
Journal of the American College of Cardiology Vol. 60, No. 16, 2012
© 2012 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00
STATE-OF-THE-ART PAPERS

Endothelial Dysfunction,
Arterial Stiffness, and Heart Failure
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Outcomes for heart failure (HF) patients remain suboptimal. No known therapy improves mortality in acute HF
and HF with preserved ejection fraction; the most recent HF trial results have been negative or neutral. Improve-
ment in surrogate markers has not necessarily translated into better outcomes. To translate breakthroughs with
potential therapies into clinical benefit, a better understanding of the pathophysiology establishing the founda-
tion of benefit is necessary. Vascular function plays a central role in the development and progression of HF. En-
dothelial function and nitric oxide availability affect myocardial function, systemic and pulmonary hemodynam-
ics, and coronary and renal circulation. Arterial stiffness modulates ventricular loading conditions and diastolic
function, key components of HF with preserved ejection. Endothelial function and arterial stiffness may therefore
serve as important physiological targets for new HF therapies and facilitate patient selection for improved appli-
cation of existing agents. (J Am Coll Cardiol 2012;60:1455–69) © 2012 by the American College of Cardiology
Foundation

Published by Elsevier Inc. http://dx.doi.org/10.1016/j.jacc.2011.11.082
Need for Novel Therapeutic Targets
for Heart Failure

The public health impact and the need to intervene on the
growing heart failure (HF) epidemic are in the center of the
national healthcare debate. HF is the primary cause of �1
million hospitalizations annually and is associated with a
postdischarge mortality and readmission rate of approxi-
mately 45% at 60 to 90 days (1,2). With the population
aging, the already alarming HF epidemic is projected to
worsen. Despite advances in drug and device therapy for
chronic HF with reduced ejection fraction (EF), outcomes
at the community level remain suboptimal (3,4). Although
many therapies have been evaluated within the last decade,
few have produced positive results in Phase III trials (5–13).
Notably, improvement in surrogate markers in Phase II
studies has not necessarily translated into better clinical
outcomes (14). For example, improved hemodynamics with
nesiritide (15) and promising renoprotective effects of rolo-
fylline did not result in reduced mortality or hospitalization
rates (16,17). Selective V2 receptor vasopressin antagonists
likewise failed to improve outcomes despite showing prom-
ise in initial studies, with the effects of unopposed V1
receptor activity not being fully realized (6,7). Furthermore,
targeting many of the consequences of altered physiology
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linked to HF outcomes (e.g., ischemia [18,19], hyperuri-
cemia [20], renal dysfunction [17], hyponatremia [6,7],
ventricular arrhythmias [21]) has not translated consis-
tently into improved clinical outcomes either. There are,
however, other examples in which an approach of target-
ing a biologic surrogate did improve clinical outcomes;
for example, defibrillator therapy for prevention of sud-
den cardiac death (22).

Considering the persistent suboptimal outcomes for
chronic HF with reduced EF, the lack of an agent that
improves survival for HF with preserved EF or acute HF,
and the many recent negative or neutral HF trials, newer
therapeutic targets warrant consideration (23–25). Success-
ful translation of breakthroughs to meaningful clinical
benefit requires a deeper understanding of the relevant
pathophysiology. Mechanistic pilot studies using surrogate
markers that establish a solid foundation of therapeutic
benefit may bridge this missing translational step and allow
for more comprehensive and relevant evaluation of thera-
peutic agents before resource-intensive Phase III trials. We
propose that for a novel agent or therapeutic target to be
considered for Phase II and III clinical trials, it should fulfill
the requirements illustrated in Figure 1.

Recently, novel mechanistic pathways of endothelial dys-
function and arterial stiffness in HF have been investigated.
These may provide the rationale for new drug development
and allow for improved application of existing agents. We
therefore discuss the role of vascular function measures as
potential targets for new HF therapeutic development and

research.
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Literature Search
and Selection Strategy

A search of Medline, PubMed,
EMBASE, and Evidence Based
Medicine Reviews database in-
cluding Cochrane Database of
Systematic Reviews, ACP Jour-
nal Club, Database of Abstracts
of Reviews of Effects, Cochrane
Central Register of Controlled
Trials, Health Technology As-
sessment, and Cochrane Meth-
odology Register was performed
to identify all studies that evalu-
ated the effects of endothelial
function and arterial stiffness in
HF published up to April 1, 2011,
without any language or publica-
tion form restriction. The key-
words of “heart failure,” “cardio-
myopathy,” “systolic function,”
“systolic dysfunction,” “diastolic
dysfunction,” “human,” and “en-
dothelial” or “arterial stiffness”

were used to conduct the literature search, which identified
�4,000 publications. Subsequently, studies other than those
in the English language were excluded. In addition, publi-
cations without original data (reviews, letters, and editorials)
or with a primary focus on non-HF issues (e.g., coronary
artery disease) were excluded as well. References for these

Abbreviations
and Acronyms

ACE � angiotensin-
converting enzyme

EF � ejection fraction

FMD � flow-mediated
dilation

HF � heart failure

iNOS � inducible nitric
oxide synthase

LV � left ventricular

NO � nitric oxide

NOS � nitric oxide
synthase

PAT � peripheral arterial
tonometry

PDE5 � type 5
phosphodiesterase

PP � pulse pressure

PWV � pulsed wave
velocity

sGC � soluble guanylate
cyclase
Figure 1 Proposed Schema for Evaluation of Candidate Targets for C
studies were cross-checked to obtain additional studies that
may have been missed by the original search. Finally, key
papers from this search that highlighted the important con-
cepts presented in this review were selected.

