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a b s t r a c t

A bellows, or a closed thin-walled elastic tube with corrugated walls, undergoes longitudi-
nal extension when subjected to internal fluid pressure. Investigated herein is the mechan-
ical behavior of several pressurized bellows in clusters, which are designed to bend and
twist as well as to extend and compress longitudinally. Bellows in clusters can be
employed as robotic limbs, such as manipulator arms and legs for walking machines. For
limb bending, analysis shows that there is an optimal geometry for satellite bellows, or a
set of identical bellows clustered longitudinally about a central core. For limb torsion,
the bellows are clustered in a cylindrical helix whose angle is chosen to produce the
desired load–displacement relationships, for instance the highest rotation for a given tor-
que. For both bending and torsional limbs, experimental results are included that exhibit
the predicted mechanical behavior.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The first important study involving mechanical behavior for single bellows was published by Donnell (1932). Subsequent
surveys of the open literature on the subject were compiled by Mathney (1962) and evaluated by Wilson (1984a). Guidelines
for bellows design using simplified analyses are found in EJMA (2003). Analyses of stiffness for multilayer rectangular cor-
rugations were given by Reich et al. (2007) and for U-shapes by Wei-ping and Qian (2002). Analyses for static instability in-
clude those of Newland (1964) and Zhiming et al. (2003, 2002). Small vibrations of bellows, longitudinal and transverse,
were addressed by Jakubauskas and Weaver (1996, 1998); and large dynamic behavior of bellows in bending were investi-
gated by Wilson and Snyder (1989).

The use of bellows is widespread. Applications include descriptions of bellows for crushing in shock mitigation by Singace
and El-Sobky (1997); bellows joints designed for hoses offshore by Witz et al. (2004); and bellows in strings and clusters for
robotics by Pernette et al. (1997), Wilson and Mahajan (1989), and Wilson and Chen (1995). Investigations of bellows as re-
lated to the limbs and appendages of animals include the survey by Robinson and Davies (1999). Discussed in the three stud-
ies of Wilson et al. (1993, 1991), and Wilson (1984b), were the physical features and motion analyses for the elephant trunk
and the squid tentacle. In these appendages, contractions of radial and circumferential muscles effect elongation, and con-
tractions of selected longitudinal and helically wound muscle clusters produce bending and twisting, motions analogous to
those of the pressurized bellows clusters discussed herein.

Shown in Fig. 1 is a concept design for a tapered, three-layered bellows-type fluid-actuated robotic limb. The limb is fixed
at the larger diameter end, and the external loads are applied at the other (tip) end. The three layers are tightly packed
around a flexible longitudinal core (a), which may be a bellows also. The inner layer consists of a longitudinally oriented sa-
tellite cluster (b), where six bellows were chosen for illustration purposes. When all of these inner layer bellows are pres-
surized equally, pure extension is realized. However, if only three of these adjacent bellows in this illustration are
. All rights reserved.
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Fig. 1. A bellows limb, US Patent No. 4792173.
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pressurized, the limb bends about a neutral axis coincident with the diametral line that separates the pressurized and
unpressurized bellows.The middle layer (c) is a helically wound satellite cluster, as is the outer layer (d). However, the outer
layer is wound in the opposite direction to the middle layer. When the bellows in middle layer are pressurized uniformly, the
limb twists about the longitudinal axis; and when the bellows in the outer helical layer are pressurized, the limb twists in the
opposite direction. Thus, the limb’s tip motion, with or without tip loading, can be controlled by controlling the fluid pres-
sure to selected bellows in the particular layers.

The main purposes of this paper are to present the mechanics or load-deformation analysis for two cases: limbs consist-
ing of longitudinal and helically wound satellite clusters. In each case, experimental results are included that complement
the analysis. The paper begins with a longitudinal case, in which the geometric arrangement is sought that maximizes the tip
bending moment for selectively pressurized satellite bellows of a uniform limb. Following this is an analysis of the helical
case, for which particular helical cluster angles for a uniform limb can be chosen to produce either the highest rotation or
the highest torque. These separate studies form the bases for the design of optimal, multipurpose limbs such as depicted
in Fig. 1.

