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1. INTRQDUCTI~N 

Let {,5,) be a sequence of linear operators on C [0, l] into C [0, 11. Evaluation 
of the remainder 

is useful in the investigation of the approximation properties of the operators&. 
For the Bernstein polynomials, this remainder has been thoroughly investi- 

gated. First, some asymptotic formulae were given by Voronovskaya and by 
Bernstein (see [IO], pp. 22-23) and later, the remainder was evaluated for 
different classes of functions by Popoviciu and by Lorentz (see [IO], Th. 1.6.1 
and Th. 1.6.2). More recently, 0. Arama [3] gave a representation of this 
remainder by means of divided differences. Using different methods of con- 
struction, L. Arama [I] and Stancu [Z4] obtained independently another 
representation; but both restricted the functionsf(x) to be twice continuously 
differentiable in [0, 11. Furthermore, L. and 0. Arama [2], using L. Arama’s 
technique, obtained a similar representation of the remainder in the approxi- 
mation of the above type of functions by generalized Bernstein polynomials 
(with some restrictions on the powers involved in the definition of these 
polynomials). We shall give here a representation of the remainder in the 
approximation of any continuous function on [0, I] by generalized Bernstein 
polynomials. This representation will be expressed by means of divided 
differences. We shall also estimate the order of approximation off(x) by these 
operators. 

Approximation operators resembling the Bernstein polynomials and 
known as Bernstein power-series were introduced by Meyer-KGnig and Zeller 
[12]. Recently, Lupas and Mtiller [II] showed that the remainder for Bernstein 
power-series has properties similar to those of the remainder for Bernstein 
polynomials. Operators generalizing the Bernstein power-series and resembling 
the generalized Bernstein polynomials were defined by Jakimovski and the 
author [8]. (Recently they have been redefined by Feller [5].) Representations 
and estimates of the remainders for these operators will also be provided. 
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2. PRELIMINARIES 

Let the sequence (hi} (i 2 0) satisfy 

0 < A, < A, < . . . < A, < . . .+q 

Define 

(2.1) 

prim(x) = (-l)n-mhln+, *. . :h, i x”‘/CL&(h,), 0 < yp1 <n = 1,2,, O .) 
i=m 

P,,(X) = xhn, n = 0,1,2, s. .) 

where 
qlm(t) = (t - A,,).. . :(t - A,), O~m<n= 1,2,.... 

Also, set 

%n = 1, n=0,1,2,..., 
and denote 

4nmw =“P.&)> Pm = %-1,m-1~ I <m<iz- 1,2,.... 
n 

The generalized Bernstein polynomials associated with the co~t~~~ous 
functionf(x) were defined by Hirschman ahd Widder (see [IO], $2.8) as 

Bn(f,x) = m~oPnnl(x)f(%n). O<xxlI, n=Q,1,2 ).* -* (2.2) 

A slight modification of [IO], Th. 2.8.2, yields the following 

THEOREM A. Letf(x) be continuous in [O, l]. 

(i) If A, = 0, then lim,,,B,(f,x) =f(x), uniformly irz 0 G x G 1. 
(ii) rfho > 0, then limndm B,(f,x) = f(x) for every 0 -C x G 1, ~n~ormly in 

any interval [S, 11, 0 < 6 < 1. Moreover, since B,(f, 0) = 0 for all n > 0, it f~~~o~~ 
that &(S,Q) + f(0) if and only iff(0) = 0. 

The generalized Bernstein power-series associated with a continuous 
function f (x) are defined as 

Since hm X.O+~m(Jx) = f(O), it is convenient to define 

~,il(f,O) =f(Oh nz= E,2,.... 
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The following result is stated in [a], Th. 4.1, and proved in [9], Th. 2.3. 
(See also [5].) 

THEOREM B. Let f(x) be continuous in [0, 11. Then lim,,,M,(f,x) =f(x), 
uniformly in 0 < x < 1. 

We shall make use of the following results (see [ZO], p. 46, (10) and (1 l), and 
P. 47, (4)) : 

Pnd4 > 0, O<x<l, O<m<n=O,1,2,...; 1 

if x, = 0, then mgo pnm(x> = 1, O<x<l, n=0,1,2 )...) 
I (2.5) 

and ~OpE,Jx)c&=x’i, OGX,C 1, n=0,1,2 ,..,. 

Also, by [9], (3.15), 

n&.(x)= 1, o<x< 1, m= 1,2 ).,.) 
(2.6) 

and n~mqnm(x)/3~n=xA1, O<x<l, m=1,2 ,..., 

Let X > 0 and define the divided differences off(x) in the following way. 
Let x0,x1,,.. be distinct points in the domain of definition off(x); define 

k> 1. 

