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Abstract

Characterizing the size-independent model for approval voting of Falmagne and

Regenwetter (J. Math. Psychol. 40 (1996) 152) was shown by Doignon and Regenwetter

(J. Math. Psychol. 41 (1997) 171) to be equivalent to determining all facets of the approval-

voting polytope. Here, we prove that the facets of this polytope correspond in a natural way to

certain antichains in a power set. Several results on the approval-voting polytope are then

derived. For instance, all facet-defining inequalities are characterized, and the group of

automorphisms is completely described. On the other hand, providing an explicit listing of

all of the facets is shown to be at least as intricate as listing all connected graphs on a given,

finite set.
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1. Introduction

Throughout the text, S is a finite set of cardinality n; with nX2: We denote by
PðSÞ the power set of S; and by PðS; kÞ the collection of all k-sets contained in S; for
0pkpn: In PðSÞ partially ordered by inclusion, a chain (resp. antichain) B is a
collection B of subsets of S such that for every pair of distinct sets in B; one (resp.
none) is included in the other. A chain C is complete if it meets PðS; kÞ for all k with
0pkpn: A ranking of S is a bijection from f1; 2;y; ng to S: Each ranking r
determines a complete chain defined by

C ¼ f|; frð1Þg; frð1Þ; rð2Þg;y; frð1Þ; rð2Þ;y; rðnÞgg:

This yields a one-to-one correspondence between the rankings of S and the complete
chains in PðSÞ: Consequently, there are n! complete chains in PðSÞ:
Let I be any finite set. The real vector space RI has one coordinate per element

of I : We denote, the coordinate corresponding to iAI by xi: More generally,
for each subset J of I ; we define xðJ Þ as the formal sum of the coordinates xj

in RI with jAJ ; that is, we let xðJ Þ ¼
P

jAJ xj: The characteristic vector of a

subset J of I is the vector vJ in RI whose i-coordinate equals 1 if iAJ and 0
if ieJ :
Assume I ¼ PðSÞ in this paragraph. To any collection B of subsets of S; we

associate as above its characteristic vector vB in RPðSÞ: The approval-voting polytope

Pn
AV is the convex hull of the characteristic vectors of all complete chains in PðSÞ;

that is,

Pn
AV ¼ convfvCARPðSÞ j C is a complete chain in PðSÞg:

Obviously, this 0/1-polytope has n! vertices. It was introduced by Doignon
and Regenwetter [8], with vertices corresponding to rankings of the set S:
The motivation is as follows: Falmagne and Regenwetter [10] define a size-
independent model for approval voting and raise the question of characterizing
all probability distributions generated by this model. Later, Doignon and
Regenwetter [8] show that this question is equivalent to the problem of finding a
linear description of the approval-voting polytope Pn

AV; that is, a description by

linear equations and inequalities. In geometric terms, such a description with a
minimum number of (in)equalities amounts to a description of the affine hull
together with an enumeration of all the facets of this polytope. Doignon and
Regenwetter [8] prove that the dimension of Pn

AV is 2n � n � 1; and describe several

families of facets. For np5; they find using the porta software that their list
contains all facets. Here, for any natural number n at least 2, we put the facets of
Pn
AV in a one-to-one correspondence with certain antichains of PðSÞ: Two classical

results will be the main ingredients of our proof: first, a polyhedral characterization
of perfect graphs, due to Fulkerson [11–13], Lovász [14] and Chvátal [3] and
second, Dilworth’s Theorem [6] on chain coverings of posets. As we will see, the
combination of these two results directly yields a minimum, linear characterization
of a similar polytope, whose vertices are all characteristic vectors of chains (complete
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or not) of PðSÞ: Because Pn
AV is a face of this larger polytope, its facets can be

identified through a careful analysis of some antichains of PðSÞ: Several problems
about Pn

AV are then easily solved. For instance, we describe here the group of

automorphisms. Further results on facet-producing antichains are collected else-
where [7].
As regards terminology, we generally follow Bollobás [1] for graphs, Trotter [18]

for posets, and Ziegler [20] for convex polytopes.