2. Longitudinal bellows clusters

Shown in Fig. 2 is a typical cross-section of a uniform limb consisting of an even number of n identical closely packed
longitudinal satellite bellows. The center of each bellows lies on a circle of radius a0. Assume that n=2 adjacent satellite bel-
lows are subject to the internal pressure p, which causes the cluster to bend about a neutral axis coincident to a diametral
line precisely between the pressurized and unpressurized satellites. The pressure-induced bending moment is given by
M ¼ ppR2
Xn=2

j¼1

dj ð1Þ
Here, R is the mean radius of a single satellite, defined in terms of its outer radius r0 and the half-height of its corrugation h,
or
R ¼ r0 � h ð2Þ
The moment arm for the jth satellite about the neutral axis is
dj ¼ a0 sin aj ð3Þ



Fig. 2. Cross-section of a uniform limb with n satellite bellows, where n is an even number.
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in which the center radius a0 and the angle aj of the jth satellite from the neutral bending axis are, respectively,
a0 ¼
r0

sin p=n
; aj ¼ pð2j� 1Þ=n ð4Þ
From Fig. 2, the geometric constraint relating r0 to the whole cluster radius R0 and the satellite angle p=n is
r0 ¼ ðR0 � r0Þ sin p=n ð5Þ
Introducing a constant Cn, then r0 can be expressed as
r0 ¼ R0Cn; Cn ¼
sin p=n

1þ sin p=n
ð6Þ
With Eqs. (6) and (2), the moment given by Eq. (1) becomes
M ¼ ppR3
0ðCn � h=R0Þ2

Xn=2

j¼1

dj=R0 ð7Þ
The term h=R0 in the latter equation can be rewritten using Eqs. (2) and (6), or
h
R0
¼ h

R
R
R0
¼ h

R
r0

R0
� h

R0

� �
¼ h

R
Cn �

h
R0

� �
ð8Þ
from which
h
R0
¼ Cn

1þ h=R
ð9Þ
With Eqs. (3), (4), (6) and (9), then Eq. (7) can be recast as the non-dimensional moment M, defined by
M ¼ M
ð1þ h=RÞ2

pR3
0

¼ p sin2 p=n

ð1þ sin p=nÞ3
Xn=2

j¼1

sin½ð2j� 1Þp=n� ð10Þ
Thus, for a fixed outer cluster radius R0, given the satellite corrugation parameter h/R and the internal pressure p applied to n/
2 adjacent bellows, the pressure-induced limb moment M is seen to depend only on n, an even number of compact satellite
bellows.

Shown in Fig. 3 are the numerical results for M, computed from Eq. (10) for even values of n. The peak moment, or
M ¼ 0:4654, occurs for n ¼ 6, which is defined as the optimal design configuration. For an increasing even n > 6, the moment
M decreases monotonically with the shrinking radii of the satellite bellows. Computations show that the upper limit for real
even values of n is 48, for which M ¼ 0:1699. Further, it is observed that the dimensional moment M, given fixed values for p,
n, and R0, varies as



Fig. 3. Bending moment generated by pressurizing n/2 adjacent satellite bellows.
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M � const:

ð1þ h=RÞ2
ð11Þ
which decreases rapidly as the corrugation depth ratio increases to its limit, h=R! 1. The most striking result is that M in-
creases as R3

0, other parameters remaining the same. Thus, a doubling of the outside limb radius increases the limb’s load-
carrying capacity eightfold.

