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a b s t r a c t

In this paper, the existence of positive solutions for the nonlinear Caputo fractional
functional differential equation in the form

Dq
0+y(t) + r(t)f (yt) = 0, ∀t ∈ (0, 1), q ∈ (n − 1, n],

y(i)(0) = 0, 0 ≤ i ≤ n − 3,

αy(n−2)(t) − βy(n−1)(t) = η(t), t ∈ [−τ , 0],

γ y(n−2)(t) + δy(n−1)(t) = ξ(t), t ∈ [1, 1 + a]

is studied. By constructing a special cone and using Krasnosel’skii’s fixed point theorem,
various results on the existence of at least one or two positive solutions to the fractional
functional differential equation are established. The main results improve and generalize
the existing results.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to establish the conditions for the existence of positive solutions for the following nonlinear
Caputo fractional functional differential equation of the form

Dq
0+y(t) + r(t)f (yt) = 0, ∀t ∈ (0, 1), q ∈ (n − 1, n],

y(i)(0) = 0, 0 ≤ i ≤ n − 3,

αy(n−2)(t) − βy(n−1)(t) = η(t), t ∈ [−τ , 0],

γ y(n−2)(t) + δy(n−1)(t) = ξ(t), t ∈ [1, 1 + a],

(1.1)

where

(H0) τ , a, α, β, γ and δ are nonnegative constants satisfying 0 ≤ τ + a ≤ 1 and ρ−1
= αγ + αδ + βγ > 0.

(H1) yt = y(t +θ), θ ∈ [−τ , a]; η ∈ C([−τ , 0],R), ξ ∈ C([1, b],R), η(0) = ξ(1) = 0, where R = (−∞, +∞), b = 1+a.
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Let C = Cn−2([−τ , a],R) be a Banach space with ∥ϕ∥C = sup−τ≤θ≤a |ϕ(n−2)(θ)| for ϕ ∈ C , and C+
= {ϕ ∈ C : ϕ(θ) ≥

0, −τ ≤ θ ≤ a}.
Define

E = {t ∈ [0, 1] : 0 ≤ t + θ ≤ 1, −τ ≤ θ ≤ a}.

Obviously, E possesses nonzero measure from the assumption that 0 ≤ t + θ ≤ 1.
Fractional differential equations have gained importance due to their numerous applications in many fields of science

and engineering including fluid flow, rheology, diffusive transport akin to diffusion, electrical networks, probability, etc. For
details, see [1–4] and the references therein. In recent years, there are somepapers dealingwith the existence of the solutions
of initial value problems or linear boundary value problems for fractional differential equations by means of techniques of
nonlinear analysis (fixed point theorems, Leray–Schauder theory, lower and upper solutionsmethod, etc); see for e.g. [5–13].

In [8], Bai and Lü investigate the following two point boundary value problem of fractional differential equations
Dq
0+u(t) + r(t)f (t, u(t)) = 0, 0 < t < 1, 1 < q ≤ 2,

u(0) = u(1) = 0,

where Dq
0+ is the Riemann–Liouville fractional derivative.

In [12], by means of Amann theorem and the method of upper and lower solutions, Liu and Jia study the existence and
multiplicity of positive solutions for nonlinear fractional differential equationsDq

0+u(t) + f (t, u(t), u′(t)) = 0, 0 < t < 1,
g0(u(0), u′(0)) = 0 = g1(u(1), u′(1)),
u′′(0) = u′′′(0) = · · · = u(n−1)(0) = 0,

where n − 1 < q ≤ n is a real number and Dq
0+ is the standard Caputo fractional derivative.

In [13], Rehman and Khan investigate the existence and uniqueness of solutions for the following fractional differential
equations

Dq
0+u(t) + f (t, u(t),Dν

0+u(t)) = 0, 1 < q ≤ 2, 0 < ν < 1, 0 < t < 1,

u(0) = 0, Dν
0+u(1) −

m−2
i=1

aiDν
0+u(ξi) = u0,

where 0 < ξi < 1, ai ∈ [0, +∞), (i = 1, 2, . . . ,m− 2) and Dq
0+ is the standard Riemann–Liouville fractional derivative. By

means of the Schauder fixed point theorem and the Banach contraction principle, some results on the existence of solutions
are obtained for the above fractional boundary value problems.

When q = n, the problem (1.1) is reduced to nth-order boundary value problem, which has been studied by Hong
et al. [14]. For the situation that τ = a = 0 and 1 < q ≤ 2, the problem (1.1) becomes the two-point boundary value
problem of fractional functional differential equations and has been investigated in the recent literature such as [8,10,15].
However, the results dealing with the existence of positive solutions for boundary value problem of fractional functional
differential equations are relatively scare. Li et al. [16] investigate the existence of at least one positive solution for the
following boundary value problem of fractional functional differential equationsDq

0+y(t) + f (t, yt) = 0, ∀t ∈ (0, 1), 1 < q ≤ 2,
αy(t) − βy′(t) = η(t), t ∈ [−τ , 0],
γ y(t) + δy′(t) = ξ(t), t ∈ [1, 1 + a],

where Dq
0+ is the Caputo fractional order derivative.

