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1, INTRODUCTION 

We are here mainly interested in the regularity of weak solutions of 
elliptic equations of the form 

n a 
,Fl ax, 4x9 Du) = b(x), XEQ, (1.1) 

where Q is an open subset of R” (n > 2) and where ui satisfy some non- 
standard growth conditions (that we call briefly p,q-growth conditions) like, 
for example, 

(1.2) 
i, i 

Id (x 01 < M(l + (512)(q--2)‘2 c ’ 7 V{ER”, a.e. XEQ, Vi, j, (1.3) 

for some positive constants m, A4, and for exponents q 2 p 2 2. 
Under (1.2), (1.3), and some other assumptions, by assuming also that 

the quotient q/p is sufficiently close to one in dependence on n (precisely, 
if q/p c n/(n - 2)), then we prove that every weak solution to (1.1) of class 
?4’:;,4(0) is locally Lipschitz-continuous in Q. Moreover, there are positive 
constants 8, c, and 0 2 1 such that 

ll(1 + IW2)1’211~y~p~~c 
( 
& e ll(1 + I~42Y’211Lu(i3R) 

> 
(1.4) 

for every p, R (0 < p < R < p + 1) such that the balls B,, B, of radii respec- 
tively p and R (and with the same center) are compactly contained in Q. 

The previous regularity result can be applied, for example, to equations 
1 
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studied in the setting of Orlicz spaces (see, for example, [3, 5, 8, 173) of 
the form 

igl$ (a(x) g(lDu12) UJ = b(x), (1.5) 

where a(x) is a Lipschitz-continuous function in 52 bounded from below by 
a positive constant, b is bounded in Q and where g is the derivative of an 
N-function (see [9]) that, if it is not a power, then it can be typified by 

g(l)=; ((1 +t)p’210g(l +t)). (1.6) 

If we pose a’(~, 5) = a(x) g(]512) ri, then for every E >O there are con- 
stants m and M( = M(E)) such that ui satisfy (1.2), (1.3) with q = p + E. 

Similar results hold for the Euler’s equation of the functional F, of the 
type recently studied by Zhikov [19], given by 

F(u) = s, (1 + ]Du[~)+) dx. (1.7) 

If a(x) is continuous in D then, locally in every ball B, with radius R 
sufficiently small, (1.2) and (1.3) are satisfied, again with q = p + E. 

Another example of application of the regularity results of this paper is 
to elliptic equations of the form 

ic, & (u(xk)+$ (l~,l”-2u,,)=b(x) I n 
(1.8) 

with b(x) locally bounded in $2, u(x) locally Lipschitz-continuous in Q 
bounded from below by a positive constant and with q 2 2 sufficiently close 
to 2. Note that p.d.e. of the type (1.8) have been considered by J. L. Lions 
[ 12, Chap. 2, Sects. 1.7 and 2.31 who showed the applicability of the 
existence theory of monotone operators to this case (see also [ 11, 
Remark 51). 

A second type of results that we will give in this paper is about the 
existence of solutions to the Eq. (1.1 ), satisfying some given Dirichlet 
boundary conditions. We will apply the a priori regularity results stated 
previously to the existence of weak (and classical) solutions. 

First of all we will show that the solutions of our Dirichlet problems are 
a priori bounded in W’~p(Q). Thus it is natural to ask for an estimate of 
the type of (1.4) with the L4-norm replaced by the Lp-norm. To this aim 
it is useful the well-known interpolation inequality 

lbllrsG IMlp’p I141pq, with u = (1 + JDu\ 2)1/2. (1.9) 
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From (1.4), (1.9) we can derive formally an estimate of the Loo-norm of 
the gradient of u in terms of its LP-norm: 

I(1 + lDu12)“211L~~C ll(l+ 1~42)“211~~ 

<c 11(1 + IDu(2)“2(@‘+ \I(1 + lDz412)“211BL(--p’q). 

If 19( 1 -p/q) < 1 then (up to the technical difficulty due to the different radii 
p and R) formally we obtain 

I\(1 + IDu(2)1’21(~me(l--‘q)QC 11(1 + pu~2)1’2(@‘q). (1.10) 

It is clear that an a priori estimate like (1.10) is useful in the existence 
theory; we will prove this estimate in Theorem 3.1. 

In order to test the condition 0( 1 -p/q) < 1, in Section 2 we give an 
explicit expression of 8 (see (2.8)) from which we deduce that the exponent 
in the left hand side of (1.10) is positive if q/p < (n -I- 2)/n. 

We mention explicitly that this paper (except for Corollary 2.2 and its 
consequences) is self contained. Even in the known and important case 
p = q we propose a complete proof of the local boundness of the gradient, 
partially new and partially similar to the first proof by Ladyzhenskaya and 
Ural’tseva (see [ 10, Chap. 4, Sect. 31). Related regularity results on the 
local boundness and on the Holder-continuity of the gradient for solutions 
of certain degenerate elliptic equations and systems of special form have 
been given by Uhlenbeck [ 181, Evans [4], and Di Benedetto [2]. 

In this paper we use for the gradient the method by iterations that 
Moser has introduced in [ 161 to infer the local boundness of solutions in 
the linear case. This method has been also applied by Giusti [7] to obtain 
the local boundness of the gradient in the case p = q = 2. 

If p # q the existence and regularity results presented here seem to be 
new. We continue a research started by the author in [ 151. We improve 
the regularity results stated in [ 15, Theorems B and C] in several direc- 
tions: (1) we do not impose the variational condition u& = a;,; (2) we allow 
a’ to depend also on x, other than on r; (3) we consider general exponents 
p, q greater than 2 (instead of p = 2); (4) we obtain an explicit estimate of 
the Leo-norm of the gradient in terms of its Lq-norm; in particular we 
obtain an explicit expression for the exponent 8 in (1.4); (5) the condition 
q/p < (n + 2)/n described previously is less restrictive than the corre- 
sponding condition in [ 15, Theorem C]. On the contrary, Theorem A of 
[15] is a regularity result specific for the situation considered in the 
appendix of this paper. 

We have already noted that scalar problems with exponents p #q have 
already been considered in the mathematical literature. In the vectorial case 
vectorial problems with p # q naturally arise in nonlinear elasticity (see, for 



4 PAOLO MARCELLINI 

example, [13]); for this reason it would be interesting to extend to strongly 
elliptic systems some of the results obtained here for elliptic equations. 

2. REGULARITY 

In this section we consider the equation 

(2.1) 

and we assume that a’(~, c), for i= 1,2, . . . . n, are locally Lipschitz- 
continuous functions in Q x R” (n > 2). 