2. A complete linear description

The following result, of central interest to us, can also be found in [4,17]:

Theorem 1 (Fulkerson [11–13], Lovász [14], Chvátal [3]). For a finite graph G, the

following two conditions are equivalent:

(i) G is perfect;
(ii) the polytope

PðGÞ ¼ fxARV j 0px and xðKÞp1 for all complete subgraphs K of Gg
has only integral vertices.

The next proposition is a well-known reformulation of Dilworth’s chain covering
theorem [6].

Theorem 2. The incomparability graph of any finite poset is perfect.

Let G be the incomparability graph of PðSÞ; and let P ¼ PðGÞ: Because the
complete subgraphs in G coincide with the antichains in PðSÞ; we have

P ¼ fxARPðSÞ j 0px and xðAÞp1 for all antichains A in PðSÞg:

Theorems 1 and 2 imply that P is a 0/1-polytope. Its vertices are exactly the
characteristic vectors of chains in PðSÞ: As a consequence, we derive in this way a
complete linear description of what should be called the approval-voting polytope for

weak orders on S; where a weak order on S is any complete and transitive relation on
the finite set S (with ‘ties’ allowed). Moreover, the facets of this polytope correspond
to maximal antichains in PðSÞ: this is a particular case of a general result of Padberg
[16], which implies that the facets of the polytope PðGÞ in Theorem 1 are defined by
the inequalities 0pxu for each node u of the graph G; and xðKÞp1 for all maximal
cliques K of G:
Now, consider the face of P which is defined by the valid inequality

xðPðSÞÞpn þ 1: By definition, this face is a 0/1-polytope whose vertices are exactly
the characteristic vectors of complete chains in PðSÞ; hence it is equal to Pn

AV: This is

rephrased in the next theorem.
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Proposition 1. For all nX2; the approval-voting polytope Pn
AV equals the set of points

in RPðSÞ that satisfy

xðPðS; kÞÞ ¼ 1 for 0pkpn; ð1Þ

xðAÞp1 for all antichains A in PðSÞ: ð2Þ

We refer to Eq. (1) as layer equations and to inequalities (2) as antichain

inequalities.

Remark 1. The nonnegativity inequality 0pxX is implied by the antichain inequality
xðAÞp1 for A ¼ PðS; jX jÞ\fXg and by the layer equation xðPðS; jX jÞÞ ¼ 1:

Remark 2. The layer equations are readily seen to be independent. Further-
more, they form a complete system of equations for Pn

AV in the sense that every

linear equation that is satisfied by all points of Pn
AV is implied by the system

(cf. [8]).

3. The facets

When A is an antichain in PðSÞ; we denote by FðAÞ the face of the approval-
voting polytope Pn

AV defined by the antichain inequality xðAÞp1: Proposition 1

implies that for each facet F of Pn
AV; there exists an antichain A in PðSÞ such that

F ¼ FðAÞ: In this section, we characterize the antichains whose corresponding face is
a facet. Notice that the vertex vC of Pn

AV lies in the face FðAÞ if and only if the

complete chain C meets the antichain A:
For 0pkpn; we refer to the antichain PðS; kÞ as the kth layer, and if moreover

0okon; as a nontrivial layer. The Johnson graph JðS; kÞ has PðS; kÞ as its set of
nodes, with adjacency of two distinct nodes A; B being defined by any of the
following four equivalent conditions:

ABB 3 (XAPðS; k þ 1Þ : ACX and BCX

3 (YAPðS; k � 1Þ : YCA and YCB

3 jA,Bj ¼ k þ 1

3 jA-Bj ¼ k � 1:

It is easy to prove that JðS; kÞ is a connected graph which remains connected
after deletion of any vertex (Lemma 3 provides a stronger property of the
graph).
The next lemma proves that the antichains A such that FðAÞ is the whole

approval-voting polytope Pn
AV are exactly the layers.

