DKI HCT116 cells,

hypomethylation (relative to the parental cell line) was enriched

upstream of the TSS and within intergenic sequences; hyperme-

thylated CpG sites were relatively evenly distributed (Figure 7C).

Next, we analyzed CpG sites that became hypermethylated

(Db > 0.15) in each HCT116 cell line to determine if common

sites were targeted, and indeed, 3BKO-hypermethylated CpG

sites became hypermethylated in 1KI and DKI HCT116

cells (Figure S7B). Finally, we compared the methylation status

of HCT116 KO/KI hypermethylated CpG sites (whose methyl-

ation levels in parental HCT116 cells were comparable to those

of the NCCIT NTC [Db value between NCCIT NTC versus



Figure 7. Knockout and Ectopic Expression

of DNMT1 and DNMT3B in HCT116 Colo-

rectal Carcinoma Cells Reveals Conserved

Modes of Regulating 5mC

(A) Spatial distribution plots across intragenic

regions derived from average b values for 5mC

in HCT116 DNMT1/DNMT3B knockout (KO) and

overexpressing (KI) cells derived from the 450K

array. Dashed black box indicates region magni-

fied (to the right).

(B) Percent of significantly differentially methylated

CpG sites (p < 0.05) classified by methylation

status.

(C) Normalized distribution of significantly differ-

entially methylated CpG sites by genomic feature

in HCT116 KO/KI cells.

(D) Heatmap of hypermethylated (DbR 0.15) CpG

sites for HCT116 KO/KI cells in conjunction with

the respective CpG loci in NCCIT DNMT siRNA-

depleted samples stratified by HCT116 WT most-

methylated to least-methylated CpG sites. Dashed

red box indicates magnified region (Avgb-value

[0.50–0.70] in WT). Duplicate CpG sites were

removed.

(E) DNMT3B restricts DNMT1 and TET function at

certain loci. Conserved loci were identified in

NCCIT DNMT3B depletion, NCCIT differentiation,

and HCT116 3BKO, 1KI, and DKI conditions that

gain DNA modifications (5mC and 5hmC); these

same loci significantly overlap with CpGs that

become hypomethylated with DNMT1 depletion,

indicating a regulatory interaction. Additionally,

in NCCIT cells depleted of DNMT3B, 5hmC

increases at these loci, indicating that TETs

are also recruited. Shaded lollipops indicate

the level of each cytosine modification (5mC, 5-

methylcytosine; 5hmC, 5-hydroxymethylcytosine;

uC, unmodified cytosine).

See also Figure S7.
HCT116 wild-type (WT) (�0.10–0.10)]) across all DNMT-

depleted samples (Figure 7D). Sites hypermethylated in 3BKO,

1KI, and DKI cells are those that became hypermethylated

in NCCIT DNMT3B-depleted cells (Figure 7D), indicating that

regulation of 5mC at particular CpG sites is conserved in other

cell types.

DISCUSSION

In the current manuscript, we tackled the important but still

unanswered question of why mammalian genomes contain

four DNAmethyltransferase genes and how each of the encoded

proteins functions independently and cooperatively to establish

and maintain genome-wide patterns of 5mC. This work com-

prehensively addresses this issue by depleting all four DNMTs

individually and in all combinations and assaying the impact

of these perturbations on genome-wide patterns of 5mC and
Cell Reports 9, 1554–1566, No
transcription. In addition, by employing

siRNA to acutely deplete the DNMTs, we

focused on the earliest and most direct

effect of each DNMT on genomic 5mC
patterns. Coupling this system with a cell line that provides infor-

mation on both pluripotency and differentiation, we observed

dynamic changes in 5mC that revealed a number of unexpected

findings. For example, siRNA depletion of DNMT3B resulted in

numerous DNA hypermodification events (increased 5mC and/

or 5hmC) that are not only conserved in other cell types but

also correlate with high-expressing, H3K36me3-marked loci

that become hypomethylated when DNMT1 is depleted,

revealing an interplay between these two DNMTs within gene

bodies. In addition, we identified an important role for DNMT3B

in mediating non-CpG methylation and a role for DNMT3L in

regulating the choice between CpG and non-CpG methylation

activity of DNMT3A/DNMT3B. Finally, we showed that DNMT3B

depletion in NCCIT cells mirrored the methylation and expres-

sion changes that occur during the normal differentiation pro-

gram, and these changes occur at loci bound by DNMT3B.