We consider exponents p and q such that 

2<p,<q<-p 
n-2 (2.2) 

(2 <p < q, if n = 2). About the derivatives with respect to 5, we assume that 
there are positive constants m, A4 such that, for every 5, 1 E R” and for a.e. 
XEQ: 

1 ai,(x, 5) n,~j,~(l + jQ2)(PP2)‘2 (112; (2.3) 
i, i 

Ia+, 511 <M(l + 1512)(q-2)‘2, Vi, j; (2.4) 

lL+x, <,-a;,(X, 5)1 <M(l + lQ2)(p+y-4)‘4, Vi, j. (2.5) 

About the derivatives with respect to x we assume that, for every c E KY’ 
and for a.e. XEQ: 

lu:s(x, 5)l <M(l + IQ2)(P+qP2)‘4, Vi, s. (2.6) 

Under the previous assumptions, by a weak solution of class W:$sZ) to 
Eq. (2.1) we mean a function UE W:;;(Q) such that, for every 52’ CC 52, 

J{ 
R i$, a’(~, Du) #,, + b(x)(} dx = 0, t/4 E W; ‘(f-2’). (2.7) 

Let us define 0 by 

8= % 
np-(n-2)q’ 

if n>2 (2.8) 

and, in the case n = 2, let 0 be any number strictly greater than q/p, if 
q/p> 1, and let 8= 1 if q/p= 1. 
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Let us denote by Be, B, balls compactly contained in s2, of radii respec- 
tively p, R and with the same center. 

THEOREM 2.1. Let bE LzJ8) and let (2.2), (2.3), (2.4), (2.5), (2.6) hold. 
Then every weak solution UE W:,$(sZ) to Eq. (2.1) is of class W’:;:(Q). 
Moreover there are positive numbers c and /? (independent of u) such that 

( 1 

> 

0 
sup (1+ IMx)12)“2~c (R-p)P ll(1 + l~u12)“211Lu(BR) (2.9) 
xsBp 

for every p and R such that O<p<R<p+ 1. 

In a standard way, for example, as in [ 10, Chap. 4, Sect. 61 or as in [7, 
Chap. V, Sect. S] (see also [ 15, Theorem D] ), from Theorem 2.1 we can 
deduce the following: 

COROLLARY 2.2. Let (2.2) to (2.6) hold. Let us assume also that, for 
i=l,2 , . . . . n, uie Cf;,“(Q x W’) and b E CfO; l*“(Q) for some k 2 1. Then, if 
UE W:;z(S2) is a weak solution to Eq. (2.1), then u E C~O~‘~a(0). 

Remark 2.3. Independently of the results in the other sections of this 
paper, the previous regularity results can be applied, for example, to the 
equation 

(2.10) 

with bE L,zJQ) and 

1 b;,(x, 5) &$~rn(l + 15(2)(p-2)‘2 IAl*, 

Jb;,(x, c)l <A$ + 1512)(p-2)‘2, Ib:Jx, <)I < M(1 + 1512)‘p- ‘)‘*, 

with p, q satisfying (2.2). Note that, if q #p, then a’(~, 5) = l5]q-2 5, + 
b’(x, [) does not satisfy the ellipticity condition Ci, j a;,(~, 5) AiAj> 
m l(-lqp2 1112. 

We will dedicate all this Section 2 to the proof of Theorem 2.1, through 
several lemmas. 

LEMMA 2.4. Under the assumptions (2.3), (2.4), (2.5) there is a constant 
c1 such that, for every 5, il, n E [w” andfor a.e. XEQ, 

I ( > 112 
1 (7,:,(X, 5) AjYjj <Cl C Ufz(X, 5) niAj (l + 1512)(q-2)‘4 l?l’ 
i, i i. i 
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Proof Let us denote by (b,) and (cij) the matrices defined by 

b,(x) = $(a;, + a{,); c&x) = $(a;, - a{,). 

Since (b,) is a positive definite symmetric matrix, by the Cauchy-Schwarz 
inequality, by the fact that C b,AiLj= C ui,Ai;lj and by (2.4) we obtain 

(2.11) 

Moreover, by (2.5) and (2.3), we have 

Since ai, = b, + cij, we deduce our result from (2.1 l), (2.12). 

LEMMA 2.5. Under the assumptions (2.3), (2.6) there is a constant c2 such 
that, for a.e. x E Cl, for every 5, 1 E OX” and for s = 1, 2, . . . . n: 

i ULs(X, <) Ai < C2 
I ( 

C Ui,(X, t) nilj “2 (l + 1t/2)q’4. 
i= I i, i 

Proof: By (2.6) and (2.3) we have 

Ii, aLSAil <(!, [a:.2)‘U 121 G&W1 + 1512P+q-2)~4 I4 

<A4 4 (z Ui,iis)lil (l + 1512)q’4. 

For aa2 and k>O let ga,k: R + lF! be the function defined for I tl < k by 

g&t)= t(1 + t2)(a-2)‘2 (2.13) 

and extended to R linearly for I t( > k as a function of class C’(R). Let us 
also define 

G, /c(t) = d, ,c(fYg&, /At), (2.14) 

where g& is the derivative of g,,,. 
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LEMMA 2.6. The following estimates hold: 

(i) For every CI > 2 and k > 0 there is a constant c,, k such that 

G, /c(t) d c,, Al + t*), VtER. 

(ii) For every ~12 2 and k > 0 we have 

(a-2)/2 
(1 + t*p, VtER. 

Prooj (i) follows from the fact that g, k is linear and g:, k is constant 
for t > k and t < -k. To prove (ii) let us first observe that, if 1 tl < k, then, 
since a B 2, 

G, k(t) = 
t’(l+ ty2 

2 a/2 
(1+t*)‘“-4)/*~(a-~)t2+1,~(1+t ) ’ if ItI dk. 

For 1 tJ 3 k, again since a 3 2, we have 

~g~,k(t)~=k(l+k2)~“~2~~2+(1+k2)~a~4~~2[(a-l)k2+l](~t~-k) 

< (1 +k2)(“-2)‘2 [(a-l)Itl--(a-2)k]. 

Thus, since g&, ,Jt) > (1 + k’)‘“- 2)‘2, we obtain 

G, At) ,<(I +k2)(a-2)/2 (a-l)Itl-(a-2)k 
(1 + ty* I4 a/* (2.15) 

By a computation we can see that the maximum with respect to I tl of the 
right hand side of (2.15) is assumed for I tl = ak/(a - 1) and its value is 

Fixed s E { 1, 2, . . . . n} we denote by e, the unit coordinate vector in 
the x, direction and we define the difference quotient A,, in the direction 
e, (we do not denote explicitly the dependence on S) by A,v(x) = 
[v(x + he,) - v(x)]/h. The function A,,v is defined in 52, = (x E B : 
dist(x, 352) < h} and, if v E LV1*q(Q), then A,v E W1sq(52,,). 

We state in the following lemma the properties of the difference quotient 
that we will use in this paper. 