Lemma 1. Let A be an antichain in PðSÞ: Then A meets every complete chain in PðSÞ
if and only if A is a layer.
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Proof. By definition, any layer meets every complete chain. To prove the converse,
assume now that A is not a layer, and denote its complement in PðSÞ by B: There
must then be some nontrivial layer PðS; kÞ that meets both A and B: By the connexity
of the Johnson graph JðS; kÞ; there are subsets A and B such that AAA; BAB with
moreover ABB: Take any complete chain C containing the three subsets A-B; A and
A,B of respective sizes k � 1; k and k þ 1: This chain C meets the antichain A only
at A: Then, the complete chain ðC\fAgÞ,fBg does not meet A: &

In the following proofs, Lemma 1 will often be applied to intervals ½|;X � or
½X ;S� of PðSÞ: This makes sense because any such interval is isomorphic to some
power set.
Let @ denote the set of all nonempty antichains in PðSÞ which are not layers. For

A;A0A@; we say that A is dominated by A0 if every complete chain intersecting A
also intersects A0: When A is dominated by A0; we write ALA0: As usual, AKA0

means ALA0 and not A0LA: Notice that ADA0 implies ALA0:

Lemma 2. The dominance relation L is a partial ordering of @:

Proof. The reflexivity and transitivity of L are obvious. To prove antisymmetry,
suppose ALA0 and A0LA for distinct A and A0 in @: By exchanging if necessary the
two antichains, we may assume that some set X belongs to A\A0: Let k ¼ jX j: We
claim that every Y in PðS; kÞ which is adjacent to X belongs to A\A0: Because the
Johnson graph JðS; kÞ is connected, the claim implies that A is a layer, a
contradiction.

To prove the claim, consider the two intervals ½|;X � and ½X ;S� of PðSÞ: By
Lemma 1, the restriction of A0 to one of these intervals is a nontrivial layer inside this
interval because otherwise there would exist a complete chain in PðSÞ intersecting A
and disjoint of A0; a contradiction. In particular, for every Y adjacent to X in
JðS; kÞ; there exists a ZAA0 such that X and Y are comparable to Z in PðSÞ: Hence
YeA0: Considering the two intervals ½|;Z� and ½Z;S�; we derive this time that the
restriction of A to one of these two intervals is a layer in that interval. Because this
layer contains X ; it also contains Y ; and thus Y belongs to A: Consequently, the
claim holds. &

Let F denote the collection of all faces of the approval-voting polytope Pn
AV that

are of the form FðAÞ with AA@: All facets belong to F because of Proposition 1.
Clearly, ALA0 if and only if FðAÞDFðA0Þ: Hence, it follows from Lemma 2 that
FðAÞ ¼ FðA0Þ implies A ¼ A0: In conclusion, the mapping A/FðAÞ is an
isomorphism from the poset ð@;LÞ onto the poset ðF ;DÞ: This proves the next
proposition.

Proposition 2. The facets of the approval-voting polytope Pn
AV biunivocally correspond

to the maximal elements of ð@;LÞ; with FðAÞ being the facet corresponding to the

maximal element A:
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The next proposition characterizes the maximal elements of ð@;LÞ: Given any
subset A of PðSÞ; we define Ai ¼ A-PðS; iÞ for 0pipn:

Proposition 3. An element A of @ is maximal for L if and only if it is of one of the

following two types.

Unilayer antichain with parameter k: There exists some k with 0okon and some Z

in PðS; kÞ such that A ¼ PðS; kÞ\fZg:
Bilayer antichain with parameter k: There exists some k with 0okon � 1 such that

(C1) the graph induced on Ak by JðS; kÞ is connected,
(C2) the graph induced on Akþ1 by JðS; k þ 1Þ is connected,
(C3) Ak ¼ fXAPðS; kÞ j 8YAAkþ1 : XgYg and

(C4) Akþ1 ¼ fZAPðS; k þ 1Þ j 8TAAk : TgZg:

When A is a uni- or bilayer antichains as in Proposition 3, we call FðAÞ a unilayer

or bilayer facet with parameter k: For a bilayer antichain, conditions (C3) and (C4)

imply Aia| if and only if iAfk; k þ 1g; because A is an antichain. The four
conditions (C1)–(C4) can be shown to be mutually independent.