For X = 1, these are the ordinary divided differences. We shall need the general 
ones in order to describe the remainder for our operators in case h, # 1. 
These divided differences are obtained from Popoviciu’s general divided 
differences, [13], (22), by taking gi(x) = xih, i = 0, 1,2, . . . . We call a function 
f(x) convex, non-concave, polynomial, non-convex, or concave of order s if 
the divided difference 

is positive, non-negative, zero, non-positive, or negative, respectively, for all 
(distinct) x0,. . .,x8+ , in the domain of definition off 

3. REPRESENTATION OF THE REMAINDER 

We establish, first, the following 

THEOREM 1. Let x0 = 0, and let f(x) be continuous in [0, 11. Then for n > 1 
andO<x,c 1, 
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Thus, the sequence {&dfx)}( n > 1) is decreasing, ~Q~inc~eas~~g, stat~#~a~~~ 
nondecreasing, or increasing iff is convex, non-conca~e,po~y~o~~al~ non-convex, 
or concave of order 1, respectively. 

Theorem 1, for the ordinary Bernstein polynomials, was proved in [3]. 

Proof. It was proved by Hausdorff, [7], (8), that 

n All = c 
m=l 

^nilP,+l,~~(x)[f(a,,,-,) -f(%mX 

(since X0 = 0, cc,,, = c+~, 0 = 0 and cznn = 1) 

= I, + I*, say. 
Now, 

bserving that 
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if follows that 

This completes our proof. 
We can establish now the following representation theorem. 

THEOREM 2. Let A0 = 0. Then for each n > 1 and each x0 E [0, I] there are 
three distinct points [,(n,x,,), 12(n,x0), [3(n,x,J such that for every function 
f(x), continuous in [0, 11, 

&*(.A x0> =f(xo) - ML x0> 
= &(xZh’, xo)h ; Eh, x0), t2(n, x0), Mn, &A. 

Theorem 2, for the ordinary Bernstein polynomials, was proved in [3]. 

Proof. Given IZ,, 2 1 and 0 < x0 < 1, we shall prove that R&f, x0) # 0 for 
every continuous function f(x), convex of order 1. Then our theorem will 
follow by Popoviciu [23], Th. 5. Now, for such a functionf(x), the sequence 
(&(d x0)} (n 2 1) is decreasing, by Theorem 1. Furthermore, by Theorem A, 
&(f x0) +f(xo). Therefore 

R,(.L x0) =fbo) - &,(f, x0> -= 0. 
This completes our proof. 

Remark 1. In fact, R,(f,x,) has degree of exactness 1 (see [13], $29, since 
by (2.5), R,(f,x,) vanishes for the functions l,xhl. 

The following is an immediate consequence of Theorem 2. 

COROLLARY 1. If A, = 0 and the function g(x) = f (x’lhl) is twice continuously 
difirentiable in (0, l), then for each n 2 1 and each x0 E [0, l] there exists 
0 -C &,x0) < 1 such that 

&(f, x01 = tRn(~*~~, xo)g”(O. (3.2) 
For X, = 1, we have g(x) = f(x) and (3.2) was obtained in [3]. 
A representation of the remainder in the approximation of functions twice 

continuously differentiable in [0, l] by generalized Bernstein polynomials in 
the case X1 = 1, which is much more precise than (3.2), follows immediately by 
Remark 1 and by Popoviciu [13], (84): 

THEOREM 3. Let A0 = 0 and A, = 1. Then for each N 2 1, each x0 E [0, I] and 
every function f(x), twice continuously dzj%rentiable in [0, 11, 

Rn(.L x01 = j-t MA, xolf “(t) dtt, 
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where 
X4+1X+1/ 

4*(x> = 2 * 

Remark 2. Since &(x) is non-concave of order 1, it follows by Theorem 1, 
that R,($,,x,) f 0 for all 0 G t G 1. Also, &(&,x0) is continuous in 8 G t G 1 
and, in fact, infinitely differentiable for t # x0 and # cxnm, 0 G m G n. Thus, 
applying the mean value theorem, it is possible to derive (3.2), in case X, = B, 
from Theorem 3. 

Remark 3. Theorem 3 and Remark 2 were obtained in [2] by a long construc- 
tion. It must be added, however, that the construction in [2] shows a wider 

rnstein operators by assuming instead of (2.1) merely A, = 
for k > 1. Estimate of this remainder is given in [Z] on 

sequences (hi} satisfying a slight modification of (2. l), namely, 

Theorem 3 and Remark 2, for the ordinary Bernstein polynomials, were 
obtained by L. Arama [I] and by Stancu [Id]. 

Similar results can be obtained for the generalized Bernstein 
We merely state them here, leaving their proofs to the reader. 

?hlEOREM 4. Let f(x) be continuous in [0, I]. Then for every m 2 1 and every 
x 65 @, 11, 

where y& , * m is as in Theorem 1. Thus, for 0 < x < 1, the sequence (n/r,(f, x)> 
(m > 1 j is decreasing, nonincreasing, stationary, ~o~decreasi~g, or increasing 
$ f is convex, non-concave, polynomial, non-convex, or concave of order 1, 
respectively. 

Theorem 4, for the ordinary Bernstein power-series, was proved in [II] 

THEOREM 5. For each m 2 1 and each x0 E [0, I ] there are three distinct points 
Mvb>~ S2h.d Cd m, x0) such that for every firnction f(x), co~t~~~o~s i?z 
P, 11, 

%d.fi x0) =.mo> - Ma x0> (3.4) 

= ~d~*~‘, xdb ; 5dw 4, 12h x0), SAm, xJ;Sl~ 

Theorem 5, for the ordinary Bernstein power-series, was proved in [II]. 
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Remark 4. Like &(f, x,,), also 9&v, x0) has degree of exactness 1, since, by 
(2.6), gM(f, x0> vanishes for the functions 1, xhl. 