Recently, in [17], Weng and Jiang have studied the existence of positive solutions for the boundary value problem of
second order functional equations. In [18], Zhao and Chen discussed the existence of multiple positive solutions for the
following second order functional differential equationsy′′(t) + f (t, y(t − τ)) = 0, ∀t ∈ (0, 1) \ {τ },

y(t) = η(t), ∀t ∈ [−τ , 0],
y(1) = 0,

where the nonlinearity f may be singular and takes negative values.
Motivated and inspired by the work above, we are concerned with the existence of positive solutions for the fractional

functional equations (1.1) under suitable conditions on f . The main tool used in this paper is the theory of Krasnosel’skii’s
fixed point theorem in cones. Some sufficient conditions for the existence of at least one positive solution or at least two
positive solutions of the BVP (1.1) are obtained, and the main results of this paper is to extend and supplement some results
in [17,14,16].
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Throughout this paper, we suppose that the following conditions are satisfied.

(H2) f (ϕ) is a nonnegative continuous function defined on C+.
(H3) r(t) is a nonnegative measurable function defined on (0, 1), and satisfies

0 <


E
r(t)h(t)dt ≤

 1

0
r(t)h(t)dt < +∞,

where h(t) is defined as

h(s) =
1

Γ (q − n + 2)
(β + αs)[γ (1 − s) + δ(q − n + 1)](1 − s)q−n.

In obtaining positive solutions of problem (1.1), we will need the following fixed point theorem in cones.

Lemma A (Krasnosel’skii’s [19]). Let K be a cone in a Banach space E. Assume that Ω1, Ω2 are open subsets of E with 0 ∈

Ω1, Ω̄1 ⊂ Ω2. If T : K ∩ (Ω̄2 \ Ω1) → K is a completely continuous operator such that either:

(i) ∥Tx∥ ≤ ∥x∥, x ∈ K ∩ ∂Ω1, and ∥Tx∥ ≥ ∥x∥, x ∈ K ∩ ∂Ω2, or
(ii) ∥Tx∥ ≥ ∥x∥, x ∈ K ∩ ∂Ω1, and ∥Tx∥ ≤ ∥x∥, x ∈ K ∩ ∂Ω2,

then T has a fixed point in K ∩ (Ω̄2 \ Ω1).

2. Preliminaries

In this section, we introduce preliminary facts and properties which are used throughout this paper. The definitions on
the fractional integral and the Caputo fractional derivative can be found in the recent literature [2–5,8].

Definition 2.1. The left sided Riemann–Liouville fractional integral of order q > 0 of a function f : [0, +∞) → R is given
by

Iq0+f (t) =
1

Γ (q)

 t

0
(t − s)q−1f (s)ds.

Definition 2.2. The Caputo derivative of fractional order q > 0 of a function f : [0, +∞) → R is defined as

Dq
0+f (t) =

1
Γ (n − q)

 t

0
(t − s)n−q−1f (n)(s)ds,

where n − 1 < q ≤ n.

Lemma 2.1. Let q > 0. Then the fractional differential equation

Dq
0+y(t) = 0

has a unique solution y(t) = c0 + c1t + c2t2 + · · · + cn−1tn−1, ci ∈ R, i = 0, 1, 2, . . . , n − 1, n = [q] + 1.

Lemma 2.2. Let q > 0. Then the following equality holds for y ∈ L(0, 1),Dq
0+y ∈ L(0, 1),

Iq0+D
q
0+y(t) = y(t) + c0 + c1t + c2t2 + · · · + cn−1tn−1,

for some ci ∈ R, i = 0, 1, 2, . . . , n − 1, n = [q] + 1.

Definition 2.3. We say a function y(t) is a solution of BVP (1.1) if

(1) y(t) is continuous on [0, b];
(2) y(t) = y(−τ ; t) for t ∈ [−τ , 0] where y(−τ ; t) : [−τ , 0] → [0, +∞) satisfies

y(n−2)(−τ ; t) = e
α
β
t

1
β

 0

t
e−

α
β
s
η(s)ds + y(n−2)(0)


; (2.1)

(3) y(t) = y(b; t) for t ∈ [1, b], where y(b; t) : [1, b] → [0, +∞) satisfies

y(n−2)(b; t) = e−
γ
δ
t

1
δ

 t

1
e−

γ
δ
sξ(s)ds + e

γ
δ y(n−2)(1)


; (2.2)

(4) Dq
0+y(t) = −r(t)f (yt) for t ∈ (0, 1) almost everywhere.
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3. Main results and proofs

Lemma 3.1. Suppose that (H0)–(H2) hold, and q ∈ (n − 1, n], the unique solution of BVP (1.1) is

y(t) =


y(−τ ; t), −τ ≤ t ≤ 0, 1

0
G(t, s)r(s)f (y(s + θ))ds, 0 ≤ t ≤ 1,

y(b; t), 1 ≤ t ≤ b,

where

G(t, s) =

−
(t − s)q−1

Γ (q)
+ G0(t, s), 0 ≤ s ≤ t ≤ 1,

G0(t, s), 0 ≤ t ≤ s ≤ 1,

and

G0(t, s) =
ρ[β(n − 1) + αt]tn−2

(n − 1)!Γ (q − n + 2)
[γ (1 − s) + δ(q − n + 1)](1 − s)q−n,

moreover, y(−τ ; t) and y(b; t) satisfy (2.1) and (2.2), respectively.