LEMMA 2.1. Let Q’ be an open set compactly contained in 52 and let 
ho = dist(U, ~2’). The following properties hold: 
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Sn, ,Mq &UJ; :I;:@! for SOme 42 1 then for every h Q ho: 

(ii) IfuELq(Q)S or some q > 1 and if there is a constant c such that 
IlAh4l LscDfJ < c for every h 6 h 0, then uxs E Lq(Q’) and IIu,~II LycQsj Q c. 

(iii) Zf u l IV’, “(a) f or some q > 1, then for every s = 1,2, . . . . n, A,u 
converges to u,$ strongly in Lq(12’). 

Proof The properties stated in (i), (ii) are well known and can be 
found, for example, in Cl, Proposition 1X.31. Also the property (iii) can be 
proved with the argument of [l] in the following way: first, if u E W’,q(Q) 
then A,u is bounded in L”(Q) independently of h. Since q > 1, by a com- 
pactness argument we can show that, as h -+ 0, A,u converges to u,$ in the 
weak topology of Lq(sZ’). By the properties (i) and (ii) the Lq-norm of A,u 
converges, as h + 0, to the Lq-norm of u,. 
to ux, in the norm topology. 

This implies that A,u converges 

Let Q’ cc 8. Let q be a nonnegative function of class Ch(Q’). If h is 
sufficiently small it is well defined in Q’ the function 

4 = A -,h2g,, k(AhU)). (2.16) 

Since u E W~;~(sZ) and since g, k is Lipschitz-continuous on R, it is easy to 
see that #E W,$q(S2’). By using +4 as test function in the weak form (2.7) of 
our equation, with simple computations we obtain 

n 

f c 
Q ix1 

Aha’k ~U)(r12g&, k A,ux,+2wx,g, k) dx= 1 b(x) A-k(v2gol, k) dx. 
R 

Let us compute A,a’(x, Du): 

A,a’(x, Du) = l Jb’ f a’(x + the,, Du + th A,, Da) dt 

It follows that 

= a!,,+ i a:, A,u, 
j=l 

ff 

1 

62 0 
v2g&, k 1 ai, A,+,, Aku, dx dt 

i, j 

=-f s 

1 

0 0 
v2gh k i aL5 AA, dx dt 

i= 1 

I 

n 
- 

ff R 0 
2&,k i ( a:*+ c ai,A,u,, 

i= 1 j=l 

) vx, dx dt (2.19) 

+ .r, b(x) A -h2g,,d dx. (2.20) 



p, q-GROWTH CONDITIONS 9 

Let us estimate separately the terms in the right hand side. Let us start 
with (2.18); by Lemma 2.5 and by the inequality labI < .w* + b2/(4s), valid 
for every a, b E R and every E > 0, we have 

he2~~~~~2g~,,(~o/A,u,d,u~,)1~2(l+,~u+thA~~u,2)”4dxdt 
i, i 

If 
1 

6 EC* 
n 0 ‘1*&k c a:,Ahu,Ahux,dxdt 

i, i 

c2 

Sf 

1 

+G Q 0 
q*g:, k( 1 + IDu + th A,, Dul 2)q’2 dx dt. (2.21) 

About the term (2.19), we have the following estimates (2.22) and (2.23), 
the first of them being a consequence of the assumption (2.6): 

<nM ss ’ q 1041 (g&I (1+~~u+thA,~u~2)‘p+q-22)‘4dxdt 
a 0 

if 

1 

<nM r] I@, I&, k, (1 + ,Du + th Ah h12)(q- ‘)‘* dx dt. (2.22) 
a 0 

By Lemma 2.4 and by using the definition of G,,k in (2.14) we have also 

w, k 1 ai, AhUxjvx, dx dt 

i, i 

1 

<Cl 

,,( R 0 
~2dc, k ; ai, Ah%, &Ux,) ‘I* 

~(G~,k(1+~~u+thAh~u~2)(q-2)‘2~~~~2)1’2dxdt 

If 
1 

<EC1 
R 0 

tl*&,k 1 +b%, h,u, dx dt 

i, i 
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About the term (2.20), by using property (i) of Lemma 2.7 (with 
52’ 3 supp q), we obtain 

b(x) A -h(v’g,, k) dx 

-!- (v’g,,,) dx 8x 

s 

Q IPII L,rn(D’) s (21 Irx,l k, A + r12& k l&Q ) dx R 

2~ P,I lg,,I dx 

Finally, to estimate the left hand side (2.17) we use the ellipticity 
assumption (2.3): 

,m > ~2g;,J(l + lDu+thA,~)~)‘~-~“~ jA,,Du12dxdt. (2.25) 

By the relations from (2.17) to (2.25), by choosing E sufficiently small, we 
deduce that there is a positive constant cj (depending on the Leo-norm of 
b(x)) such that the following estimate holds (note in particular (2.24), 
whose E term goes in (2.26) and whose l/(4&) term goes in (2.27)): 

1 1 - 
s.l q2&(l + (Du+ th Ah Du(~)+~)‘~ (A, Du(‘dx dt (2.26) 

c3 a 0 

G 
II 

I 

tj2&, k( 1 + (Du + th A, Duj 2)q’2 dx dt (2.27) 
n 0 

+i f qIDq1 (&,I (1+I~u+thA,~~l~)‘~-‘)‘~dxdt (2.28) 
a 0 

+ IS ’ IDy~2G,,k(l+ID~+thAhD~J2)(q-22)‘2dxdr. (2.29) 
n 0 

LEMMA 2.8. Under the previous assumptions UE Wfg(Q). Moreover 
there is a constant cq such that 
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<c,(cr-1) j ($+ (Drfl*) i (l+ )z4xJ2)(~+q-2)‘*dx 
R s=l 

for every a > 2 such that the right hand side is finite. 

Proof. To estimate (2.28) and (2.29) we will use the inequalities 

(g,,J (l+~Du+thA,D~~*)(~-~)‘* 

<’ [ga,Jq+y (1+JDu+thA,Du(*)Qi2; 
4 

G&l + JDu+ th A,,Du~*)(~-*)‘* 

<2 c$:+q--2 - (l+IDu+thd,D~~*)~‘*. 
4’ 4 

Let us first consider the case a = 2. For every k > 0 and t E Iw we have 

572, /c(t) = t, g;. k(t) = 1, G2,Jt)= t*. 

By the previous estimates, by (2.26)-(2.29), and by taking q = 1 on 
Sz’ccO, we deduce that the integral 

i 
IA, Dal* dx 

0’ 

is bounded by a constant independent of h (here we use the assumption 
p 2 2). Thus it is sufficient to apply the property (ii) of Lemma 2.7 to 
obtain u E W’s ‘(CT). 