Taken together, these results provide insight into the differential
vember 20, 2014 ª2014 The Authors 1563



role of each DNMT in positively and negatively regulating cyto-

sine modifications.

A key finding from this study was that depletion of each DNMT

had a distinct impact on different genomic features. Depletion of

DNMT3B by siRNA resulted predominately in hypermethylation

events throughout the genome but particularly centered on

gene bodies. Not only did 5mC increase but 5hmC was also

dynamically regulated at DNMT3B target sites and contributed

to the appearance of DNA hypermethylation as detected using

traditional BGS. To date, the role of gene body methylation re-

mains unclear, although intriguing correlations have been identi-

fied related to differential promoter use and alternative splicing

(Maunakea et al., 2010; Shukla et al., 2011). The recent discovery

of dual-use codons (duons) for transcription factor binding

generates further possible regulatory roles for cytosine modifi-

cations in gene bodies, as it could impact transcription factor

binding (Stergachis et al., 2013). In this regard, our BGS and

TAB-BGS results from the HOXA9 locus showing elevated

5hmC focused specifically at an exon-intron junction upon

depletion of DNMT3B are intriguing. Although this is only a single

example, it raises questions regarding the role of the CpG epige-

netic regulatory hot spots we identified that are sensitive to

DNMT3B levels. To better define loci prone to hypermethylation

uponDNMT3B depletion, we performedMBD-seq and observed

that 5mC increased primarily within introns of high-expressing,

H3K36me3-marked genes. Recent reports identify exon-

intron boundaries as genomic locations that undergo dynamic

regulation of cytosine modifications; Laurent et al. (2010)

observed sharp peaks of cytosine modification across cell lines

in different stages of differentiation and Huang et al. (2014) noted

that Tet2 maintains 5hmC at exon boundaries of high-expres-

sing genes. Taken together with our results, we propose that

DNMT3B target loci are susceptible to dynamic shifts in 5mC

and 5hmC levels, and at least a subset of these may contribute

to important intragenic regulatory processes including RNA

processing.

Further investigation of hypermethylation events induced by

DNMT3B depletion led to one of the more-unexpected findings

to arise from this study: a 5mC regulatory mechanism coordi-

nated by DNMT1 and DNMT3B. Loci that gained 5mC and/or

5hmC upon depletion of DNMT3B correlated significantly with

those that lost methylation upon DNMT1 depletion, suggestive

of coregulation by DNMT1 and DNMT3B. Importantly, these hy-

permethylated loci were conserved in HCT116 cells with ectopic

expression of DNMT1, indicating that the hypermethylation is a

result of DNMT1 activity. Altogether, these results allow us to

propose a mechanism of 5mC regulation in which DNMT3B

occupancy ofmildly tomoderatelymethylated intragenic regions

hinders DNMT1 and/or TET access (Figure 7E). When DNMT3B

is depleted, DNMT1 and/or the TETs gain access to previously

DNMT3B-bound sites and subsequently increase methylation

or allow TET access and conversion of the 5mC to 5hmC (Fig-

ure 7E). Alternatively, DNMT3B has been reported to possess

dehydroxymethylase activity in vitro (Chen et al., 2012); poten-

tially, 5hmC accumulates in the absence of DNMT3B as it is

no longer present to dehydroxymethylate 5hmC to cytosine.