Proof. By Dq
0+y(t) + z(t) = 0, t ∈ (0, 1), and the boundary conditions y(0) = y′(0) = · · · = y(n−3)(0) = 0, we have

y(t) = −Iq0+z(t) + y(0) + y′(0)t +
y′′(0)
2!

t2 + · · · +
y(n−2)(0)
(n − 2)!

tn−2
+

y(n−1)(0)
(n − 1)!

tn−1

= −
1

Γ (q)

 t

0
(t − s)q−1z(s)ds +

y(n−2)(0)
(n − 2)!

tn−2
+

y(n−1)(0)
(n − 1)!

tn−1.

By virtue of the proposition of the Caputo derivative, we have

y(n−2)(t) = −
1

Γ (q − n + 2)

 t

0
(t − s)q−n+1z(s)ds + y(n−2)(0) + y(n−1)(0)t

and

y(n−1)(t) = −
1

Γ (q − n + 1)

 t

0
(t − s)q−nz(s)ds + y(n−1)(0).

Then

y(n−2)(1) = −
1

Γ (q − n + 2)

 1

0
(1 − s)q−n+1z(s)ds + y(n−2)(0) + y(n−1)(0)

and

y(n−1)(1) = −
1

Γ (q − n + 1)

 1

0
(1 − s)q−nz(s)ds + y(n−1)(0).

According to boundary conditions αy(n−2)(0) − βy(n−1)(0) = η(0) = 0, γ y(n−2)(1) + δy(n−1)(1) = ξ(1) = 0, and noting
that Γ (q − n + 2) = (q − n + 1)Γ (q − n + 1), we getαy(n−2)(0) − βy(n−1)(0) = 0,

γ y(n−2)(0) + (γ + δ)y(n−1)(0) =
1

Γ (q − n + 2)

 1

0
[γ (1 − s) + δ(q − n + 1)](1 − s)q−nz(s)ds.

Hence

y(n−2)(0) =
ρβ

Γ (q − n + 2)

 1

0
[γ (1 − s) + δ(q − n + 1)](1 − s)q−nz(s)ds

and

y(n−1)(0) =
ρα

Γ (q − n + 2)

 1

0
[γ (1 − s) + δ(q − n + 1)](1 − s)q−nz(s)ds.
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So we can easily obtain that

y(t) = −
1

Γ (q)

 t

0
(t − s)q−1z(s)ds +

ρ[β(n − 1) + αt]tn−2

(n − 1)!Γ (q − n + 2)

 1

0
[γ (1 − s) + δ(q − n + 1)](1 − s)q−nz(s)ds

=

 1

0
G(t, s)z(s)ds.

Then we complete the proof of Lemma 3.1. �

By direct computation, we have

∂n−2

∂tn−2
G(t, s) = g(t, s), t, s ∈ [0, 1],

where

g(t, s) =


g1(t, s), 0 ≤ s ≤ t ≤ 1,
g0(t, s), 0 ≤ t ≤ s ≤ 1, (3.1)

and g1(t, s) = −
(t−s)q−n+1

Γ (q−n+2) + g0(t, s), g0(t, s) =
ρ(β+αt)

Γ (q−n+2) [γ (1 − s) + δ(q − n + 1)](1 − s)q−n.

Lemma 3.2. The function g(t, s) defined as in (3.1) has the following properties:
(i) g(t, s) is continuous on [0, 1] × [0, 1];
(ii) for β >

n−q
q−n+1α, we have g(t, s) > 0 for any t, s ∈ [0, 1];

(iii) for β >
n−q

q−n+1α, we have g(t, s) ≤ g(s, s) for t, s ∈ (0, 1);
(iv) there exists a positive number λ such that ρλh(s) ≤ g(t, s) ≤ ρh(s) for t, s ∈ [0, 1].

Proof. It is easy to prove that (i) holds. First, we check that (ii) is true. For 0 ≤ s ≤ t ≤ 1, we get

∂g1(t, s)
∂t

= −
(t − s)q−n

Γ (q − n + 1)
+

ρα

Γ (q − n + 2)
[γ (1 − s) + δ(q − n + 1)](1 − s)q−n

and

∂2g1(t, s)
∂t2

=
(n − q)(t − s)q−n−1

Γ (q − n + 1)
≥ 0.