There are two other important observations gleaned from this analysis. First, for even n there are n/2 neutral axes for
bending and thus there are n/2 principle directions of tip motion. Recall that the neutral axis is a diametral line dividing
the n/2 pressurized and the n/2 unpressurized satellites. Second, for odd n P 3, the neutral axis of bending would bisect
one of the satellite bellows, and that bisected bellows, if pressurized, would contribute nothing to the overall bending mo-
ment. Thus for odd n, one satellite would be a dummy and only (n � 1)/2 pressurized satellites would contribute to the mo-
ment. It follows that even n produces the most efficient designs, and as shown in Fig. 3, n ¼ 6 is the optimal one.
3. Bending of bellows in longitudinal clusters

A satellite bellows can be a monolithic tube with axially symmetric corrugations, such as the configurations discussed by
Donnell (1932), Mathney (1962) and Wilson (1984a). Another type of bellows is a composite structure consisting of an elas-
tic helical coil of spring steel embedded in a molded, closed corrugated tube. An example of the latter configuration is the
hose of a household vacuum cleaner. A schematic view of this type of bellows is shown in Fig. 4, in which the geometric
parameters a; h; r0; R and ‘0 are defined. Here, the polymeric material coating the steel helical spring has a negligible stiff-
ness compared to that of the steel coil. Applied to the tip of the cantilevered coil is the axial load P0 and the moment M0. As
discussed by Wahl (1944) and Timoshenko and Gere (1961), a suitable approximation to the transverse tip displacement
under these loads is given by
d0 ¼
M0‘

2
0

2b0

1
1þ P0=Pc

; Pc ¼
p2b0

c‘2
0

ð12Þ
In Eq. (12), the bending stiffness b0 is defined by
b0 ¼
2‘0EIG

mpRð2Gþ EÞ ; I ¼ p
4

a4 ð13Þ



Fig. 4. Bellows formed of a steel helical spring imbedded in a polymeric material.
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where E and G are Young’s modulus and the shear modulus, respectively, for the helical coil and m is the number of coils. The
term containing P0=Pc accounts for the stretching of the longitudinal axis, which effects a reduction in the transverse deflec-
tion compared to that deflection caused by M0 acting alone. The constant c in the denominator of the reference load Pc is in
the range 1 6 c 6 4, in which the lower and upper limits represent a hinged end and a clamped end, respectively. In practice,
neither fixity condition can be realized. Experimental evidence presented later shows that c for practical cases is generally in
the midrange of these extremes for helical springs.

Donnell (1932) assumed that a monolithic corrugated tube in bending can be modeled as a smooth tube with a reduced,
equivalent bending stiffness. Based on this same reasoning, then the equivalent bending stiffness for the helical spring of
Fig. 4 can be defined as
EeIe ¼
2‘0EIG

mpRð2Gþ EÞ ð14Þ
in which the equivalent modulus and area moment of inertia for the smooth tube are
Ee ¼
EG

2Gþ E
ð15Þ

Ie ¼ pR3t ¼ ‘0a4

2mR
ð16Þ
From this last result, the thickness of the equivalent thin-walled tube is deduced as
t ¼ ‘0a4

2mpR4 ð17Þ
The calculation of the transverse tip displacement d0 of a cantilevered limb cluster for n ¼ 6 identical satellite tubes, half
of which are pressurized, is illustrated for two cases. In the first case, assume that the unpressurized core tube is identical to
the other six and that all tubes are glued or welded together at every point of contact so that the limb cluster acts as a single
unit under transverse bending. When the parallel axis theorem is applied to the seven tubes, an upper bound value for the
area moment of inertia about the neutral axis of bending is calculated as
Ie ¼ 31pr3
0t ð18Þ
In the second case, assume that all points of contacts between adjacent tubes are frictionless so that each tube acts indepen-
dently during transverse bending. This leads to the following lower bound value for Ie, or
Ie ¼ 7pr3
0t ð19Þ
Given the limb’s total tip loading Mt and Pt , Eq. (12) can be recast in terms of the tube limb cluster parameters to give the
transverse tip displacement for n ¼ 6 as
d0 ¼
Mt‘

2
0

2EeIe

1
ð1þ Pt=PcÞ

; Pc ¼
p2EeIe

c‘2
0

ð20Þ
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Here, Ee and t are given by Eqs. (15) and (17), and a lower and upper bound for d0 can be computed by using Ie Eq. (18) or (19),
respectively. The end fixity parameter c is determined experimentally.