Now we go to the limit as h +O. Let 52’ such that supp ~cQ’ccSZ. 
Since UE W1,q(f2’), by Lemma 2.7(iii) the difference quotient A,u con- 
verges to ux, in Lq(Q’). Moreover 

Du + th Ah Du = (1 - t) Du(x) + t Du(x + he,) 

converges, as h + 0, to Du in L9(Q’), by the continuity in L9 of the trans- 
lation. 

Let us recall the definition of g, k in (2.13) and Lemma 2.6(i); since, for 
) tl > k, g,, is linear and g, k is linear and G,, k is quadratic, then as h + 0, 

g, &fhu) + g, ,c(uxJ in Lq(Q’); 

G, /JAG) + G,,&,) in L9’*(f2’). 
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By using the inequalities written at the beginning of the proof of this 
lemma we see that we can go to the limit as h + 0 in the integrals in (2.28), 
(2.29). Since gh k is bounded in R, we can go to the limit as h -+ 0 also in 
the integral in (2.27). Finally, we go to the limit in the left hand side (2.26) 
since the integral is lower semicontinuous. We obtain an estimate similar to 
(2.26)-(2.29), where the difference quotient is replaced by the partial 
derivative with respect to x,, where h = 0 and without the integrals with 
respect to t. 

Then we use the relations (see Lemma 2.6(ii)): 

Ig,,(t)l < (1 + t2)(a-“‘2, 

gh,.k( t) < (a - 1 )( 1 + t2)+ 2)/2, 

(a--2)/2 
(1 + ty, 

and also the fact that lim, _ +a) g:, ,J t) > (1 + t2)(a-2”2. By Fatou’s lemma 
we can go to the limit as k + +a. We obtain 

1 - 
I 

c3 Q 

‘12(1 + JU,*)2)(a-2)‘2 (1 + JDrQ)(P--2)‘2 IDUJ dx 

<(a- 1) I, q2(1+ Iu,I~)(~-~)‘~ (1 + (DuJ~)~‘~ dx 

+I, tj IDtjl (1 + IU,$12)(0-1)‘2 (1 + IDU12)(q-1)‘2dx 

+2 s l&q2 (1 + IU,12)cr’2 (1 f (Dz@)(q--2)‘2dx. 
n 

First we sum up with respect to s = 1, 2, . . . . n. Then we note that there is 
a constant c5, which depends only on n and q, such that the quantities 

(1 + lDu12)q’*, (1 + IDz@)(q- ‘)‘2, (1 + lDUl2)(~--2)‘2 

are respectively less than or equal to 

cs i (1 + 14312)q’2, cg i (1 + luXr12)(q-r)‘2, 
s=l s=l 

c5 .I, (1 + IU,(2)(q-2)‘2. 

Now the conclusion of the proof of lemma 2.8 follows easily by the 
inequality stated in the next lemma, with y, = 1+ IuX,l 2. 
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LEMMA 2.9. Let yS > 0 for s = 1, 2, . . . . n and let a, b > 0. Then 

Proof 

i y;* i Yb 
S=l 

s=, .,(l+qq !, Y:+b. 

*=l s=l s=l i# j 

G i y;+b+ 1 
s=l i#i [( --f& y;+b+--$ y;+b) 

+ 

( 
-& y;+b+-& y;+b)] 

Let us denote by B, and B, balls compactly contained in Q, of radii 
respectively R, p and with the same center. 

LEMMA 2.10. There is a constant c6 such that, for every R and p 
(O<p<R<p+l) andfor every aB2, then 

c, (1 + ,uXS,2)C’+p-2)2*~4dx)2’2* 

(1 + Iux,12)(a+q-2)‘2 dx, 

where 2* = 2n/(n - 2) if n > 2, while 2* is any fixed number greater than 
2q/p, if n = 2. 

Proof: By computing the gradient of (1 + ~ux.~2)(a+p-2)~4 we obtain the 
estimate 

lD[q(l + IUx$~2)(~+~--2)q2 

<(or+p-2)2 ,$(I + lu 
2 x3 12)(a+~--4)/2 1~~ 1s 12 

+2 10?/1* (1 + Iu,$l2)(a+p--2)‘? 

Since p < q, from Lemma 2.8 we deduce that there is a constant c7 such 
that 
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s 1 n lD[V(l + IUx~12)(a+P~2)‘4]12d 
Q s=, 

<c,a 3 s (q2 + lDq12) i (1 + h4JZ)(@+q -2)P dx. (2.30) 
R s=l 

By Sobolev’s inequality, for every s = 1,2, . . . . n, we have 

(J‘ > 

212’ 

[~(l + ~uJ~)(~+~-~)‘~]~* dx R 

6 cg s lD[~/(l + Iu,~~~)(‘+~~~)‘~][~ dx. (2.31) 
R 

By using the inequality C:=, yf< (C:=, y,)” with a=2*/2> 1, and 
Minkowski’s inequality with exponent 2*/2, from (2.30), (2.31) we obtain 

tj2* s$, (1 + Ia,S12)(a+p-2)2*/4 dx)2’2* 

i (1 + (U,s12)(a+P-2)/2 **‘*dx 2*‘2 
s=l 1 > 

212’ 

[r(l + Iu,~[~)(~+~-~)‘~]~* dx 

< CgU3 
s 

(q2+ lDq12) i (1 + IuJ~)(~+~~~)‘* dx. 
R s=l 

We obtain the conclusion of the proof of Lemma 2.10 by taking as test 
function q such that DECO, ~20 in B,, q=l on B, and JDql< 
2/W - P ). 

We define by induction a sequence ak in the following way: 

a,=2; uk+l= (%c+L7-2) $(4-21, Vk>l. (2.32) 

LEMMA 2.11. If uk is the sequence defined in (2.32), then the following 
representation formulas hold: 

a,=2+(p $4) 1:; (;)j, Vka2; (2.33) 

u =2+P(2*/2)-9 
k (2*/2) - 1 [(yr-l-l], Vk>l. (2.34) 
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Prooj Of course for every k 2 2 the representation formulas (2.33), 
(2.34) are equivalent to each other. We prove (2.33) by induction. For 
k = 2 the right hand side of (2.33) is equal to 2 + p(2*/2) - q, like in (2.32). 
If we assume that (2.33) holds for some k, then, by (2.32): 

=2+ p2*-q kf2 ( 2 ) i=. (yi+‘+(p f-q) 
=2+(p $Y) yg; ($)i 

For O<p,<R,<p,+l let us define &=Po+(&,-&)2-k, Vk>l. 
Let us insert in the estimate of Lemma 2.10 R = R, and p = Rk+ 1 (thus 
R-p=(R,-p,)2- (k+ ‘I). Let us also define 

(1 + ~U,ii)‘“+“i”idX) 
l/(Q + q - 2) 

, Vk 3 1. (2.35) 

Thus, under our notations, the estimate of Lemma 2.10 can be written in 
the form (Vk> 1): 

LEMMA 2.12. Let 8 be defined by 

8= fj aifq-2. 

i=l ai+p-2 

Then 8 is finite and is given by 

(+f. (2*/2)-l 
P (2*/2) - (4/P)’ 

Proof: By using the definition of ak in (2.32) we have 

(2.37) 

(2.38) 

k ai+q-2 
I-I i=l ai+p-2 

1 
ak+p-z2’ 

505/90/1.2 
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By (2.34) we deduce that 

k cii+q-2 
I-I = 

q(2*/2)k- l 

i=l q+p-2 p + P(2*/2) - 4 
(2*/2) - 1 

[(q-L 11. 