This implies that ∂g1(t,s)
∂t is increasing on t ∈ [s, 1], so

∂g1(t, s)
∂t

≤
∂g1(1, s)

∂t
=

ραγ (1 − s) − (q − n + 1)(1 − ραδ)

Γ (q − n + 2)
(1 − s)q−n

≤
ρ

Γ (q − n + 2)
[αγ − (q − n + 1)(α + β)γ ](1 − s)q−n

≤ 0

because of β >
n−q

q−n+1α. Then g1(t, s) is decreasing with respect to t on [s, 1], we get g1(1, s) ≤ g1(t, s) ≤ g1(s, s).
Furthermore, when β >

n−q
q−n+1α,

g1(1, s) = −
(1 − s)q−n+1

Γ (q − n + 2)
+

ρ(α + β)

Γ (q − n + 2)
[γ (1 − s) + δ(q − n + 1)](1 − s)q−n

=
ρ(1 − s)q−n

Γ (q − n + 2)
[−ρ−1(1 − s) + γ (α + β)(1 − s) + (α + β)δ(q − n + 1)]

=
ρδ(1 − s)q−n

Γ (q − n + 2)
[−α + αs + (α + β)(q − n + 1)]

≥
ρδ(1 − s)q−n

Γ (q − n + 2)
[α(q − n) + β(q − n + 1)] > 0.

When 0 ≤ t ≤ s ≤ 1, we have

∂g0(t, s)
∂t

=
ρα

Γ (q − n + 2)
[γ (1 − s) + δ(q − n + 1)](1 − s)q−n

≥ 0,

which implies g0(0, s) ≤ g0(t, s) ≤ g0(s, s) = ρh(s). Obviously,

g0(0, s) =
ρβ

Γ (q − n + 2)
[γ (1 − s) + δ(q − n + 1)](1 − s)q−n > 0.
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From the proof of (ii), we can obtain g(t, s) ≤ g(s, s) easily. Furthermore, we have

g∗(s) ≤ g(t, s) ≤ ρh(s),

where

g∗(s) =


g1(1, s), 0 ≤ s <

βγ − αδ(q − n)
αδ + βγ

,

g0(0, s),
βγ − αδ(q − n)

αδ + βγ
≤ s < 1.

Since

inf
0<s<1

g1(1, s)
g(s, s)

= inf
0<s<1

ρ − (1 − s)
ρ(β + αs)[γ (1 − s) + δ(q − n + 1)]

+ 1

≥
4αγ δ[β(q − n + 1) + α(q − n)]

[αγ − βγ + αδ(q − n + 1)]2 + 4αβγ [γ + δ(q − n + 1)]
:= λ1

and

inf
0<s<1

g0(0, s)
g(s, s)

= inf
0<s<1

βγ (1 − s) + βδ(q − n + 1)
ρ(β + αs)[γ (1 − s) + δ(q − n + 1)]

≥
4αβγ δ[β(q − n + 1) + α(q − n)]

[αγ − βγ + αδ(q − n + 1)]2 + 4αβγ [γ + δ(q − n + 1)]
:= λ2.

Take λ = min{λ1, λ2}, then we get

λρh(s) = λg(s, s) ≤ g(t, s) ≤ g(s, s) = ρh(s). �

Throughout this paper, assume that x0(t) is the solution of BVP (1.1) with f ≡ 0. Clearly, it satisfies

x(n−2)
0 (t) =


1
β
e

α
β
t
 0

t
e−

α
β
s
η(s)ds, −τ ≤ t ≤ 0,

0, 0 ≤ t ≤ 1,
1
δ
e−

γ
δ
t
 t

1
e

γ
δ
sξ(s)ds, 1 ≤ t ≤ b.

Let y(t) be a solution of BVP (1.1) and x(t) = y(t) − x0(t). Because of x(t) ≡ y(t) for 0 ≤ t ≤ 1, and x(t) satisfies

x(n−2)(t) =


e

α
β
tx(n−2)(0), −τ ≤ t ≤ 0, 1

0
g(t, s)r(s)f (x(s + θ) + x0(s + θ))ds, 0 ≤ t ≤ 1,

e−
γ
δ
(t−1)x(n−2)(1), 1 ≤ t ≤ b,

which implies

x(t) =




β

α

n−2

e
α
β
tx(n−2)(0), −τ ≤ t ≤ 0, 1

0
G(t, s)r(s)f (x(s + θ) + x0(s + θ))ds, 0 ≤ t ≤ 1,

−
δ

γ

n−2

e−
γ
δ
(t−1)x(n−2)(1), 1 ≤ t ≤ b.

Define a cone K in the Banach space X = C (n−2)([−τ , b],R) as follows

K := {x ∈ X : x(n−2)(t) ≥ p(t)∥x∥[−τ ,b], t ∈ [−τ , b]},

where ∥x∥[−τ ,b] := sup{|x(n−2)(t)| : −τ ≤ t ≤ b}, and

p(t) :=

e
α
β
t
, −τ ≤ t ≤ 0,

λ, 0 ≤ t ≤ 1,
e−

γ
δ
(t−1), 1 ≤ t ≤ b.
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Define a mapping T : K → K as

(Tx)(t) :=




β

α

n−2

e
α
β
tx(n−2)(0), −τ ≤ t ≤ 0, 1

0
G(t, s)r(s)f (x(s + θ) + x0(s + θ))ds, 0 ≤ t ≤ 1,

−
δ

γ

n−2

e−
γ
δ
(t−1)x(n−2)(1), 1 ≤ t ≤ b.