Proof. Assume that A is a maximal element of @ for L: Consider the least k such
that A meets the kth layer. If ADPðS; kÞ; it is easily seen that A is a unilayer
antichain. Assume now AD/ PðS; kÞ: Then the collection B defined by

B ¼ ðA\AkÞ,fYAPðS; k þ 1Þ j (XAAk : XCYg

is again an antichain, and it satisfies ALB and AaB: Thus Be@; so B is a layer.
Hence there is some k such that ACPðS; kÞ,PðS; k þ 1Þ: The maximality of A for
L; and thus forD; implies (C3) and (C4). Finally, the connectedness conditions (C1)
and (C2) can be established using arguments as above. Indeed, if Ak were not
connected, then denote by D any connected component of Ak: Because

B ¼ ðA\DÞ,fYAPðS; k þ 1Þ j (XAD : XCYg

is in @ and satisfies AKB; a contradiction is reached.
Conversely, we show that any uni- or bilayer antichain A with parameter k is

maximal forL: Assume that there exists some antichain A0 in @ with ALA0: In view
of Lemma 2, it suffices to show A0LA:
First, note that A is maximal for D in @: In other words, any collection of subsets

of S properly containing A either is not an antichain or is a layer. This is trivial in
case A is a unilayer antichain and follows from conditions (C3) and (C4) in case A is
a bilayer antichain.
For each XAA; we derive from Lemma 1 that A0 contains a layer LX of one of the

two intervals ½|;X � and ½X ;S�: Let hðX Þ denote the common cardinality of all
elements of LX : As is easily seen, hðXÞ ¼ jX j; LX ¼ fXg and XAA-A0 are
equivalent conditions on X : Furthermore, if YAA is such that jY j ¼ jX j and YBX ;
then we have hðYÞ ¼ hðXÞ:
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Now, suppose that there exists a complete chain C meeting A0 but disjoint of A; let
A0 denote the unique subset in the intersection of A0 and C; and let c0 denote the
cardinality of A0: We claim hðXÞ ¼ c0 for all XAA: By maximality of A for D in @;
this claim implies that A0 contains the layer PðS; c0Þ; a contradiction.
If A is a unilayer antichain, then the claim holds because the Johnson graph

JðS; kÞ remains connected when any vertex is removed from this graph. Next, assume
that A is a bilayer antichain. Let C and D denote the unique subsets of cardinality
respectively k and k þ 1 in C-A: By conditions (C3) and (C4), we can find A in Ak

and B in Akþ1 such that ACD and CCB: Then we have hðAÞ ¼ hðBÞ ¼ c0 and, by
conditions (C1) and (C2), the claim holds. &

Corollary 1. The inequalities that define facets of the approval-voting polytope Pn
AV are

exactly the inequalities of the form

lxðAÞ þ
Xn

i¼0
mixðPðS; iÞÞ p lþ

Xn

i¼0
mi; ð3Þ

where lARþ
� ; A is a maximal antichain in ð@;LÞ as in Proposition 3, and

m0; m1;y; mnAR: The facet defined by Eq. (3) is also defined by the antichain

inequality xðAÞp1:

As will be seen in the next section, several other properties of Pn
AV can be easily

derived from Propositions 2 and 3. Nevertheless, providing an explicit enumeration
of all facets appears to be intricate. To see this, assume nX4 and take any subset A
of PðS; 2Þ,PðS; 3Þ which meets both layers. We derive a graph F ¼ ðS;A2Þ:
Condition (C4) in Proposition 3 imposes that A3 equals the collection of all the
stable sets of size 3 of F: If F has at least two isolated nodes, then the only additional
requirement for A to be a maximal element of ð@;LÞ is that the graph F be almost

connected, that is: besides its isolated nodes, F has only one connected component.
From this subcase, we deduce that enumerating all facets of Pn

AV is at least as

intricate as enumerating all labelled, connected graphs on at most n � 2 nodes.
Further results on the case k ¼ 2 are given by Doignon and Fiorini [7].