Endothelial Function as Potential Target

Normal endothelial function. Endothelium is a mono-
layer of cells covering the inner surface of blood vessels, and
it acts as a functional and structural barrier between blood
and the vessel wall, preventing platelet and leukocyte adhe-
sion and aggregation, controlling permeability to plasma
components, and modulating blood flow (Fig. 2). The
healthy endothelium is a dynamic organ that regulates
vascular tone by balancing production of vasodilators and
vasoconstrictors in response to a variety of stimuli (26).
Nitric oxide (NO), the predominant mediator of normal
vascular function, is released by the endothelium and dif-
fuses within the vessel wall, causing smooth muscle dilation
and myofibrillar relaxation in response to stimulation by
endogenous factors such as bradykinin, acetylcholine, and
catecholamines, as well as ischemia, temperature change, and
mechanical stimuli, including shear stress (27). Endothelium
also provides antiproliferative and anti-inflammatory actions,
and regulates fibrinolysis as well as the coagulation pathway
through the balanced production of anticoagulant (e.g.,
tissue plasminogen activator, thrombomodulin) and proco-
agulant (e.g., tissue factor, von Willebrand factor) factors,
which maintain hemostatic properties of blood vessels (28).
Central role of NO. NO is synthesized from L-arginine by
NO synthase (NOS) (29). The 3 main NOS isoforms include
linical Trials
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constitutive endothelial NOS (eNOS or NOS3), neuronal
NOS (or NOS1), and inducible NOS (iNOS) that are
differently coexpressed in NO-producing cells and also
inducible by immunological stimuli (30). Although NO
produced by all 3 pathways regulates normal physiology,
large amounts of NO produced by iNOS may have a
cytotoxic effect and inhibit myocardial contractility (31).
Because HF triggers changes in myocardial NO production,
shifting from spatially and temporally regulated NO pro-
duction by eNOS to excessive release by iNOS, the distinc-
tion between NO produced by eNOS/neuronal NOS or
iNOS is important (32,33). In the intact endothelium,
hormonal and physical stimuli cause the constitutively
expressed eNOS to generate NO, which then diffuses into
smooth muscle cells and stimulates soluble guanylate cyclase
(sGC) to produce cyclic guanine monophosphate, which
causes smooth muscle relaxation and also has antiprolifera-
tive effects. In addition to these smooth muscle cell–

Figure 2 Normal Endothelial Function

The endothelium is responsible for a number of physiological functions, including:
constrictors; 2) control of blood fluidity and coagulation through production of fact
3) regulation of inflammatory processes through expression of cytokines and adhe
monophosphate; COX � cyclooxygenase; BH4 � tetrahydrobiopterin; IL � interleu
oxide; NOS � nitric oxide synthase; O2� � superoxide.
mediated vascular effects, NO targets neighboring extravas-
cular tissues, including myocardium (34). Release of
endothelial progenitor cells from bone marrow, which has
been shown to repair damaged endothelium, is also partially
NO dependent (35). Furthermore, NO can act as an
endocrine vasoregulator, modulating blood flow in the
microcirculation when vehiculated by S-nitrosohemoglobin,
which transports and releases NO to areas of tissue hypoxia
or increased oxygen extraction (36). Importantly, disruption
of NO delivery to the microcirculation contributes to
vasoconstriction and uncoupling of oxygen delivery in skel-
etal muscle. Given the pivotal role of NO in mediating
endothelial function, impairment of vasodilation due to
decreased NO availability is often used as a measure of
endothelial function (37,38).
Endothelial dysfunction in HF. Although endothelial
dysfunction has traditionally been associated with systemic
vasoconstriction in advanced HF, newer insights suggest a
more central role in HF pathogenesis (39–45). The failing