For the special case in which all bellows of the limb are subjected to the same internal pressure p, the transverse bending
is zero and the axial extension d is the same for each of the bellows. For an enclosed helical coil or bellows with an axial load
of P ¼ pR2p, the axial extension derived by Wahl (1944) is given by
d ¼ 4pR5mp

Ga4 ð21Þ
in which R is the mean radius of the coil, a is the imbedded wire radius and m is the number of coils in one bellows.

4. Experiments on an extension and bending limb

Shown in Fig. 5 is a uniform experimental limb designed for extension and bending. It is composed of seven identical bel-
lows of the type described in Fig. 4. The assembly is held together with epoxy cement at the points of bellows contact and
thin strings are wrapped around the whole circumference. Its design parameters, defined in Figs. 4 and 5, are: a = 0.60 mm,
h = 2.17 mm, ‘0 ¼ 215 mm, r0 ¼ 17:1 mm, R = 14.93 mm, c ¼ 8:5�, E = 207 GPa, G = 79.3 GPa, m = 63, and n = 6.

This limb is an optimal six-satellite design that extends uniformly when all bellows are pressurized equally, and bends
about its rigid base when three of the six adjacent satellites are pressurized. Each bellows has its own air pressure supply
line connected from its base port to a control module. The electronic interfaces between the pressure control module and
the computer that allow for software control of the pulsed air supplied to each tube are described in detail by Wilson
et al. (1993).

In the first series of experiments, equal internal pressure was applied to all seven bellows tubes and the extension was
measured with a micrometer. These data shown in Fig. 6 suggest non-linear hardening, which is caused by the tendency of
Fig. 5. Design of the optimal experimental bending limb.

Fig. 6. Uniform extension of the optimal bending limb, with all seven bellows pressurized equally.



Fig. 7. Lateral tip displacement of the optimal bending limb, in which only three adjacent satellite bellows are pressurized.
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the bellows to straighten and the corrugations to flatten with increasing pressure p. The first data point is an exception to
this trend, where its low extension may be due to one or both of the following factors: an error in reading the micrometer, or
an enhanced initial limb stiffness due to some initial stick friction between adjacent the bellows. Also shown in Fig. 6 is the
theoretical relationship between the longitudinal extension and the internal pressure p, as predicted by Eq. (21). For this
limb, that relationship is d ¼ 5:72p, in which the units of deflection and pressure are cm and kPa, respectively. It is observed
that the theory is in best agreement with the data for longitudinal limb strains of up to 80%.

In the second series of experiments, an internal pressure p was imposed on three adjacent satellite bellows and the limb’s
lateral tip deflection d0 was measured with a micrometer. These data are shown as circles in Fig. 7. For these three active
bellows, the loadings were based on the bellows constants listed in the first paragraph of this section. These loadings were
Pt ¼ 3pR2p and Mt ¼ 4pR2r0p. Also, Ee and t were computed from Eqs. (15) and (17). The theoretical lower and upper bound
curves for d0 as a function of pressure p were computed from Eq. (20), using Ie defined by Eq. (18). Chosen for a lower bound
curve was c = 2, a boundary constraint between the fully clamped condition c = 4 and the frictionless hinged condition c = 1.
Chosen for the upper bound curve was c = 1. One interpretation of the experimental data and theoretical results in Fig. 7 is
that as the pressure increases the partially clamped end loosens and the end fixity approaches that of a hinged end. Another
interpretation is that the limb undergoes hardening because the bellows tend to straighten and the corrugations tend to flat-
ten with increasing pressure p, as was observed for the single bellows in Fig. 6. Both factors may contribute to the experi-
mental behavior shown in Fig. 7.

5. Torsion of bellows in helical clusters

Shown in Fig. 8 is a photograph of the experimental torsional limb. Torsion is achieved by pressurizing the six tightly
packed satellite bellows, held together with epoxy cement at the tips of their corrugations, and oriented to form a cylindrical
helix. This design has a constant cylindrical helix angle of a ¼ 53� relative to the transverse axis. As predicted by Wilson and
Orgill (1986), this helix angle produces the maximum twist angle for a given internal pressure, other design parameters
remaining the same. Although their result was derived for a thin-walled orthotropic cylinder with its weaker axis inclined
at a ¼ 53, such a result is appropriate for the present case as well. If a high torque and low rotation were desired, then a
would be about 70�, as predicted by Wilson and Orgill (1986). In the experimental setup, the six-bellows unit of Fig. 8 is
affixed to a rigid base through which passes an air supply line to each bellows. The unit is clamped around an aluminum
disc at the tip. Fixed above the tip in the horizontal plane is a protractor (not shown), which is used to measure limb rotation.