Since 2*/2 > 1, as k + +co we obtain (2.38). 

Remark 2.13. Note in particular that 8 2 1 and that 0 = 1 if and only 
if p = q. 

If n>2, then the expression of f3 in (2.38) is the same as in (2.8). 
Moreover, if n = 2 and p < q, then 2*/2 is any number greater than q/p; 
thus we can choose 2*/2 so large that 19 in (2.38) is as close to q/p as we 
like. 

LEMMA 2.14. There are positive constants /I and c,,, such that 

Vk> 1. 

Proof Without loss of generality we can assume that A, > 1 and that 
cg 2 2-‘. By iterating (2.36) we can easily see that 

(2.39) 

where c,~ is the constant (the series is convergent since, by (2.34), cli grows 
exponentially) : 

C lo=ex~ ( m log[c,a;4’+ ‘1 
0 C 

> 
< +co. 

i=l a,+p-2p 

About the series in (2.39) we deduce from (2.34) that 

(2.40) 

Note that, if p = q, then (2.40) holds with equality. 
The conclusion of Lemma 2.14 follows from (2.39) and (2.40). 

Let us apply Lemma 2.14. To this aim let us recall the definition of A, 
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in (2.35). Since pO < Rk < R,, for every s = 1,2, . . . . n and every k > 2 we 
have 

> 

l/(wt + 4 - 2) 
(1 + l%,l (a&+4--2)/z dx 

,cl 
I 

(1 + lu,t12)q/2 dx),. 

Since (~1, + q - 2) + +co, as k + +co the left hand side converges to the 
essential supremum of (1 + Iux,l 2)1’2 in BPO. By adding up with respect to 
s = 1, 2, . ..) n we obtain (2.9) and thus we conclude the proof of 
Theorem 2.1. 

3. INTER~LATIoN 

In this section we utilize the interpolation inequality 

IblIp< lMl$ l141~~p’q (3.1) 

(consequence of the pointwise inequality Iv(x)lq < Iu(x)lp Ilull~~~; see also 
Brezis Cl], Commentaires SW le chupitre IX) to deduce from the results of 
the previous section new estimates of the essential supremum of the 
modulus of the gradient of weak solutions in terms of its LP-norm. 

Let us consider again Eq. (2.1) with a’(~, 0 satisfying (2.3), (2.4), (2.5), 
(2.6) for some positive constants m, A4 and for exponents p, q related by 

n+2 
2<p<q<n p. (3.2) 

Like in the previous section we denote by B,, B, balls compactly 
contained in Q (open set of R”, n 2 2) of radii respectively R, p and with 
the same center. Finally, let a and 8 by defined by 

2P 
‘=(n+2)p-nq’ 

tl= %I 
np - (n - 2)q’ (3.3) 

if n > 2; moreover, if n = 2 and q/p > 1, then let 8 be any number such that 
q/p < 8 -C q/(q - p) and let a be defined by the following formula (3.6); 
finally, if n=2 and p=q, then let a=B= 1. 

THEOREM 3.1. Let bulge and let (2.3), (2.4), (2.5), (2.6), and (3.2) 
hold. Let a, 8 be defined by (3.3). There are positive numbers c and fi such 
that 
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I(1 + lw2)1’211L~(B,)~c ( (R _ p;Plu-P)lp ll(l + IW 1 
2 l/2 l/B 

IIU)(&-) 
> 

a (3.4) 

ll(1 + IP42)1’2/IL~(Bp,~C 
( (R -Ip)BdP r ll(l+ I~42)“211Lp(BR) 

) 
(3.5) 

for every weak solution u of class W:;:(O) to Eq. (2.1) and for every p and 

Rsuch thatO<p<R<p+l. 

Remark 3.2. By a direct computation we can see that 

wq 
a=i-e(i-p/q). (3.6) 

Thus the value of the exponent c1 in (3.5) is the same as that one in the 
inequality (1.10) in the introduction, that has been deduced formally. 

Proof of Theorem 3.1. Let us apply the interpolation inequality (3.1) 
withu=(l+lDul ) . * ‘I2 Let us define y = e(l -p/q). By the estimate (2.9) we 
obtain 

ll(1 + 1~42)1’211 L4(Bo) < ll(1 + lw2)1’211~~~~p)~ I(1 + l~42)1’211Z~~, 

<C ‘-p’q 11(1 + JDul*)l’*Il~~Bp) 

-( 
1 

(R- ~1’ 
ll(1 + l~~l*)“*11 LqBR) y. (3.7) 

For R, > p0 > 0 and for every k > 1 let us define pk = R, - (RO - pO) 2-k 
(note that this subdivision of the interval [pO, R,] is different from that 
one considered in Section 2; with the subdivision considered there we 
would not reach the conclusion here). Let us insert in (3.7) p = pk and 
R = Pk+ r ; then we have R-p = (R, - pO) 2-(k+ ‘). For k = 0, 1,2, . . . let us 
also define 

B, = ll(1 + IW2)1’211 ucBprJ. 

With these notations, by (3.7) for every k 2 0 we have 

(3.8) 

Bk<C1-p’q I[(1 + Ih12)1’21/;$Bb). 2B(k+1) Bk+1)7 
(Ro - PO)’ 

By iterating the previous inequality we can see that for k 2 1, we have 
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The assumptions (3.2) implies that y < 1. Thus the series previously 
written are convergent. Since B, is bounded by 

B,cG ll(l + I~42)1’211~~~~Ro)~ VkE N, 

we can go to the limit as k + +cc and we obtain (for some constant c,), 

( 1 

> 

1/(1--Y) 
2 112 plq 

BoG c1 (Roe po)py ll(l f Pul ) IILqBRo) . 

Since y/( 1 - y) = ((q - p)/p)cc and P/(q( l-y)) = a/O, we have proved (3.4). 