ulation of vascular tone through balanced production of vasodilators and vaso-
t regulate platelet activity, the clotting cascade, and the fibrinolytic system; and
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heart is characterized by an altered redox state with over-
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production of reactive oxygen species, and there is increas-
ing evidence to suggest that the abnormal cardiac and
vascular phenotypes characterizing the failing heart are
caused in large part by imbalances between NO bioavail-
ability and oxidative stress (46). In HF, neurohumoral
activation, release of inflammatory messengers from the
myocardium, and altered local shear forces modulate gene
expression and promote atherogenesis, increasing oxidative
stress and reducing production of NO (47,48). The result-
ing endothelial dysfunction triggers an increase in the
production of cytokines, down-regulation or uncoupling of
eNOS (32,33), and further increases in oxidative stress (49,50).
These processes culminate in reduced NO bioavailability and
worsening endothelial dysfunction, which in turn propagates
development and progression of HF (41,42,51,52). These
abnormalities have emerged as a common pathophysiological
element in the development and progression of HF and are
also associated with HF risk factors (53). Within this con-
struct, myocardial adverse effects and endothelial dysfunction
related to oxidative stress represent a unifying feature that
drives both the symptoms and unfavorable outcomes associated
with both ischemic and nonischemic HF (54).
Chronic HF. Increasing HF severity is associated with NO
imbalance and endothelial dysfunction that manifests in
different forms (52,53). Besides increasing afterload due to
systemic (55) and pulmonary vascular constriction (56,57),
altered endothelial function underlies regional vasomotor
dysregulation in the renal (58) and coronary circulation (59).
Decreased coronary endothelium-dependent vasodilator ca-
pacity impairs myocardial perfusion, reduces coronary flow
(60,61), and worsens ventricular function (53). The dys-
functional endothelium contributes to increased vascular
stiffness and impaired arterial distensibility, augmenting
myocardial damage (62–64). NO imbalances also alter
matrix metalloproteinases, which affect cell migration, car-
diac hypertrophy, and atherosclerotic plaque stability (65).
Increased endothelin-1 in HF causes increased vascular
resistance, smooth muscle cell growth, and matrix produc-
tion, resulting in vascular remodeling, endothelial dysfunc-
tion, and HF progression. Reduced NO in HF affects
endothelial progenitor cells, disabling endothelial repair and
regeneration (35). Circulating cytokines, particularly tumor
necrosis factor-alpha, down-regulate eNOS expression
(32,66) and are related to the degree of endothelial dysfunc-
tion in HF (67), which also correlates with progressive
deterioration in functional class (68). Furthermore, serum
from patients with HF has been shown to induce endothe-
lial cell apoptosis (32) through eNOS down-regulation (69);
recently, a common polymorphism of eNOS (Asp298),
linked with decreased NOS activity, was associated with
poorer survival in HF (70). However, promising research
demonstrates that targeted overexpression of eNOS may
attenuate both cardiac and pulmonary dysfunction (71).
Importantly, severity of endothelial dysfunction is also
related to exercise capacity (54,72). In HF, reduced blood

flow and sheer stress results in impaired exercise-induced
NO release, affecting muscle function (73–75), exercise
capacity, and ventilation (76–78). Down-regulation of
eNOS shifts catabolism from free fatty acids to lactate,
worsening exercise tolerance. Endothelial dysfunction also
affects autonomic balance, decreasing vagal and increasing
adrenergic activity, thus further worsening chronic HF (79).
Acute HF. NO-dependent regulation of ventricular func-
tion and vascular tone also determines hemodynamic status
in acute HF. Decreased NO availability induces vasocon-
striction and increased vascular stiffness in the systemic and
pulmonary circulation, resulting in augmented left ventric-
ular (LV) and right ventricular systolic workload. Decreased
NO bioavailability also enhances endothelin-1–induced va-
soconstriction (80), increases sympathetic outflow and cat-
echolamine release (81), and diminishes sodium excretion in
the kidney (82), all of which are important in the vicious
circle of acute HF syndrome. Excess reactive oxygen species
react with NO, disrupting physiological signaling and lead-
ing to production of toxic and reactive molecules, notably
peroxynitrite (83). Oxidative stress, quantifiable clinically
through urine isoprostane levels and plasma aminothiols
(84,85), is increased in acute decompensated HF (86), thus
unfavorably shifting the nitroso–redox balance and the
ventricular and vascular effects of NO.
Renal dysfunction. NO imbalance drives vasomotor ne-
phropathy, which underlies acute renal damage and the
cardiorenal syndrome in HF (58,87). This action is in part
due to reduced renal flow from inappropriate arteriolar
vasoconstriction superimposed on baseline low cardiac out-
put. Intrarenal NO regulates glomerular hemodynamics
(88), tubular transport, and tubuloglomerular feedback. NO
relaxes both afferent and efferent arterioles and regulates
renal medullary blood flow as well. In the proximal tubule,
NO promotes fluid and HCO3– reabsorption and inhibits

a�/H� exchanger (89) and Na�-K� adenosine trophos-
phatase activity. In the ascending loop of Henle, NO
inhibits Cl– and HCO3– reabsorption (90–92) and in the
collecting duct it decreases Na� and fluid reabsorption
(93–95). The net result is increased renal and glomerular
perfusion, natriuresis, and diuresis (96,97). Thus, NO
imbalance affects renal function, worsening HF.
Pulmonary hypertension and right ventricular failure. In
the pulmonary vasculature, dysfunctional endothelium can
affect vascular tone (98–100). Secondary pulmonary hyper-
tension and right ventricular dysfunction is common in HF
(101–104) and affect prognosis (105–108). Elevated pulmo-
nary vascular resistance in HF results from smooth muscle
tone dysregulation and remodeling of the pulmonary vas-
culature (57). These abnormalities are in part attributed to
pulmonary vascular endothelial dysfunction, resulting from
impaired NO availability and increased endothelin-1 ex-
pression (57). In HF, NO-dependent pulmonary vasodila-
tion is impaired (109–111), suggesting a potential thera-
peutic role for agents that improve endothelial function on

pulmonary hypertension and right ventricular function.
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Endothelial Function Assessment