4. The symmetries

In this section, we assume nX4:Doignon and Regenwetter [8] exhibit a group G of
8 � n! affine symmetries of the approval-voting polytope Pn

AV; and ask whether these

affine symmetries induce the full group AutðPn
AVÞ of (combinatorial) automorph-

isms. The affirmative answer will be established here. As a consequence, any
automorphism of Pn

AV is the restriction of some affine symmetry. Notice in passing

that the graph of the polytope Pn
AV has a group of automorphisms which is much

larger than G; as can be inferred from [9].
Each permutation a of S induces a permutation of the set of all rankings r :

f1; 2;y; ng-S; that maps ranking r onto ranking a3r: In terms of complete chains,
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we get the permutation C/aðCÞ: As in [8], there results the affine symmetry of Pn
AV

mapping vertex vC onto vertex vaðCÞ: The restriction to the vertex set of Pn
AV of such a

symmetry is called a relabelling automorphism (induced by a). On the other hand, any
permutation b of f1; 2;y; ng induces the permutation of the set of all rankings that
maps ranking r onto ranking r3b; that is: the elements of S are shuffled according to
the given permutation b of the ranks. The complete chain

C ¼ f|; frð1Þg; frð1Þ; rð2Þg;y; frð1Þ; rð2Þ;y; rðnÞgg

is then mapped onto the complete chain

D ¼ f|; fr3bð1Þg; fr3bð1Þ; r3bð2Þg;y; fr3bð1Þ; r3bð2Þ;y; r3bðnÞgg:

Hence, we can associate to b the permutation Ub : vC/vD of the set of all vertices of

Pn
AV; that we call the reshuffling permutation induced by b: According to [9], this

reshuffling permutation Ub is an automorphism of Pn
AV; which is the restriction of an

affine symmetry, if and only if Ub belongs to the group generated by Us and Ut;

where

s ¼ ð1; 2Þ; t ¼ ð1; nÞ ð2; n � 1Þ?ðIn=2m;Jn=2nÞ:

As in [9], Us is called the initial switch automorphism and Ut the reversing

automorphism. Together, Us and Ut generate a group isomorphic to the dihedral
group D8 of order 8 (remember that we assume nX4).
Because every relabelling automorphism commutes with every reshuffling

automorphism, all of these automorphisms generate a group G isomorphic to D8 �
SymðnÞ (cf. [9]). To show G ¼ Aut ðPn

AVÞ; we first determine orbits of facets under

the action of Aut ðPn
AVÞ; by making intensive use of the numbers of vertices on the

various facets. For a face F ; we use F (resp. vert F ) to denote the set of vertices on F

(resp. not on F ). Thus vert F ¼ ðvert Pn
AVÞ\vert F :

Consider a facet FðAÞ with A as in Proposition 3. If A is a unilayer antichain with
parameter k; the number of vertices on FðAÞ equals

n!� k! � ðn � kÞ!: ð4Þ

This expression strictly increases when k varies from 1 to In=2m and strictly
decreases when k varies from Jn=2n to n � 1:
If A is a bilayer antichain with parameter k; we use a ¼ jAkj and b ¼ jAkþ1j to

express the number of vertices on FðAÞ as
k! � ðn � k � 1Þ! � ða � ðn � kÞ þ b � ðk þ 1ÞÞ: ð5Þ

Together with the following lemma, Eqs. (4) and (5) produce some interesting
consequences that we collect in Proposition 4. For the sake of simplicity, we set
Dk ¼ kðn � kÞ: Note that Dk is the degree of any node in the Johnson graph JðS; kÞ:

Lemma 3 (Watkins [19], Mader [15], Daven and Rodger [5]). The Johnson graph

JðS; kÞ is Dk-connected.

For convenience, given ADPðSÞ and 0pipn; we define %Ai ¼ PðS; iÞ\Ai:
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Proposition 4. Let A be a bilayer antichain with parameter k, thus 0okon � 1:
Moreover, let D and E be unilayer antichains with parameter equal to, respectively, k

and k þ 1: We have for the corresponding facets of Pn
AV:

jvert FðAÞjpminfjvert FðDÞj; jvert FðEÞjg:
Moreover, this inequality becomes an equality in exactly two cases:

(a) k ¼ 1; jA1j ¼ 1 and then jvert FðDÞj ¼ jvert FðAÞjojvert FðEÞj;
(b) k ¼ n � 2; jAkþ1j ¼ 1 and then jvert FðDÞj4jvert FðAÞj ¼ jvert FðEÞj:

Proof. We may assume kpðn � 1Þ=2 because the case k4ðn � 1Þ=2 is transformed
into this one by applying the reversing automorphism. Then, jvert FðDÞjp
jvert FðEÞj:
Because Aka|; we derive jAkþ1jXn � k: Take CAAkþ1: Because n � kp

ðk þ 1Þðn � k � 1Þ ¼ Dkþ1 follows from 1pkpðn � 1Þ=2; Lemma 3 implies that
the Johnson graph JðS; k þ 1Þ is ðn � kÞ-connected. Thus, there exist in this graph

n � k paths starting at C and ending in Akþ1; with the further condition that any two
of these paths have exactly node C in common (see Exercise 13 on p. 93 of [1]). On
each of these paths, we find a pair ðA;BÞ of adjacent nodes, with AAAkþ1 and

BAAkþ1: Then A-B is in Ak; and the k! � ðn � k � 1Þ! complete chains through
A-B and B correspond to vertices not on the facet FðAÞ: The n � k sets B being
distinct, we find that the number of vertices not on FðAÞ is at least k! � ðn � kÞ!;
which is the number of vertices not on FðDÞ: There follows the desired inequality

jvert FðAÞjpjvert FðDÞj: ð6Þ
Moreover, by similar arguments, Eq. (6) gives a strict inequality when jAkjX2:

Indeed, we then have AkXn � k þ 1: On the other hand, n � k þ 1pðk þ 1Þ
ðn � k � 1Þ follows from nX4 and k a natural number with kpðn � 1Þ=2: Hence, we
can use the (n � k þ 1)-connectivity of the Johnson graph JðS; k þ 1Þ to derive the
strict inequality in Eq. (6).
There remains to show that the inequality is also strict when jAkj ¼ 1 together

with k41: This is left to the reader. &

The next three lemmas will be used in the proof of Proposition 5, the main result in
this section.

Lemma 4 (Brouwer et al. [2]). The automorphism group of the Johnson graph JðS; kÞ;
with 0okon; is isomorphic to

Z2 � Sym ðnÞ if n ¼ 2kX4;

Sym ðnÞ otherwise:

Let Gn be the restriction of the comparability graph of PðSÞ to the union of the
layers PðS; kÞ for n=2� 1pkpn=2þ 1: In other words, Gn is the graph whose vertex
set is the union of the two central layers of PðSÞ if n is odd and of the three central

ARTICLE IN PRESS
J.-P. Doignon, S. Fiorini / Journal of Combinatorial Theory, Series B 92 (2004) 1–12 9



layers of PðSÞ if n is even, and in which two distinct sets X and Y are adjacent if they
are comparable for inclusion.

Lemma 5. For all nX2; the automorphism group of the graph Gn is isomorphic to

Z2 � SymðnÞ:

Proof. We use Lemma 4. If n is odd, the structure of the Johnson graphs
JðS; ðn � 1Þ=2Þ and JðS; ðn þ 1Þ=2Þ can be derived from that of Gn; although their
two sets of vertices are indistinguishable.
If n is even, all nodes of Gn in PðS; n=2Þ have the same degree, which differs from

the degree of any other node in Gn: Moreover, the structure of JðS; ðn=2ÞÞ is
recoverable from that of Gn: &

When ZAPðS; kÞ; we write FZ for the unilayer facet FðPðS; jZjÞ\fZgÞ:

Lemma 6. Let A be a bilayer antichain with parameter k. Then

vert FðAÞ ¼
\

fvert FA,vert FB j AAAk;BAAkþ1;ACBg:

The proof is easy and therefore skipped. For n ¼ 2 and n ¼ 3; the group AutðPn
AVÞ

does not fit into the general scheme provided in the next proposition: it is then of
order 2, resp. 72 (see [9]).