The following is an immediate consequence of Theorem 5. 

COROLLARY 2. Ifthefunctiong(x) = f(x I/“‘) is twice continuously d@erentiable 
in [0, 11, then for each m 2 1 and each x0 E [0, l] there exists 0 < <(m,xO) < 1 
such that 

~m(f, x0> = %%l(xZA1, xo)dYO. (3.5) 

Again, a more precise representation can be obtained in case h, -1 for 
functions twice continuously differentiable in [0, 11; it follows by Remark 4 
and [13], (84). 

THEOREM 6. Let A, = 1. Thenfor each m 2 1, each x0 E [0, l] andeveryfunction 
f(x), twice continuously dQj%rentiable in [0, I], 

JJ%(~, xo> = j-i ~‘,(vL xoY”(t> 4 (3.6) 

where &(x) is as in Theorem 3. 

Remark 5. &“,(A, x0) has properties similar to those of R,(&, x0), except that 
9’,($,, x,,) is infinitely differentiable for t # 
If x0 = 0, then ~?,(c#J,, 0) z 0. 

xoand #&,,,n~m,ifO<xO~l. 

4. ESTIMATE OFTHE 

The following is needed in the sequel. 

REMAINDER 

LEMMA 1. Let A,, = 0. Then there exists a constant Cl such that for all n 2 1 
and all x0 E [0, 11, 

Proof. This lemma is a slight modification of estimates given by Gelfond 
[6], p. 417, and can be proved in the same way. It should be noted, however, 
that Gelfond’s inequality (25), 
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is incorrect. For example, it does not hold for the sequence 01~ = 
inequality holds for sequences (czi> such that ccii r - cli 2 a > 0. 
without difficulty that for every E > 0 there exists a K(E) such that 

and this inequality, with E = a,, is used in proving our lemma. 

LEMMA 2. Let AmoWl G 2h, < A,,. Then there exists a constant Cz such thatfir 
all m 2 m. and all x0 E [0, 11, 

ProoJ: It follows by [9], (3.15), that for m 2 m. and 0 c x0 < 1, 

xg1 =&&.(x,)(1 -2). . . . . 

Hence 

z2m(X2Al ,x0)= 5 q&x0) 1-p ‘...* 
n=in [( 1 m 

Now, by (2.6), if 0 < x0 < 1, then 

and modifying again Gelfond’s estimates [6] as above, our lemma is prove 
forO<x,< 1. Forxo=0,W,(x2”,0)=0. 

Denote 

(By (2. I>, pn --f 0 as n -+ a, .) 
Our first estimate of the remainder is 

THEOREM 7. Let ho = 0 and suppose that g(x) = j”(xilirl) is twice c5~t~~~~~§~~ 
dzfirentiable in [O, I]. Then 

!MLX)l G c3 Pm 32=1,2,..., 

where C3 = +C, maxO s x <, j g”(x) [ and C, is taken from Lemma 1. 
The proof follows immediately by (3.2) and Lemma 1. Similarly, we have 
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THEOREM 8. Suppose that g(x) ==f(~‘~‘l) is twice continuously dl~erentiable 
in [0, 11. Then 

I~mu4l+ m>mo, 

where C4 = +C, max oGXGljg”(x)I andC, is takenfromLemma2. 
The proof is immediate. 
Other methods of estimating the remainder, using the modulus of continuity 

of f(x) or of f’(x), if f is continuously differentiable, were developed by 
Popoviciu and Lorentz (see [IO], Th. 1.6.1 and Th. 1.6.2). Since, if ho = 0, we 
obtain by (2.5), 

Bn((XA1 - x$)2, x0) = R,(X2A’, x,), n= 1,2,..., 

it follows by a proof similar to that of [IO], Th. 1.6.1, that we have 

THEOREM 9. Let A, = 0 and let w,(S) denote the modulus of continuity of 
g(x) =f(xllhl). Then 

I eI(f, 4 I G G %(P7?2)s n= 1,2,.... 

Also by (2.6), 

and also we have 

THEOREM 10. Let w,(6) be as in Theorem 9. Then 

l~,(f, x)1 G C6 w~(&;“~), m a m,. 

Finally, the following result follows by a proof similar to that of [IO], 
Th. 1.6.2. 

THEOREM 11. Suppose that g(x) = f(~“~‘) is continuously dlfirentiable in 
[0, 11 and let w(g’, S) be the modulus of continuity ofg’. 

(i) IfA, = 0, then 

1 ML x)1 G c, plt’2 dg’, p;‘2), n = 1,2,. . . . 

(ii) For m > mo, 

IW,(f, x)1 < cs Ai”2 w(g’, h;“2). 

For the ordinary Bernstein power-series, Theorems 10 and 11 (ii) were 
proved in [II]. (See also [4].) 
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