We showed previously that DNMT3B was the DNMTmost highly

enriched in transcribed gene bodies (Jin et al., 2012). DNMT1
1564 Cell Reports 9, 1554–1566, November 20, 2014 ª2014 The Aut
and DNMT3B directly interact in vitro and colocalize (Kim

et al., 2002); however, no direct link between DNMTs and TETs

has been reported. If coordination between DNMT and TET

activity exists, such as through an adaptor protein like UHRF1

that binds 5hmC and can also recruit DNMT1 for maintenance

methylation (Frauer et al., 2011; Sharif et al., 2007), then the

net effect of reduced DNMT3B might primarily be elevated

5hmC, an idea that will require further testing. Our results there-

fore add another layer of complexity to the coregulation of 5mC

by DNMT1 and DNMT3B; in addition to the positive effect on

5mC genome-wide by these two enzymes observed by our lab-

oratory and others, an opposing role also exists dependent on

genomic context. This antagonistic relationship may also have

implications for the creation of aberrant 5mC patterns in cancer

where the DNMTs and TETs are often aberrantly expressed or

mutated. The particular milieu of DNMT deregulation potentially

in the setting of deregulated TET activity may drive methylation

changes differently in distinct regions of the genome (e.g., pro-

moter hyper- and intragenic hypomethylation). Given that

stem-cell-like characteristics are frequently observed in cancer

cells, our finding that DNMT3B depletion recapitulates differen-

tiation-induced 5mC changes suggests that some epigenetic

changes contributing to tumor stem cell development may

reflect deregulated DNMT activity impacting intragenic regulato-

ry mechanisms such as alternative promoter selection and/or

splicing. Future work aimed at elucidating this regulatory mech-

anism will be crucial to fully understanding its contribution to the

cancer epigenome.

Non-CpG methylation is most abundant in pluripotent embry-

onic cells (Lister et al., 2009), accumulates during development

of the adult brain (Lister et al., 2013), and has thus far been

attributed almost exclusively to DNMT3A (Ramsahoye et al.,

2000). Our results challenge this paradigm by showing that,

at least for sites interrogated on the 450k array, DNMT3B is a

major contributor to non-CpG methylation. DNMT3L restricted

the activity of DNMT3A and DNMT3B toward non-CpG sites

(Figure 3D). Furthermore, within regions in which we confirmed

the presence of non-CpG methylation using BGS, CpG sites

were highly methylated, consistent with observations that

non-CpG methylation occurs adjacent to highly methylated

CpG sites (Lister et al., 2009; Ziller et al., 2011). At loci we as-

sayed using BGS, DNMT3B depletion consistently resulted in

increased 5mC at CpGs adjacent to hypomethylated non-

CpGs, whereas combined depletion of DNMT3B and DNMT1

resulted in loss of methylation at CpG and non-CpG sites

(DROSHA and USP14 in Figure S5A). We therefore propose

that DNMT3B occupies certain loci to confer non-CpG methyl-

ation, whereas concurrently restricting access of DNMT1

(and possibly also the TETs) to CpG sites. Depletion of

DNMT3B then results in hypomethylation of non-CpG and hy-

permethylation of CpG sites as DNMT3B occupancy is lost

and DNMT1 occupancy is gained (Figure 7E). One caveat to

this model is our limited ability to decipher relationships be-

tween non-CpG methylation and nearby CpG methylation due

to the low-density coverage of non-CpG sites on the 450K

array. Non-CpG methylation correlates positively with expres-

sion in ESCs but negatively with expression in adult brain

(Lister et al., 2009, 2013). Indeed, Lister and colleagues noted
hors



that DNMT3A expression correlates with accumulation of non-

CpG methylation and synaptogenesis in developing brain

(Lister et al., 2013). Collectively, these studies demonstrate

that both DNMT3A and DNMT3B methylate non-CpG sites,

but one particular DNMT3 may predominate in a developmental

stage- or cell-type-specific manner.