Proposition 5. For nX4; the automorphism group of the approval-voting polytope Pn
AV

is isomorphic to D8 � SymðnÞ:

Proof. The case n ¼ 4 is established in [9], so we take here nX5: It suffices to show
that the total number of automorphisms does not exceed 8 � n!: This is due to the fact
that Aut ðPn

AVÞ has a subgroup isomorphic to D8 � SymðnÞ:
Let M ¼ fkAZ j n=2� 1pkpn=2þ 1g: From Proposition 4, we infer that the

unilayer facets with parameter in the set M are the facets of Pn
AV with the highest

possible number of vertices when n is odd, and with the two highest possible numbers
of vertices when n is even. Consequently, every automorphism of Pn

AV permutes the

unilayer facets with parameter in M among themselves. By the canonical
identification of the facet FX with the set X ; we obtain for each automorphism a
of Pn

AV a permutation a0 of the vertex set of Gn: Because two distinct sets X and Y are

adjacent in Gn if and only if vert FX and vert FY share a common vertex, the
permutation a0 is an automorphism of Gn for each automorphism a of Pn

AV: We thus

derive a group homomorphism f : AutðPn
AVÞ-AutðGnÞ : a/a0: In view of Lemma

5, it suffices now to prove that the kernel of f has at most four elements.
From now on, assume that a belongs to the kernel of f ; in other words, that a

stabilizes every unilayer facet with parameter in the set M: First, we prove by
induction on c that a stabilizes any unilayer facet with parameter in

Ic ¼ fkAZ j n=2� cpkpn=2þ cg

ARTICLE IN PRESS
J.-P. Doignon, S. Fiorini / Journal of Combinatorial Theory, Series B 92 (2004) 1–1210



for c ¼ 1; 2;y;Iðn þ 1Þ=2m� 2: Note that I1 ¼ M: Since a belongs to the kernel of
f ; the induction thesis holds for c ¼ 1: Now assume that it holds for some c with
1pcpIðn þ 1Þ=2m� 3 and let us prove that it also holds when c is replaced with
cþ 1: By Lemma 6, the automorphism a stabilizes every bilayer facet FðAÞ such that
A meets two layers PðS; jÞ with j in Ic: Let Dc denote the set Icþ1\Ic: Thus Dc ¼
fn
2
� l � 1; n

2
þ l þ 1g if n is even and Dc ¼ fnþ1

2
� l � 1; n�1

2
þ l þ 1g if n is odd.

Clearly, each unilayer facet with parameter in Dc is either stabilized by a or mapped
by a to a distinct facet of same cardinality which is not stabilized by a: Then
Proposition 4 implies that a permutes the unilayer facets with parameter in Dc

among themselves. Let X be a subset of S with jX jADc: Without loss of generality,
assume that jX jon=2: Let L denote the collection of all subsets Y of S such that
XCY and jY j ¼ jX j þ 1: By hypothesis, we know that all unilayer facets FY with
YAL are stabilized by a: Moreover, we know that a maps FX to some unilayer facet
FX 0 with jX 0jADc: As X is comparable to every YAL; we conclude that X 0 is
comparable to every YAL; and therefore X ¼ X 0: In conclusion, the induction thesis
holds for cþ 1:
When X is any subset of S of cardinality 1 or n � 1; we denote by HX the unique

bilayer facet FðAÞ such that the intersection of A and PðS; 1Þ,PðS; n � 1Þ is exactly
fXg: By what precedes and by Proposition 4, the automorphism a maps
every unilayer facet FX with jX jAf1; n � 1g either to a unilayer facet FX 0 with
jX 0jAf1; n � 1g or to a bilayer facet HX 00 with jX 00jAf1; n � 1g: If aðFX Þ ¼ FX 0 ; then
we have X ¼ X 0 by an argument of the last paragraph. By adapting the latter
argument, it is easy to show that aðFX Þ ¼ HX 00 implies X ¼ X 00: Moreover, if some
unilayer facet with parameter 1 is stabilized, then each unilayer facet with parameter
1 is stabilized. This follows from the following three observations:

* vert Pn
AV is partitioned by the subsets vert FX ; for XAPðS; 1Þ;

* vert Pn
AV is partitioned by the subsets vert HY ; for YAPðS; 1Þ;

* for X ;YAPðS; 1Þ; the subsets vert FX and vert HY have an empty intersection if
and only if X ¼ Y :

Similar arguments can be used for the unilayer facets with parameter n � 1: It
follows that the kernel of f consists of at most four automorphisms. &
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