Invasive assessment. Vasodilation in response to specific
endothelium-dependent and -independent stimuli within
the forearm, coronary, or peripheral circulations can be
measured to assess endothelial function. Coronary endothe-
lial function can be evaluated by intracoronary infusion of
endothelium-dependent vasodilators (e.g., acetylcholine)
(112). Changes in conduit vessel diameter measured with
quantitative angiography and blood flow with intracoronary
Doppler wire are used as measures of conductance and resis-
tance vessel endothelial function, respectively (113,114). Nor-
mal response is dilation of epicardial vessels and microcircula-
tion. In endothelial dysfunction, epicardial dilation is
attenuated or paradoxical constriction occurs, secondary to the
direct smooth muscle constricting effects of acetylcholine,
which overrides the dilating effects of endothelium-dependent
NO release (115). In other vascular beds, a diminished dilator
response is observed, but constriction is rare (116).
Endothelium-independent function is assessed by measuring
dose response to increasing concentrations of vasodilators that
donate NO directly (e.g., nitroglycerin, nitroprusside). Aden-
osine causes vasodilation by stimulating receptors in the mi-
crocirculation, facilitating measurement of the endothelium-
independent flow reserve in the microcirculation. Noninvasive
evaluation of coronary microvascular function by echocardiog-
raphy, magnetic resonance imaging, and positron emission
tomography is evolving (117–121).
Venous occlusion plethysmography. Venous occlusion
plethysmography is used to study forearm blood flow (122)
and involves arresting venous outflow with an inflated cuff
around the arm enough to occlude venous outflow while
preserving arterial inflow (approximately 40 mm Hg) and
simultaneously excluding the hand from the circulation by
inflating a wrist cuff to suprasystolic pressures (approxi-
mately 200 mm Hg). The rate and degree of swelling reflect
forearm vascular resistance, whereas the volume, measured
by using a voltage-dependent strain gauge, increases in
direct proportion to forearm blood flow. A minimally
invasive, modified strain-gauge method may be applied to
investigate in vivo endothelial function (123). This tech-
nique allows manipulation of vascular resistance by admin-
istering endothelial agonists (e.g., acetylcholine) and direct
smooth muscle relaxants (e.g., nitrates) locally without
systemic effects. Simultaneous contralateral arm measure-
ments are used to verify the absence of systemic effects of
drug infusion. Venous occlusion plethysmography is usually
well tolerated and is highly reproducible (124).
Flow-mediated dilation. With this technique, change in
brachial artery diameter is measured by using high-
resolution ultrasound (125). After a straight, nonbranching
segment of the artery above the antecubital fossa is imaged,
a blood pressure cuff placed below the antecubital fossa is
inflated to suprasystolic pressure (126). After cuff release,
reactive hyperemia is quantified (Fig. 3A) (127). Using

electrocardiographic gating, the arterial diameter is recorded
at end diastole to determine the response to flow increase,
and changes in the arterial diameter are assessed by using
digital edge detection (38). Flow-mediated dilation (FMD)
is expressed as percent change in diameter from baseline.
Response to the endothelium-independent dilator (e.g.,
nitroglycerin) is also assessed. FMD correlates with coro-
nary endothelial function (128). Aging, body mass index,
blood pressure, and smoking lower FMD, and beneficial
lifestyle changes such as exercise training and medical
therapy (e.g., statins) improve FMD (129,130). This tech-
nique, however, is operator dependent (131–133).
Peripheral arterial tonometry. Fingertip peripheral artery
tonometry (PAT) is a noninvasive technique that consists of
probes with inflatable latex air cuffs connected by pneumatic
tubes to an inflating device (134). A constant counterpres-
sure, determined by using baseline diastolic blood pressure,
is applied through air cushions preventing venous pooling,
thereby avoiding veno-arteriolar reflex vasoconstriction.
Pulsatile volume changes in the distal digit induce pressure
alterations in the cuff, which are sensed by transducers. A
decrease in the arterial blood volume causes a decrease in
arterial column changes and is reflected as a decreased PAT
signal, and vice versa (Fig. 3B). Endothelial function is
measured via a reactive hyperemia PAT index. A computer
algorithm calculates the ratio of reactive hyperemic response
to basal flow, indexed to the contralateral control arm. PAT
hyperemic flow is believed to depend on NO (135), and the
ratio correlates with coronary endothelial function (136),
FMD (137), and myocardial perfusion imaging studies
(134). The possible incremental value of PAT was demon-
strated in the Framingham cohort as well (138). However,
results from Framingham have also raised questions about
its specificity for NO, as PAT was not associated with
hypertension, diabetes, or increased age, all of which have been
linked to large-artery endothelial dysfunction (139,140). More
data are needed to establish the role of PAT.