The estimate (3.5) can be proved either in the same way, or by com- 
bining (3.4) and (2.9). In fact, for example by (2.9) (3.4), if p’ = (R + p)/2, 
we have 

\I(1 + lD42P211Lm(Bp) ( 1 

) 

0 
Gc (p’-p)B ll(1 + lw2)1’211L4(Bp.) 

Gc* (p’-p)B’ 

( 1 1 

> 

0 

(R-p,) 8(q-p) a ll(l+ I~42)1’211~~BR) * 

P 

Since p’ - p = R - p’ and since 1 + ((q - P)/P)a = (q/P) . (a/d), we have the 
conclusion (3.5). 

4. EXISTENCE 

In this section we consider the Dirichlet problem (4.1) in a bounded 
open set QcFF’with n>2: 

(u(x) = 240(x), x E im; 

(4.1) 

The functions a’(~, <), for i= 1, 2, . . . . n, are supposed to be locally 
Lipschitz-continuous in D x R”. 

We will utilize the regularity and interpolation results proved in Sec- 
tions 2 and 3. Thus, like in the previous section, we assume that (2.3), (2.4), 
(2.5), and (2.6) hold for some positive constants m, M and for exponents 
p, q satisfying 

n+2 
2<pQcnp. (4.2) 
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For the existence theory we need also an assumption on a’ (other than 
on its derivatives), for example of the type 

I&, 011 d M VXEQ, vi= 1,2, . ..) n. (4.3 1 

Finally we assume that 

b E Lplcp - “(a) A L;&2); USE FViVr(Q), with r=p(q- l)/(p- 1). (4.4) 

Under the previous assumptions, by a weak solution of class Wi;,4(sZ) to 
the Dirichlet problem (4.1) we mean a function u in the Sobolev class 

u - uo E wp(a) n w;gqQ) (4.5) 

such that, for every Q’ cc Sz 

i a’(~, Du) $x, + b(x)d) dx = 0, 
i= 1 

(4.6) 

THEOREM 4.1. Let (2.3), (2.4), (2.5), (2.6), (4.2), (4.3), and (4.4) hold. 
Then there exists a weak solution u of class Wi;,4($2) to the Dirichlet 
problem (4.1). Moreover the W1~P(SZ)-norm of u is bounded by a quantity 
that depends only on n, m, M, p, q, llbljt,PI(P-l,r (IDuollt~. Finally, 
UE W,&m(f2)n W:;,‘(a) and f or every Q’ CC 52 there is a constant c such 
that, for CI and 8 given by (3.3), then 

ll(l + ID~12)“211 .-=(a)<~ ll(1 + lW2)1’211”,,~,,, (4.7) 

lID24,~~~~~ G c ll(1 + lD4*)“*1l$~nB). (4.8) 

Remark 4.2. If UE W’zy(Q) then, by the usual method of monotonicity, 
it is easy to show that, under our assumptions, the Dirichlet problem (4.1) 
has at most one solution in the class u. + Wiq(Q). Thus the problem of 
uniqueness is related to the a priori regularity of weak solutions up to the 
boundary. We do not discuss the boundary regularity in this paper. 

By Theorem 4.1, Corollary 2.2, and by integrating by parts in (4.6) we 
deduce the following: 

COROLLARY 4.3. Let the assumptions of Theorem 4.1 hold. Let us assume 
also that a’E C:;,“(sZ x IW”) for i = 1,2, . . . . n and that b E C%,“(Q). Then there 
exists a solution to the Dirichlet problem 

a’b, Du) = b(x), QXEQ 
(4.9) 
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(the equation is satisfied for every x E D in the classical sense). More 
regularity holds like in Corollary 2.2. 

The proof of Theorem 4.1 will follow through some lemmas. 

LEMMA 4.4. Under the assumptions (2.3), (2.4), and (4.3) there is a 
constant cl such that, for every <, 9 E R” andfor every x~f2, 

151 PGcl 
1 
(1 + ~~(2)P(Y--1wwu + i a’@, t)(ti- vi) 

i= 1 I 

Proof: For 5, q E R” let us define 

fCt)= i a’(4 tt + (I- t)V)(ti--r]i), VtE [O, 11. 
i=l 

By (2.3) and by Jensen’s inequality we obtain 

j, Ca’(x, 0 -4x, v)l(h- vi) 

=fW-fW=j~f’W 

1 
= 

SC 
O i,j 

aij(xT 7 + t(5-1))(5i-~i)(~j-Ylj) dt 

>m le-r~l* ]~(l+I~+t(<-q)12)(p-2)~2dt 

>m 1~-~12 1+ 
( II 

; {q+t(t-q)} dt~2)‘p-2”2 

=m It-rll’ 

There are constants c2 and c3 such that, for every E > 0, 

ItIP= ItI2 lelp-‘~C2(14-~1*+ 1112)(15+rflp-2+ lr$-*) 

~~3(lhI121~+~lp-2+15121qIp-2fI~lp-21q12+I~lp) 

Gc3 K-d2 15+rllp-2+ 
i ( 

2&P’2 
p+ 

(p-2)&p’(p--J 151p 

P > 

+ 
( 

p-2 2 
+- 

pEPIcP- 2) pEPl2 + 1 l?IP . 
> 1 

(4.10) 

(4.11) 
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By choosing E sufficiently small, by (4.10) and (4.11) we deduce the 
existence of a constant cq such that 

151pGc4 IqI’+ i [ai(x, t)-a’(x~~)l(~j-r]i) I . (4.12) 
i= 1 

For every fixed i= 1,2, . . . . n and ye E KY let us define g(t) = a’(~, tr), 
VCE [O, 11. By (2.4) and (4.3) we have 

I+, rl)l d I&, ON + j-i Id( dt 

i a;,(~, tq)‘lil dt<(n+ l)M(l + III~*)(~-~)‘*. (4.13) 
j=l 

By (4.12), (4.13) there is a constant cS such that, for every s>O, 

ItI ‘GcCg 
i 

I?(‘+ i ui(x, i’)(4,-Vi)+~ (ItI”+ lrtl’) 
i=l 

+ P-l 
pEPIcP - 1) 

(l+ ~1~*)(9-lv*~PlL-I) 

I 

. 

We obtain the conclusion of the proof of lemma 4.4 choosing E suf- 
ficiently small. 

For every E E (0, 1 ] let us consider the Dirichlet problem 

i 

U-UoE wp(Q) 

n 
(4.14) 

c a [u’(x, Du)+&(l + JDU12)(@)‘2 U,J =b(x). 
i=l axi 

By (4.10) the differential operator associated to {ui} is monotone. We 
can apply the theory of monotone operators (see, for example, [ 11, 121) to 
infer the existence, for every E E (0, 11, of a (unique) solution U, E I+“, “(Q) 
to the Dirichlet problem (4.14). 