(3.2)

Thus

(Tx)(n−2)(t) =



e
α
β
t
 1

0
g(0, s)r(s)f (x(s + θ) + x0(s + θ))ds, −τ ≤ t ≤ 0, 1

0
g(t, s)r(s)f (x(s + θ) + x0(s + θ))ds, 0 ≤ t ≤ 1,

e−
γ
δ
(t−1)

 1

0
g(1, s)r(s)f (x(s + θ) + x0(s + θ))ds, 1 ≤ t ≤ b.

(3.3)

Lemma 3.3. T : K → K is completely continuous.

Proof. It follows from (3.2) and (3.3) that we have for −τ ≤ t ≤ 0

0 ≤ (Tx)(n−2)(t) ≤ (Tx)(n−2)(0)

and for 1 ≤ t ≤ b

0 ≤ (Tx)(n−2)(t) ≤ (Tx)(n−2)(1).

Thus we get ∥Tx∥[−τ ,b] = ∥Tx∥[0,1] and

(Tx)(n−2)(t) ≥


e

α
β
t
∥Tx∥[0,1], −τ ≤ t ≤ 0,

e−
γ
δ
(t−1)

∥Tx∥[0,1], 1 ≤ t ≤ b.
(3.4)

For 0 ≤ t ≤ 1, x ∈ K , we obtain from Lemma 3.1(iii) and (iv)

∥Tx∥[−τ ,b] = ∥Tx∥[0,1] ≤ ρ

 1

0
h(s)r(s)f (x(s + θ) + x0(s + θ))ds

and

(Tx)(n−2)(t) ≥ ρλ

 1

0
h(s)r(s)f (x(s + θ) + x0(s + θ))ds,

which implies that (Tx)(n−2)(t) ≥ λ∥Tx∥[0,1] = λ∥Tx∥[−τ ,b]. This together with (3.4) shows that (Tx)(n−2)(t) ≥

p(t)∥Tx∥[−τ ,b]. Therefore, we have T (K) ⊂ K .

Next we show that T : K → K is continuous. In fact, suppose that xm, x ∈ K with ∥xm − x∥[−τ ,b] → 0 as n → ∞; then
we have ∥xm(t + θ) − x(t + θ)∥[−τ ,b] = sup−τ≤θ≤a |xm(t + θ) − x(t + θ)| → 0, t ∈ [0, 1]. Thus for t ∈ [−τ , b], it can be
seen from (H2) and (3.3) that

∥(Txm)(n−2)(t) − (Tx)(n−2)(t)∥[−τ ,b] ≤ ρ sup
0≤t≤1

|f (xm(t + θ)) − f (x(t + θ))|

 1

0
r(s)h(s)ds.

This implies that ∥Txn − Tx∥[−τ ,b] → 0 as n → ∞.

Let B ⊂ K be a bounded subset of K and M0 > 0 is a constant such that ∥x∥[−τ ,b] ≤ M0. Define a set S ∈ C+ as
S = {ϕ ∈ C+

: ∥ϕ∥C ≤ M0}. Let L = maxϕ∈S f (ϕ + maxt∈(0,1) x0(t + θ)).

Furthermore, we have for −τ ≤ t ≤ 0

|(Tx)(n−1)(t)| =

αβ e
α
β
t
 1

0
g(0, s)r(s)f (x(s + θ) + x0(s + θ))ds


≤

α

β
Lρ

 1

0
r(s)h(s)ds =: L1,
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for 0 ≤ t ≤ 1,

|(Tx)(n−1)(t)| =

− q − n − 1
Γ (q − n + 2)

 t

0
(t − s)q−nr(s)f (x(s + θ) + x0(s + θ))ds

+

 1

0

αρ

Γ (q − n + 2)
[γ (1 − s) + δ(q − n + 1)](1 − s)q−nr(s)f (x(s + θ) + x0(s + θ))ds


≤

q − n − 1
Γ (q − n + 2)

 1

0
(1 − s)q−nr(s)f (x(s + θ) + x0(s + θ))ds

+

 1

0

αρ

Γ (q − n + 2)
[γ (1 − s) + δ(q − n + 1)](1 − s)q−nr(s)f (x(s + θ) + x0(s + θ))ds

≤
L

Γ (q − n + 2)

 1

0
[αδρ(1 − s) + (q − n + 1)(1 + αδρ)](1 − s)q−nr(s)ds =: L2,

for 1 ≤ t ≤ b,

|(Tx)(n−1)(t)| =

−γ

δ
e−

γ
δ

 1

0
g(1, s)r(s)f (x(s + θ) + x0(s + θ))ds


≤

γ

δ
Lρ

 1

0
r(s)h(s)ds =: L3.