Endothelial Dysfunction and HF Outcomes

Endothelial dysfunction is related to HF initiation and
progression (141) and is associated with adverse outcomes in
those with symptomatic and asymptomatic LV dysfunction
(59,142,143) and in acute and chronic HF (44,144–147).
The degree of endothelial dysfunction correlates with HF
severity and functional capacity (54,148). Endothelial dys-
function independently predicts major clinical events in HF
(147), including mortality risk (141,146,149,150). In pa-
tients with and without coronary artery disease, presence of
epicardial or microvascular endothelial dysfunction predicts
death (151–156). Endothelial dysfunction is also associated
with HF risk factors (e.g., hypertension, diabetes) (152,157).
Preservation of endothelial function in HF is associated
with improved LV function (144), and recovery is related to
improved outcomes (158). In HF, impaired FMD of the
brachial artery is common and is associated with poor

outcomes irrespective of etiology (54,149,150). Abnormal
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FMD predicts incident cardiovascular events in older adults,
a population that has a lower FMD and is also often at
increased HF risk (159). Impaired brachial artery FMD
identifies patients who will respond to cardiac resynchroni-
zation therapy (72), and FMD in addition to B-type
natriuretic peptide provides incremental prognostic infor-
mation in HF (54). The interobserver and intraobserver
variability and changes in FMD over time have enabled
construction of power curves for clinical trial protocols
(160), facilitating the use of FMD in trials.
Race and sex-related differences. Although women have

Figure 3 Endothelial Function Measurement Techniques

(A) Flow-mediated dilation. Graph of brachial artery diameter versus time in a norm
amplitude oscillation. Reprinted, with permission, from Sidhu et al. (127). (B) Peri
clamping effect to hold it in place while measuring pulsatile volume changes. The
higher FMD and PAT ratios, they also have a higher preva-
lence of abnormal brachial and digital vascular function (161).
Racial differences in distribution of blood flow at rest and
during stress may also be due to differences in endothelial
function. Black patients with HF have lower resting flow,
exercise-induced vasodilation, and hyperemic blood flow (162).
Furthermore, both conduit and resistance vessel endothelial
function are significantly decreased in black patients, which
correlates with reduced NO-dependent vasodilation during
stress (163). The reduced NO activity in black patients is partly
due to enhanced NO inactivation by oxidative stress (164) and
may contribute to the observed racial differences with vasodi-

bject. Variation in measured diameter caused by respiration is visible as a low-
arterial tonometry. The sensing region is thimble shaped and imparts a 2-point
nt annular cuff provides a buffering effect.
al su
pheral
adjace
lator therapy for HF (165).
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Arterial Stiffness as a Therapeutic Target

Normal arterial structure and function. Throughout the
circulatory system, the arterial network combines cushion-
ing (elasticity, mainly mediated by the proximal arteries),
and conductance functions, which increase in a stepwise
fashion from the aorta to the periphery (166). In large, more
elastic arteries, such as aorta and large branches, stiffness is
primarily determined by components of the extracellular
matrix, which along with the elastin-to-collagen ratio,
decrease toward the periphery as arterial stiffness increases.
Stiffness of the smaller arteries and arterioles is determined
by hypertrophy and smooth muscle tone. Many character-
istics can influence arterial stiffness, including endothelial
function and NO availability (167). The stiffness of larger
arteries also increases in parallel with blood pressure, as a
higher distending pressure leads to recruitment of more
inelastic collagen fibers (168). Age is an important deter-
minant of elasticity (169), and large artery stiffening is
accelerated in black patients (170).

Arterial Stiffness Assessment

Pulse pressure. The pulse pressure (PP) is a crude index of
large artery stiffness, but it depends on other factors also
(e.g., stroke volume) (171). The pressure wave amplitude,
systolic pressure, and PP increase toward the periphery;
diastolic and mean pressure do not change significantly
(172). Brachial artery pressures only crudely estimate central
hemodynamics and tend to be higher than aortic pressures.
Central systolic and diastolic pressures are better indices of
afterload and coronary perfusion pressure, respectively.
Central PP is partially dependent on the elastic properties of
the peripheral arteries, as there is a contribution of the
reflected wave to this pressure (173). Noninvasive tech-
niques are now available to measure the central PP.
Pulsed wave velocity and augmentation index. During
cardiac systole, rhythmic pressure waves are generated,
which propagate to the periphery and are reflected backward
to the aorta. Accordingly, the pressure waveform arises from
the merging of an incident forward traveling wave and a
backward one reflected from the periphery (174). Wave
reflection occurs at sites of impedance mismatch, often
branch points, and is quantified by the augmentation index,
which represents the difference between the first and second
peaks. Impedance of the elastic arteries is relatively static,
but the smaller arteries are more dynamic depending on
smooth muscle tone and vessel size. Vasodilation reduces
the augmentation index and vasoconstriction increases it
(175). Pulsed wave velocity (PWV) is calculated as the
distance between 2 sites divided by the travel time of the
pulse; a stiff aorta results in higher PWV. Increased PWV
produces an earlier wave reflection that arrives in late systole
instead of diastole, augmenting the load on the heart. PWV
can be assessed by measuring the transit time between the
carotid and the femoral artery with mechanotransducers