In summary, our results clarify the division of labor among the

DNMT family members and reveal regulatory interactions,

including opposing roles for DNMT1 and DNMT3B dependent

on genomic feature and cytosine dinucleotide type, and evi-

dence for DNMT3L participating in the choice of substrate

by DNMT3A and DNMT3B. The only currently US-Food-and-

Drug-Administration-approved DNA methylation inhibitors, 5-

aza-20-deoxycytidine and 5-azacytidine, are effective treatments

for acute myeloid leukemia, yet typically responses are transient

(Malik and Cashen, 2014). Both agents broadly and nonspecifi-

cally inhibit the DNMTs and result in significant DNA damage

(Palii et al., 2008). Assuming the aza nucleosides act through

DNA methylation and not DNA damage, therapeutic efficacy

may be enhanced by development of DNMT inhibitors that

bind the free enzyme rather than require incorporation into the

DNA. Our results add further to this idea by showing that inhibit-

ing each DNMT may have a different consequence on genomic

5mC patterns and broad inhibition may not be the most effective

way to normalize gene expression. Depletion of DNMT1 results

in widespread hypomethylation over the genome with some

preference toward gene bodies, which may result in altered

intragenic regulatory processes that may or may not increase

therapeutic effect. On the other hand, inhibition of DNMT3B

will have less effect on total 5mC but cause more specific

changes including some promoter hypomethylation and gene

body hypermethylation events. Given that the key lesion in the

four DNA epigenetic marks now known to exist that drives tumor

initiation and promotion is not known (e.g., 5mC or other mark,

promoter versus gene body methylation), development and

testing of isoform-specific inhibitors in an attempt to increase

therapeutic efficacy of DNMT inhibitors and reduce their off-

target side effects appears warranted.

EXPERIMENTAL PROCEDURES

Cell Culture, siRNA Transfections, and DNA/RNA Extraction

NCCIT andHCT116 parental cells (fromAmerican Type Culture Collection) and

the isogenic derivatives of parental HCT116 (Rhee et al., 2002; Sun et al., 2008)

were grown in McCoy’s 5A medium supplemented with 10% fetal bovine

serum and L-glutamine. HCT116 DNMT overexpression lines (Sun et al.,

2008) were grown under G418 selection (750 mg/ml). Differentiation of NCCIT

was induced by addition of 10 mM all-trans retinoic acid (Sigma-Aldrich) for

7 days. On-TARGETplus and siGENOME siRNA SMARTpools (Dharmacon;

Thermo Scientific) targeting a single gene were used against DNMT1 (L-

004605-00-0005), DNMT3A (M-006672-03-0005), DNMT3B (L-006395-

00-0005), and DNMT3L (L-013637-01-0005) in individual and combination

experiments. siRNA transfection with a negative control nontargeting siRNA

(D-001206-13-20; Dharmacon; Thermo Scientific) was performed in parallel.

siRNA transfection was performed with PepMute transfection reagent (Signa-

Gen) according to the manufacturer protocol. Total RNA was extracted by

Trizol homogenization and purified according to the manufacturer protocol

(Life Technologies). Genomic DNA was extracted by proteinase K digestion

and phenol:chloroform extraction. Refer to the Supplemental Experimental

Procedures for the full siRNA transfection protocol and siRNA rescue experi-

mental conditions.
Cell Re
Expression Analysis by qRT-PCR and Microarray

cDNA synthesis and qRT-PCR were performed in triplicate as described (Jin

et al., 2012). Primer sequences are listed in Table S1. Gene-expression

profiling was performed using Affymetrix Human Gene 1.0 ST arrays. All

samples were analyzed in duplicate at the Georgia Regents University Cancer

Center Genomics Core facility as described (Jin et al., 2012).

Western Blot

Western blots for protein expression were performed using the LI-CORBiosci-

ences imaging system following the manufacturer protocol. Detailed condi-

tions and antibodies are listed in the Supplemental Experimental Procedures.

450K Array Data Analysis

DNA samples were processed on the HumanMethylation450 BeadChip array

(Illumina) and analyzed as described in the Supplemental Experimental

Procedures.

MBD-Seq

MBD-seqexperimentswereperformedaspreviouslydescribed (Jin et al., 2012)

and analyzed as described in the Supplemental Experimental Procedures.

MeDIP/hMeDIP Pull-Down Assays

MeDIP experiments were performed as previously described (Putiri et al.,

2014) with the 33D3 5mCantibody (Diagenode). hMeDIP experiments followed

the same protocol as MeDIP, with the exception that 2.5 mg of 5hmC antibody

(in house) was used for 5hmC capture. Procedures for the generation and

validation of the 5hmC antibody are provided in the Supplemental Experi-

mental Procedures.
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