LEMMA 4.5. Under the assumptions (2.3), (2.4), (4.3), (4.4) there is a 
constant c6 (independent of E) such that 

b,lI W’d’(Q) G c6> V&E (0, 11. (4.15) 

Proof: Let us use the notation 

uL(x, <)=u’(x, r)+&(l+ lQy*)‘* ci. (4.16) 
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Then, for 0 < E < 1, u: satisfies the same assumptions as a’ with constants 
m’ = m and M’ = A4 + (q - 1). Thus all the previous estimates hold for u, 
with constants independent of E E (0, 11. 

In particular, if we apply Lemma 4.4 to u: with 5 = Da, and with 
r = Dug, then for all 6 > 0 we have 

J-Q (Du,(Pdx<cl {r, (1 + (Duo(2)p(q-1)‘(*(p-‘)) dx-J b(u, - 240) dx 
R I 

<Cl (1 + IDuo12)p(q- 1)/(2(p- I)) dx 

u,-uu,lpdx+ P-l 
P6 PAP- 1) I 

IblP’(P-‘) dx . 
52 

We obtain the conclusion of Lemma 4.5 by using assumption (4.4), 
Sobolev’s inequality and by choosing 6 sufficiently small. 

LEMMA 4.6. Under the assumptions of Theorem 4.1, for every 52’ CC 51 
there is a constant c7 such that 

s ID*u,)*dx<c7 I[(1 + lDucl*)“*11$‘~& V&E (0, 11. (4.17) 
0’ 

Proof. Let us use Lemma 2.8 with a = 2. Since p > 2, we deduce that, 
for some constant cs: 

I ’ q* ID*u,I* dx< 
R f c 

q2 (1 + I(~,L~12)(p-2)‘2 IN&J* dx 62 s=l 

< cg 
I 

(q* + (Dql*)(l + ~Du,)*)~‘* dx. 
D 

Now the thesis of Lemma 4.6 follows easily from the interpolation 
inequality (3.4). 

LEMMA 4.7. Under the assumptions of Theorem 4.1, for every 0’ CC B 
there is a constant cg such that 

ll(1 + I~%12P211 L=J(Q,) d c9 ll(1 + I~~e12P211~qo)’ V&E(O, 11. (4.18) 

Proof Is a consequence of the interpolation inequality (3.5). 

We are ready to go to the limit as E + 0. By Lemmas 4.5 and 4.6 the 
sequence u, is bounded in W%,2(sZ); by Lemmas 4.5 and 4.7 the sequence 
u, is bounded in W:;:(Q). Thus we can extract a sequence, that we will 
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continue to denote by u,, that, as E + 0, converges in the strong topology 
of W’:;,‘(Q) to a function ZJ in the Sobolev class 

24 E (u. + Wip(sZ)) n We&” n W&!(sZ). 

By extracting a subsequence, we can assume that Du, converges to Du 
almost everywhere in Q. 

Let 52’ CCQ and let 4~ Wi4(f2’). Since JDu,(x)l is pointwise bounded 
in 0’ independently of E, we can go to the limit as a--f 0 in the integral 
identity 

and we obtain that u is a weak solution (of class W:;Coo(0)) to the Dirichlet 
problem (4.1). 

Finally (4.7), (4.8) hold for u, other than for u,, by (4.15), (4.17), (4.18) 
and since the lower semicontinuity of the norms. 

5. SOME MORE ON REGULARITY, INTERPOLATION, AND EXISTENCE 

In this section we consider again the elliptic Eq. (1.1) in an open set 
Q c R” (n > 2) and we assume that, for some positive constants m, M, for 
every <, 1 E R” and for a.e. x E Q: 

c ai,(x, <) niAj>~(l + l<(2)(p--2)‘2 1112; (5.1) 
i, j 

la’5i(x, 01 < M(1 + 1512)(“-2)‘2, Vi, j; (5.2) 

IUQX, r)l < M(1 + 151*p l)‘*, Vi, s. (5.3) 

THEOREM 5.1. Let b~Lz&a) and let (5.1), (5.2), (5.3) hold with 
exponents p, q related by 

n-l 
2GPQ4<xp (5.4) 

(2 <p < q, ifn = 2). Then every weak solution u E Wi;2-p(Q) to Eq. (2.1) is 
of class W:;:(Q); the estimate (2.9) holds with q replaced by 2q-p and 0 
given by 

2q-P 
e=(n-I)p-(n-2)q’ 

if n>2, (5.5) 

while, if n = 2, then 8 is any number strictly greater than (2q - p)/p if q > p 
and 8= 1 ifq=p. 
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Proof: Let r = 2q -p. Then (5.2) (5.3) can be written respectively in 
the form 

la:,(x, t)l <M(l+ j512)(P+r-4)‘4, Vi, j; 

Id (x 01 6 M(1 + ltJZ)(p+r--2)‘4 xs ’ 3 Vi, s. 

Moreover (5.4), in terms of p and r, is equivalent to 2 <p < r < 
Mn - 2)) P. 

Thus all the assumptions of theorem 2.1 are satisfied with q replaced by 
r. In particular (2.4) holds with q replaced by r since r 24. Then the 
conclusion of Theorem 2.1 holds with 8 = 2r/[np - (n - 2)r] (if n > 2), that 
corresponds to (5.5). 

By starting from the previous theorem, instead of Theorem 2.1, by the 
interpolation inequality (3.1) and with the same proof of Section 3 we 
obtain: 

THEOREM 5.2. Let bELEC(0) and let (5,1), (5.2), (5.3) hold for some 
exponents p, q related by 

2<pdq< 
n+2+Jn2+4 

2n P. (5.6) 

Then the estimates (3.4), (3.5) of Theorem 3.1 hold with a, 8 given by 

a= P(2q-P) 2q-P 
-nq*+(n+2)pq-p2’ e=(n-l)p-(n-2)q’ (5.7) 

if n > 2; while, if n = 2 and q >p, then let 8 be any number such that 
(2q - p)/p < 8 < q/(q - p) and let a be defined by (3.6); finally, if n = 2 and 
q=p, then let a=8= 1. 

By using the regularity and interpolation results of Theorems 5.1 and 5.2, 
with the same method of Section 4 we can prove the following: 

THEOREM 5.3. Let (4.3), (5.1), (5.2), (5.3), and (5.6) hold. Let us also 
assume that 

b E Lr’(P- “(a) n L,;#); u. E W’*‘(8), with r = P(29-P- 1). (58) 
P-1 

Then there is a solution of class W:;:(sZ) to the Dirichlet problem (4.1). 
Moreover the estimates of Theorem 4.1 hold with a, 6 given by (5.7). 
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Remark 5.4. Under the assumptions made in the present section, more 
regularity holds like in Corollaries 2.2 and 4.3. 

Remark 5.5. Let us consider in a bounded open set 52 c R” the p.d.e. 

If /3(x) = CL(X) - 1 and b(x) =O, then (5.9) is the Euler’s equation 
associated to the integral (1.7), of the type considered by Zhikov [19]. 