(Complior system, Artech Medical, Pantin, France). Ap- s
planation tonometry (SphygmoCor, AtCor Medical, West
Ryde, Australia) involves detection and recording of pres-
sure waves from 2 arterial sites using sensitive tonometers.
Aortic PWV can be measured with Doppler ultrasonogra-
phy (176) and magnetic resonance imaging (177,178).
Because NO affects the shape and reflection of the arterial
wave, endothelial function can be assessed by recording the
shape of the arterial waveform after glyceryl trinitrate
administration as an endothelium-independent stimulus
and salbutamol as an endothelium-dependent agonist
(179,180). Glyceryl trinitrate, an NO donor, reduces wave
reflection at low doses before any measurable effect on
resistance or mean pressure, suggesting that small arteries
are more sensitive than resistance vessels (181). Conversely,
inhibiting NO production with LG-monomethyl L-arginine in-
reases wave reflection (182).
rognostic value of arterial stiffness in HF. Arterial

tiffness increases with age (169), cardiometabolic abnor-
alities (183,184), and increased sodium intake (185), all of
hich are associated with HF. Increased arterial stiffness is

ssociated with LV diastolic dysfunction (186,187) and HF
ith preserved EF (188,189). Increases in LV end-systolic

nd arterial elastance occur with aging, particularly in
omen, and may result in ventricular-vascular stiffening

eading to HF with preserved EF (190). Increased PWV
nd augmentation index are independently associated with
ystolic and diastolic dysfunction (191–193). Central PP
redicts LV hypertrophy and cardiovascular events (194).
ncreased PP and adverse outcomes have been reported in
atients with asymptomatic LV dysfunction as well as overt
F (195,196). Higher PP predicts HF development in

lderly patients and predicts mortality and cardiovascular
vents after myocardial infarction in those with LV dysfunc-
ion (197). The relationship between PP and adverse events
s independent of mean arterial pressure, suggesting the role
f conduit vessel stiffness in HF. As cardiac output falls,
eurohumoral activation and vasoconstriction increase re-
istance vessel tone to maintain mean arterial pressure but
lso increase vascular smooth muscle mass, tone, and fibro-
is, resulting in increased stiffness and PP. A direct rela-
ionship between neurohumoral activation and increased
arotid stiffness has been seen in HF (198). Although higher
P portends a mortality risk in chronic HF, lower PP seems

o predict mortality in acute HF (199).

trategies to Improve Endothelial Function in HF

mproved endothelium-dependent vasodilation and in-
reased NO bioavailability among HF patients is seen after
weeks of an aerobic exercise program (200). Furthermore,

mprovement in endothelium-dependent vasodilation with
xercise training correlates with increased peak oxygen
ptake, suggesting that the improved endothelial function
ontributes to increased exercise capacity after physical
raining in HF (158). Other therapies that improve HF

urvival and EF also improve endothelial function (Fig. 4,
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Table 1 [201–216]). Angiotensin-converting enzyme
(ACE) inhibitors improve endothelial function through
enhancing bradykinin and reducing oxidative stress
(205,217). Addition of spironolactone to an ACE inhibitor
exerts additional beneficial effects on endothelium-
dependent vasodilation (203,218). Carvedilol, a vasodilating
beta-blocker with antioxidant activity, improves oxidative
stress (219) and endothelial function (220). Nitrates in-
crease NO bioavailability and affect ventricular remodeling
and vascular tone. Hydralazine prevents nitrate tolerance
and, through inhibition of reduced nicotinamide adenine
dinucleotide and nicotinamide adenine dinucleotide phos-
phate oxidase, protects NO from oxidative stress–induced
degradation that leads to endothelial dysfunction (221).

Type 5 phosphodiesterase (PDE5) inhibitors improve
O bioavailability and vasodilation in HF (204). PDE5

inhibitors increase myocardial contractility (222), blunt
adrenergic stimulation (223), reduce LV afterload (222),
and improve lung diffusion capacity and pulmonary hemo-
dynamics (224,225). PDE5 inhibitors have demonstrated
mprovement in ventilation and aerobic efficiency in HF,
hich is related to an endothelium-mediated attenuation of

xercising muscle oversignaling. The sGC activators and
timulators target the disrupted NO–sGC signaling path-
ay that affects endothelial function (226). The sGC

timulators sensitize sGC to NO and can stimulate sGC in
he absence of endogenous NO, whereas sGC activators
ctivate the NO-unresponsive, heme-free form of the en-
yme irrespective of NO bioavailability. Thus, sGC stimu-

Figure 4 Effect of Approved Heart Failure Therapies on Ejection

All currently approved therapies for heart failure that have been shown to improve
possibility of assessing endothelial function as a potential early drug development
ators and activators can treat the 2 forms of sGC insuffi-
iency (i.e., diminished NO bioavailability and reduction of
he catalytic capacity of sGC). Preliminary studies with both
DE5 inhibitors and sGC-targeted drugs have shown
romising results (227–230).
Although most antihypertensive drugs improve arterial

tiffness, their beneficial effects on HF may be independent
f blood pressure reduction (231). ACE inhibitors favorably
ffect large- and small-artery elasticity (232) by impeding
ascular remodeling and atherosclerosis (231). Some vaso-
ilating beta-blockers also have a favorable effect on the
asculature (233), decreasing stiffness (234). Statin therapy
mproves arterial elasticity (235) that is related to improved
ndothelial function and reduced inflammation. Alpha-
lockers do not improve arterial stiffness or endothelial
ysfunction, even though they lower blood pressure (236).
These associations, although not proven to be causal,

evertheless raise the interesting possibility of targeting
ndothelial function as a surrogate marker for improved HF
utcomes. L-arginine, tetrahydrobiopterin, allopurinol, and

progenitor cell therapy are currently under investigation; all
favorably influence endothelial function (237,238). Thus,
endothelial function is amenable to modulation, providing
opportunity for new drug development.