Thus, suppose that x ∈ K , ∀ε > 0, let δ0 =
ε

max{L1,L2,L3}
, for t1, t2 ∈ [−τ , b], |t1 − t2| < δ0, we get

|(Tx)(n−2)(t1) − (Tx)(n−2)(t2)| ≤ max{L1, L2, L3}|t1 − t2| < ε.

The proof of Lemma 3.2 is completed. �

Choose a σ ∈


0,min


e−

α
β

τ
, λ, e−

δ
γ a


and let

C∗
= {ϕ ∈ C+

: 0 < σ∥ϕ∥C ≤ ϕ(n−2)(t), for t ∈ [−τ , a]} (3.5)

and Eσ = {t ∈ E : σ ≤ t + θ ≤ 1 − σ , for − τ ≤ θ ≤ a}.
Now, we can state and prove our main results.

Theorem 3.4. Assume that (H0)–(H3) hold and β >
n−q

q−n+1α. Then BVP (1.1) has at least one positive solution if one of the
following conditions is satisfied.

(H4) f ∗

0 > d1, and f∞ < d2, or
(H5) f0 < d3, f ∗

∞
> d1, and ξ(t) ≡ η(t) ≡ 0,

where

f ∗

0 = lim
ϕ∈C∗,∥ϕ∥C↓0

f (ϕ)

∥ϕ∥C
, f0 = lim

∥ϕ∥C↓0

f (ϕ)

∥ϕ∥C
,

f ∗

∞
= lim

ϕ∈C∗,∥ϕ∥C↑∞

f (ϕ)

∥ϕ∥C
, f∞ = lim

∥ϕ∥C↑∞

f (ϕ)

∥ϕ∥C
,

and

d1 =


λρσ


Eσ

r(s)h(s)ds
−1

,

d2 =


2ρ(1 + ∥x0∥[−τ ,b])

 1

0
r(s)h(s)ds

−1

,

d3 =


ρ

 1

0
r(s)h(s)ds

−1

.

Proof. By (H2) and (3.5), we have 0 <

Eσ

r(t)h(t)dt < +∞.

If condition (H4) is satisfied, suppose that f ∗

0 > d1. We can choose ρ1 > 0 sufficiently small so that

f (ϕ) ≥ d1∥ϕ∥C , ∀ϕ ∈ C∗, ∥ϕ∥C ≤ ρ1.
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Set the first open subset of X by Ω1 := {x ∈ X : ∥x∥[−τ ,b] < ρ1}. If x ∈ ∂Ω1, we have ∥x∥[−τ ,b] = ρ1 for t ∈ [0, 1].
Furthermore, one has xt ∈ C∗ for t ∈ Eσ and

∥x∥C ≥ σ∥x∥[−τ ,b] = σρ1, t ∈ Eσ . (3.6)

Note that when t ∈ Eσ , we have x0(t + θ) = 0 ∈ C . Thus, one obtain

∥(Tx)(n−2)(t)∥[−τ ,b] = ∥(Tx)(n−2)(t)∥[0,1] =

 1

0
g(t, s)r(s)f (x(s + θ) + x0(s + θ))ds


≥ λρd1∥x(s + θ) + x0(s + θ)∥C


Eσ

r(s)h(s)ds

≥ λρd1σρ1


Eσ

r(s)h(s)ds = ρ1 = ∥x∥[−τ ,b], (3.7)

which implies that ∥Tx∥[−τ ,b] = ∥Tx∥[0,1] ≥ ∥x∥[−τ ,b], ∀x ∈ K ∩ ∂Ω1.

On the other hand, since f∞ < d2, there exists M > ρ1 such that

f (ϕ) ≤ d2∥ϕ∥C , ϕ ∈ C+, ∥ϕ∥C > M.

Choose ρ2 > 0 sufficiently large so that

ρ2 > 1 + ρ max{f (ϕ) : 0 ≤ ∥ϕ∥C ≤ M + ∥x0∥[−τ ,b]}

 1

0
r(s)h(s)ds.

Set the second open subset of X by Ω2 := {x ∈ X : ∥x∥[−τ ,b] < ρ2}. For x ∈ ∂Ω2, we have ∥x∥[−τ ,b] = ρ2. It is easy to obtain,
from the facts: x(n−2)

0 (t) ≥ 0, x(n−2)(t) ≥ 0 for t ∈ [−τ , b], that for s ∈ [0, 1]

∥x(n−2)(s + θ) + x(n−2)
0 (s + θ)∥C ≥ ∥x(n−2)(s + θ)∥C > M, if ∥x(n−2)(s + θ)∥C > M,

and

∥x(n−2)(s + θ) + x(n−2)
0 (s + θ)∥C ≤ ∥x(n−2)(s + θ)∥C + ∥x(n−2)

0 (s + θ)∥C

≤ M + ∥x0∥[−τ ,b], if ∥x(n−2)(s + θ)∥C ≤ M.