Let us assume that m(x) and B(x) are Lipschitz-continuous functions in 
Q such that a(x) >rn > 0 and p(x) 20 for every XE~. Moreover we 
assume that the oscillation of j?(x) in Sz is sufficiently small; precisely 

1 + sup{P(x) : x&}<n+2+&?-4 
1 +inf{fl(x):xEQ) 2n . 

(5.10) 

With the position a’(x, 5) = a(~)( 1 + 1~12)8(“) ci, we note in particular 
that, for every 5, 1 E R” and for x E 52, 

C at(x, 5) &Aj>m(l + 15/2)8(“) 1A12; 
6 i 

ais@, T)=(~,+aBx,Wl + 151’))(1+ 1412P”‘L 

If we take exponents p, q such that p = 2( 1 + inf{P(x) : x E 52)) and 

2(1+sup{&):x&?})<q< 
n+2+Jn2+4 

n 
(1 +inf{p(x) :xes2}) 

then all the assumptions of Theorem 5.3 are satisfied. Thus the Dirichlet 
problem associated to (5.9), with data satisfying (5.8), has a weak solution 
with all the regularity stated previously. In particular, if b E C$;(sZ) and tl, 
p E C:;:(Q), then there is a function u E C:;:(B) that assumes the boundary 
datum in the sense of W’~p(Q) and that is a classical solution in Q to 
Eq. (5.9). 

6. DISCONTINUOUS UNBOUNDED SOLUTIONS 

In this section we consider equations of the type 

icl $. a’(h) = 0, in 52, 
I 

(6.1) 
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where a’(<) satisfy, for every 5, i E R”, for some m, M> 0 and q > p > 1, the 
conditions 

i a'(@) 5i>m ItI"; b'(al d Wl + ItI"- '); 
i=l 

(6.2) 

if p<2<q, Cu~,(~)~i~j~m(1+1~12)‘p-2”2(~(2; 

gj(<)l <M(l + 1;;2)(q--2? 
(6.3) 

As a generalization of Giaquinta [6] and Marcellini [14] we will show 
that, for some exponents p, q, the elliptic equation (6.1) may have discon- 
tinuous weak solutions (thanks to Fruncesco Leonetti for having checked 
and revised this section). Of course, if Eq. (6.1) has a discontinuous weak 
solution in the Sobolev class W’*J’(Q), then necessarily p is less than or 
equal to n. 

THEOREM 6.1. Let n>2, 1 <p<n-1 and 

q> (n-lb 
n-l_p’ (6.4) 

Then there are functions a’ locally Lipschitz-continuous in IW’ for 
i = 1, 2, . . . . n, satisfying (6.2), (6.3), such that the corresponding Eq. (6.1) 
admits unbounded weak solutions. 

Remark 6.2. Let n > 2 and p> 1 such that 2(n - 2)/n <p c 2(n - 1)/n. 
Then it is possible to consider exponents p, q satisfying (6.4) and such that 
2 <q < np/(n - 2). Thus, in particular, from the previous result we deduce 
that Theorem 2.1 does not hold (with the assumptions 1~ q/p < n/(n - 2)) 
if we drop the condition p 2 2. 

Proof of Theorem 6.1. The first part of the proof is a generalization of 
a similar result given in [6, 141 (see also [ 15)). First of all, by a computa- 
tion we can see that the function 

n-1 --PlMq--P)) 
u = cx4/(4-P) 

n 
( > x1 xt ’ 

(6.5) 

for a particular choice of the constant c #O (here we use the condition 
q > (n - 2)p/(n - 1 -p)), is a classical solution to the equation 
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for c;:,‘xf>O, x,>O. Let cl>0 and let SZC{XE[W~:X,>C,}, Q 
bounded. Then there is a constant c2 such that 

n-1 n-1 

%“>CczT c +-c2, VxEa: 1 x;>o. 

s=l i= 1 

Let us consider the functions g(t) = t (P-2)/2, h(t)=F’ for t>c, and let 
us extend them to Iw as even functions with the constant value g(t) = 
(c~)(~-~)/~, h(t) = (c~)~-’ for It( < c2. 

Then of course u is a classical solution also to 

and (6.7) is an elliptic equation of the type (6.1), (6.2), (6.3). 
By using (6.4) we can see that 

u,, E Lp(s2), Vi = 1, 2, . . . . n - 1; 24,” E L”(Q). (6.8) 

Let us note that, if n is sufficiently large, then UE W’*q(Q), too. 
By adapting a well-known argument by De Giorgi (see, for example. 

Giusti [7, Chap. VI, Sect. 11; see also [14] for the details) and by using 
the condition p < n - 1, we can conclude that u is a weak solution to (6.6) 
(or equivalently to (6.7)). 

APPENDIX: A SIMPLE EXISTENCE THEOREM 

We think it is of interest to give an existence theorem for a class of 
Dirichlet problems associated to some nonlinear p.d.e., already considered 
by Leray and J. L. Lions (see [ 11, Remark 5; 12, Chap. 2, Sects. 1.7 and 
2.31; see also [S, 17]), whose proof is a direct application of the theory of 
monotone operators and for which the previous regularity results apply. 
Let us also mention that [ 15, Theorem A] is a regularity result, specific for 
the situation considered here. 

We consider the p.d.e. (1.1) with a’(~, 5) Caratheodory functions satisfying, 
for some constants m, M > 0, for exponents qi > 1, Vi = 1, 2, . . . . n, for a.e. 
x E Q (open bounded set of Iw”) and for every 5, q E Iw” with r # q, 

i$l ta’tx, 5)-a’(x, V))(ti-Vi)>O; (7.1) 

icl 4x, t)ti>m i ltil”; (7.2) 
i=I 

> 

(1 - Vq,) 

, Vi= 1, 2, . . . . n. (7.3) 
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Note that the growth condition (7.3) is very natural if a’(~, 5) =fc,(x, l), 
with f(x, 5) Caratheodory function, convex with respect to 5 and such that 

IftxY 01 Gc( l+ i ltjIw) 

j=l 
(7.4) 

for some constant c and for a.e. x E 52, c E R”. In fact it is possible to show 
[ 15, Lemma 2.11 that, under our positions, (7.4) implies (7.3). 

We look for weak solutions to (1.1) in the Sobolev class 

v= (u E w’, l(Q) : ox1 E Lysz), vi= 1, 2, . ..) Fz}. (7.5) 

Let us denote by V’ the dual space of V,,, where V, = Vn Wi ‘(51). 

THEOREM 7.1. Let (7.1), (7.2), (7.3) hold. Then, for every U,,E V and 
b E V’ there is a unique u E u0 + V0 such that 

n 

SC 
a’(~, Du) #x, dx + (b, $) = 0, Vd E v,. (7.6) 

Q j=l 
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