Novel Uses of Endothelial Function Assessment
in Phase II HF Trials

Because endothelial function is responsive to both adverse
and favorable influences, affects HF, and is measurable, its
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al and ejection fraction also favorably impact endothelial function. This raises the
gate marker. ACE � angiotensin-converting enzyme.
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assessment allows for identification of both positive and



Effect of Therapeutic Agents on Endothelial Function in HFTable 1 Effect of Therapeutic Agents on Endothelial Function in HF

First Author (Ref. #) Study Population Therapy (Duration) Vascular Function Outcome Measure

Schwarz et al., 1994 (201) Follow-up study of 18 HF patients and
5 age-matched subjects without HF

Intra-arterial infusion of nitroglycerin
(10�9 mol/l) (20 min)

Forearm VOP Forearm blood flow response to acetylcholine increased after administration of
nitroglycerin (from baseline reading of 10.6 � 2.3 to 17.7 � 3.4 ml/min per
100 ml) in patients with HF but did not appreciably change in normal subjects

Nakamura et al., 1994 (202) Follow-up study of 30 HF patients Arterial enalaprilat infusion
(0.6 �g/min per 100 ml)

Forearm VOP Forearm blood flow response to acetylcholine improved after infusion of enalaprilat
(2.9 � 1.1 ml/min per 100 ml)

Farquharson and Struthers,
2000 (203)

Randomized, placebo-controlled, double-blind
crossover study of 10 HF patients

Spironolactone 50 mg/day versus
placebo (4 weeks)

Forearm VOP Percentage change in forearm blood flow increased with spironolactone
(177 � 29%) versus placebo (95 � 20%), with an associated increase in
vasoconstriction due to L-NMMA after spironolactone (–35 � 6%) versus after
placebo (–18 � 4%)

Katz et al., 2000 (204) Randomized, placebo-controlled, double-blind
trial of 48 HF patients

Sildenafil 25 or 50 mg or matching
placebo (1 h)

Brachial artery FMD Percent change in FMD after release of 1, 3, and 5 min of arterial occlusion was
greater with sildenafil 25 mg (3.3 � 1.9%, 3.8 � 1.8%, and 4.0 � 1.8%) and
50 mg (3.7 � 1.3%, 4.1 � 1.1%, and 3.9 � 1.3%) than with placebo
(0.7 � 1.1%, 0.2 � 1.2%, and 0.6 � 0.8%)

Joannides et al., 2001 (205) Randomized, placebo-controlled, double-blind
trial of 16 HF patients

Perindopril 4 mg/day versus
placebo (8 weeks)

Forearm VOP Flow-dependent dilation and increase in compliance (3.2 � 0.8 � 10–7 to
6.8 � 2.5 � 10–7 m2/kPa) and distensibility (5.7 � 1.4 � 10–3 to
8.9 � 1.9 � 10–3/kPa) of the radial artery was higher with ACE inhibitors

Falskov et al., 2011 (206) Randomized controlled trial of 27 HF patients Carvedilol 50 mg/day versus
metoprolol tartrate 200 mg/day
or metoprolol succinate 200
mg/day (8 weeks)

Forearm VOP Relative forearm blood flow measured before and after treatment was similar with
carvedilol (from 2.4 � 0.3 to 2.1 � 0.2 ml/min per 100 ml), metoprolol tartrate
(from 2.6 � 0.3 to 2.4 � 0.6 ml/min per 100 ml), and metoprolol succinate
(from 1.8 � 0.3 to 2.1 � 0.4 ml/min per 100 ml)

Doehner et al., 2002 (207) Randomized, double-blind, crossover study of
19 HF patients

Allopurinol 300 mg/day or placebo
(1 week)

Forearm VOP Percent change in forearm blood flow was higher after allopurinol in arms
(25.6 � 3.5 to 27.8 � 3.5 ml/min per 100 ml, 24%) and legs (17.4 � 2.1 to
20.2 � 2.3 ml/min per 100 ml, 23%) vs. no appreciable change with placebo

Farquharson et al., 2002 (208) Randomized, placebo-controlled, double-blind
crossover study of 11 HF patients

Allopurinol 300 mg/day versus
placebo (4 weeks)

Forearm VOP Percent change in forearm blood flow in response to acetylcholine was higher after
allopurinol (181 � 19%) vs. placebo (120 � 22%)