Hence

∥(Tx)(n−2)(t)∥[−τ ,b] = ∥(Tx)(n−2)(t)∥[0,1] =

 1

0
g(t, s)r(s)f (x(s + θ) + x0(s + θ))ds

≤ ρ


∥x(n−2)(s+θ)∥C>M

r(s)h(s)f (x(s + θ) + x0(s + θ))ds

+ ρ


∥x(n−2)(s+θ)∥C≤M

r(s)h(s)f (x(s + θ) + x0(s + θ))ds

≤ ρ max{d2∥x(s + θ) + x0(s + θ)∥C ,max{f (ϕ) : 0 ≤ ∥ϕ∥C ≤ M

+ ∥x0∥[−τ ,b]}}

 1

0
r(s)h(s)ds

≤ max

1
2
∥x∥[−τ ,b] +

1
2
, ρ max


f (ϕ)

 1

0
r(s)h(s)ds : 0 ≤ ∥ϕ∥C ≤ M + ∥x0∥[−τ ,b]


≤

1
2
∥x∥[−τ ,b] +

1
2
ρ2 < ρ2 = ∥x∥[−τ ,b],

which implies that

∥(Tx)(t)∥[−τ ,b] = ∥(Tx)(t)∥[0,1] < ∥x∥[−τ ,b], ∀x ∈ K ∩ ∂Ω2.

Therefore, by LemmaA, it follows that T has a fixed point x∗
∈ K ∩(Ω̄2\Ω1) such that 0 < ρ1 ≤ ∥x∗

∥[−τ ,b] = ∥x∗
∥[0,1] ≤ ρ2.

So, the problem (1.1) has a positive solution y(t) = x∗(t) + x0(t) with y ∈ [ρ1 + M0, ρ2 + M0], where M0 := ∥x0∥[−τ ,b].

If condition (H5) is satisfied, obviously, one has x0 ≡ 0. Suppose that f0 < d3, then there exists a ρ3 > 0 such that

f (ϕ) ≤ d3∥ϕ∥C , ϕ ∈ C+, ∥ϕ∥C ≤ ρ3.
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Set the open subset of X by Ω3 := {x ∈ X : ∥x∥[−τ ,b] < ρ3}. For x ∈ ∂Ω3, we deduce that ∥x(n−2)(s+ θ) + x(n−2)
0 (s+ θ)∥C ≤

∥x(n−2)(s + θ)∥C ≤ ρ3 for s ∈ [0, 1]. Hence

∥(Tx)(n−2)(t)∥[−τ ,b] = ∥(Tx)(n−2)(t)∥[0,1] =

 1

0
g(t, s)r(s)f (x(s + θ) + x0(s + θ))ds

≤ ρd3

 1

0
r(s)h(s)∥x(s + θ) + x0(s + θ)∥Cds

≤ ρd3ρ3

 1

0
r(s)h(s)ds = ρ3 = ∥x∥[−τ ,b],

which leads to ∥(Tx)(t)∥[−τ ,b] ≤ ∥x∥[−τ ,b], ∀x ∈ K ∩∂Ω3. Next, since f ∗
∞

> d1, then for anyM∗ > 0, we can choose ρ4 > ρ3,
so that

f (ϕ) ≥ M∗
∥ϕ∥C , ϕ ∈ C∗, ∥ϕ∥C ∈ (σρ4, +∞).

Set the open subset of X by Ω4 := {x ∈ X : ∥x∥[−τ ,b] < ρ4}. For any x ∈ K with ∥x∥[−τ ,b] = ρ4, one can deduce that

σ∥x∥[−τ ,b] ≤ p(t + θ)∥x∥[−τ ,b] ≤ x(n−2)(t + θ), t ∈ Eσ ,

which implies that xt ∈ C∗ and

∥x(t + θ)∥C ≥ σ∥x∥[−τ ,b] = σρ4, for t ∈ Eσ .

Thus, similar to (3.7), we get

∥(Tx)(n−2)(t)∥[−τ ,b] ≥ λρd1∥x(s + θ)∥C


Eσ

r(s)h(s)ds

≥ λρd1σρ4


Eσ

r(s)h(s)ds = ρ4 = ∥x∥[−τ ,b],

which implies that ∥Tx∥[−τ ,b] ≥ ∥x∥[−τ ,b], ∀x ∈ K ∩ ∂Ω4. According to Lemma A, it follows that T has a fixed point
x∗∗

∈ K ∩ (Ω̄4 \ Ω3) such that 0 < ρ3 ≤ ∥x∗∗
∥[−τ ,b] = ∥x∗∗

∥[0,1] ≤ ρ4. So, the problem (1.1) has a positive solution
y(t) = x∗∗(t) with y ∈ [ρ3, ρ4]. The proof of Theorem 3.4 is thus completed. �

Theorem 3.5. Assume that (H0)–(H3) hold and β >
n−q

q−n+1α. Then BVP (1.1) has at least two positive solutions if the following
conditions are satisfied.

(C1) f ∗

0 > d1, and f ∗
∞

> d1,
(C2) there exist constant p1 > 0 and µ ∈ (0, h̄) such that

f (ϕ) ≤ µp1, ∀∥ϕ∥C ∈ (0, p1 + p0],

where

h̄ =


ρ

 1

0
r(s)h(s)ds

−1

and

p0 = max


max
−τ≤t≤0

1
β
e

α
β
t
 0

t
e−

α
β
s
η(s)ds, max

1≤t≤b

1
δ
e−

γ
δ
t
 t

1
e

γ
δ
sξ(s)ds


.

Proof. At first, in view of (C1), there exists a p∗
: 0 < p∗ < p1 such that

f (ϕ) ≥ d1∥ϕ∥C , for ∥ϕ∥C ≤ p∗, ϕ ∈ C∗.

Set the first open subset of X by Ωp∗ = {x : x ∈ X, ∥x∥[−τ ,b] < p∗
}. Similar to (3.6), we have x(s + θ) ∈ C∗ and p∗

≥

∥x(s + θ)∥C ≥ σ∥x∥[−τ ,b] = σp∗ for s ∈ Eσ . Furthermore, one can obtain ∥Tx∥[−τ ,b] ≥ p∗
= ∥x∥[−τ ,b], which implies

∥Tx∥[−τ ,b] = ∥Tx∥[0,1] ≥ ∥x∥[−τ ,b], ∀x ∈ K ∩ ∂Ωp∗ .

On the other hand, since f ∗
∞

> d1, one can choose d > p1 sufficiently large so that

f (ϕ) ≥ d1∥ϕ∥C , ∥ϕ∥C ≥ σd, ϕ ∈ C∗.

Set the second open subset of X by Ωd = {x : x ∈ X, ∥x∥[−τ ,b] < d}. For any x ∈ K satisfies ∥x∥[−τ ,b] = d, one has x(s+ θ) ∈

C∗ and ∥x(s + θ)∥C ≥ σ∥x∥[−τ ,b] = σd for s ∈ Eσ . Also one obtains an analogous inequality ∥Tx∥[−τ ,b] ≥ d = ∥x∥[−τ ,b], for
all x ∈ K ∩ ∂Ωd.
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Finally, set the open subset of X by Ωp1 = {x : x ∈ X, ∥x∥[−τ ,b] < p1}. For any x ∈ K ∩ ∂Ωp1 , one has

∥(Tx)(n−2)(t)∥[−τ ,b] = ∥(Tx)(n−2)(t)∥[0,1] =

 1

0
g(t, s)r(s)f (x(s + θ) + x0(s + θ))ds


≤ ρ

 1

0
r(s)h(s)f (x(s + θ) + x0(s + θ))ds

≤ ρµp1

 1

0
r(s)h(s)ds ≤ p1 = ∥x∥[−τ ,b],

which yields

∥Tx∥[−τ ,b] ≤ ∥x∥[−τ ,b], for x ∈ K ∩ ∂Ωp1 .

According to Lemma A, it follows that T has two fixed points x1, x2 such that x1 ∈ K ∩ (Ω̄p1 \Ωp∗), x2 ∈ K ∩ (Ω̄d \Ωp1)with
0 < ∥x1∥[−τ ,b] < p1 < ∥x2∥[−τ ,b]. So, the problem (1.1) has at least two positive solutions y1(t) = x1(t) + x0(t), y2(t) =

x2(t) + x0(t) with 0 < ∥y1∥[−τ ,b] < p1 + M0 < ∥y2∥[−τ ,b]. The proof is complete. �

In the same way, we can prove the following corollaries.

Corollary 3.6. The BVP (1.1) has at least one positive solution if f0 = 0, f ∗
∞

= ∞, and ξ(t) ≡ η(t) ≡ 0.

Corollary 3.7. The BVP (1.1) has at least one positive solution if f ∗

0 = ∞ and f∞ = 0.

Corollary 3.8. Assume that (H0)–(H3) hold and β >
n−q

q−n+1α. Then BVP (1.1) has at least two positive solutions if the following
conditions are satisfied.

(C3) f0 < d3, f∞ < d2, and ξ(t) ≡ η(t) ≡ 0.
(C4) there exist a constant p2 > 0 and µ1 ∈ (d1, +∞) such that

f (ϕ) ≥ µ1p2, ∀∥ϕ∥C ∈ [σp2, p2],

where

d1 =


λρσ


Eσ

r(s)h(s)ds
−1

.

Corollary 3.9. Assume that f ∗

0 = f ∗
∞

= ∞, and there exists a constant p1 > 0 such that

f (ϕ) ≤ µp1, ∀∥ϕ∥C ∈ (0, p1 + p0],

where

p0 = max


max
−τ≤t≤0

1
β
e

α
β
t
 0

t
e−

α
β
s
η(s)ds, max

1≤t≤b

1
δ
e−

γ
δ
t
 t

1
e

γ
δ
sξ(s)ds


.

and µ is given in (C2). Then BVP (1.1) has at least two positive solutions y1(t), and y2(t) with 0 < ∥y1∥[−τ ,b] < p1 + M0 <
∥y2∥[−τ ,b].
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