Abiose et al., 2004 (209) Follow-up study of 20 HF patients Spironolactone (4–8 weeks) Brachial artery FMD Percent change in FMD after spironolactone was from 5.5 � 2.1% to 9.3 � 4.0%
after 4 weeks and 9.0 � 3.4% after 8 weeks of therapy

Macdonald et al., 2004 (210) Randomized controlled trial of 43 HF patients Spironolactone 12.5–50 mg/day
versus placebo (12 weeks)

Forearm VOP Percent change in forearm blood flow response to acetylcholine was significantly
improved after treatment with spironolactone vs. placebo (p � 0.045)

Tousoulis et al., 2005 (211) Randomized follow-up study of 38 male
patients with ischemic HF

Atorvastatin 10 mg/day (n � 14),
atorvastatin 10 mg/day, and
vitamin E 400 IU/day (n � 12)
vs. control (n � 12) (4 weeks)

Forearm VOP Percent change in forearm blood flow in response to reactive hyperemia was
higher in the atorvastatin-treated group (from 5.8 � 2.1 to 6.8 � 2.4 ml/min per
100 ml) vs. atorvastatin plus vitamin E group (from 5.6 � 1.6 to 6.0 � 2.1
ml/min per 100 ml) and control group (from 5.5 � 2.0 to 5.7 � 2.2 ml/min per
100 ml)

George et al., 2006 (212) Randomized, placebo-controlled, double-blind,
crossover study of 30 patients with HF

Allopurinol 300 mg/day or 600 mg/
day versus placebo (4 weeks)

Forearm VOP Percent change in forearm blood flow in response to acetylcholine was higher after
allopurinol 600 mg/day (240.3 � 38.2%) compared with both allopurinol
300 mg/day (152.1 � 18.2%) and placebo (74.0 � 10.3%)

Guazzi et al., 2007 (213) Randomized controlled trial of 46 patients
with HF

Sildenafil 50 mg twice per day
(6 months)

Brachial artery FMD Percent change in FMD with sildenafil was higher (8.5% to 13.4% and 14.2% at
3 and 6 months, respectively) vs. placebo (from 7.8% to 7.6% and 8.1% at 3
and 6 months)

Castro et al., 2008 (214) Prospective study of 38 patients with HF Atorvastatin 20 mg (8 weeks) Brachial artery FMD Percent change in FMD was higher after therapy with atorvastatin (from
4.5 � 1.9% to 6.7 � 2.8%) vs. placebo (from 4.5 � 1.9% to 5.0 � 2.0%)

Gounari et al., 2010 (215) Double-blind, placebo controlled, crossover
trial of 22 patients with HF

Ezetimibe 20 mg or rosuvastatin
10 mg (4 weeks, with a 4-week
washout period)

Brachial artery FMD Percent change in FMD after therapy with rosuvastatin was significantly higher
(p � 0.05 versus baseline), whereas there was no change after ezetimibe
treatment (p � NS vs. baseline)

Erbs et al., 2011 (216) Randomized, double-blind, placebo-controlled
study of 42 HF patients

Rosuvastatin (40 mg/day) or
placebo (12 weeks)

Brachial artery FMD Percent change in FMD after therapy with rosuvastatin (163%, p � 0.001 vs.
placebo)

ACE � angiotensin-converting enzyme; FMD � flow-mediated dilation; HF � heart failure; L-NMMA� N-monomethyl-L-arginine; VOP � venous occlusion plethysmography.
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negative drug effects. Endothelial function assessment may
offer advantages over other Phase II trial surrogate end
points (hemodynamic or symptom based) by providing
mechanistic insights into investigational therapies. The
additional endothelial function assessment will be comple-
mentary to hemodynamic, imaging, and symptom-based
endpoints, and positive findings may provide a firm ratio-
nale for prioritization of drugs for testing in large-scale
outcome studies. Efforts to standardize endothelial function
assessment, (e.g., FMD) have improved reproducibility, and
both crossover and parallel design clinical trials have become
feasible and published power curves facilitate protocol de-
sign (239). Endothelial function assessment may improve
classification of HF pathophysiology as well. This is impor-
tant given the critical need for improved categorization of
the HF syndromes (240). This may also reduce patient
heterogeneity in clinical trials. By providing mechanistic
insights in Phase II studies, endothelial function and arterial
stiffness assessments may further inform subsequent phases
of drug development, provide the rationale to re-examine
preclinical models, develop new uses for investigational
agents, and better determine which patients may benefit
most in Phase III trials.

Conclusions

Endothelial dysfunction is implicated in HF development,
is prevalent in those with HF, is associated with HF
progression, and is a predictor of adverse events in these
patients. Specific techniques can be used to evaluate coro-
nary and peripheral conductance and resistance vessel en-
dothelial function. Similarly, arterial stiffness may be related
to and exacerbate HF, especially with preserved EF. These
techniques have a firm theoretical basis and address different
facets of endothelial and vascular physiology. Evaluation of
endothelial function and vascular status may be a valuable
mechanistic surrogate that could aid novel therapeutic drug
development. It is important, however, to perform studies
that address relevant questions, including which techniques
are most informative in HF and whether the clinical benefit
from a specific therapeutic strategy is mediated through an
improvement in endothelial function.
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