The bellows of this experimental limb were made of neoprene-latex rubber and are commercially available as boots for
mechanical equipment. These bellows differed from those previously used in the bending limb in that the corrugations were
axially symmetric and the structure was monolithic, i.e. no wire reinforcement. One of the six-bellows employed in the
experimental limb is depicted in Fig. 9 and its geometric parameters are: 4b = 7.71 mm, 2h = 4.2 mm, ‘0 ¼ 280 mm,
R = 5.56 mm, t = 0.85 mm.

The apparent modulus of elasticity E0 in extension for the single bellows shown in Fig. 9 was empirically determined by
applying a range of axial loads P and measuring the corresponding axial extension D‘e. Then E0 was computed using linear
regression, a least-squares fit of the ðP;D‘eÞ data to the one dimensional stress–strain relationship, or



Fig. 8. The experimental torsional limb made of six monolithic neoprene-latex bellows closely packed in a cylindrical helix.

Fig. 9. Outline of a thin-walled neoprene-latex bellows used in a torsional limb.
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D‘e ¼
P‘0

ð2pRtÞE0
ð22Þ
In Eq. (22), the axial load P is applied to the area 2pRt. Based on the thin wall approximation, this is the equivalent cross-
section area of a solid tube of wall thickness t and mean radius R. The results gave
E0 ¼ 648 kPa ð23Þ
for which the 95% confidence limits, low and high, were computed as 628 kPa and 668 kPa, respectively. These confidence
limits were computed by the Pivotal Method, which is formulated and illustrated in great detail by Mendenhall and Sincich
(1984).

Consider the schematic representations of the torsional limb shown in Fig. 10. Depicted on the left is the cylinder of radius
R, which is the radial distance between the centerline of the limb and the centerline of a satellite bellows. The cylindrical
helix is the path followed by the centerline of a single bellows of length ‘0, a path that begins at the base point A, wraps
around the cylinder, and terminates at the tip point B. For the experimental limb, the total winding angle h from the base
to the tip is equal to one and a half turns, or h ¼ 3p. With internal pressure, ‘0 extends by D‘ and h increases by Dh as the



Fig. 10. Representations of the torsional limb: cylindrical helical path of the centerline for a single bellows (left); and a flat view of that single bellows
(right).
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tip point B rotates to C. The cylinder height is assumed to remain constant. It follows from the flat view of the cylinder shown
on the right of Fig. 10 that
R2ðhþ DhÞ2 ¼ ð‘0 þ D‘Þ2 � ð‘0 sin aÞ2 ð24Þ
For each bellows that wraps around the cylinder, the length change can be expressed in the same form as Eq. (22), or
D‘ ¼ ppR2‘0

ð2pRtÞeE0
¼ pR‘0

2teE0
ð25Þ
Here, the mean bellows radius is R, the pressure load in each curved bellows is ppR2 and the apparent modulus is defined as
eE0. The constant e > 1, which is measured in a given application, accounts for the increase in E0 over its value in pure exten-
sion, an increase due to bellows curvature and fixity of each bellows peak corrugation to its nearest neighbor. When Eqs. (24)
and (25) are combined to eliminate D‘, and h ¼ ð‘0=RÞ cos a is used, then the resulting equation can be solved for the change
in the tip rotation angle due to pressure. Thus
Dh ¼ ‘0

R
ð1þ pR

2teE0

� �2

� sin2 a

" #1=2

� ‘0

R
cos a ð26Þ
In the special case of small angles of rotation, it follows from the flat view of Fig. 10 that the change is bellows length can
be approximated by
D‘ � RDh cos a ð27Þ



Fig. 11. Tip rotation of the experimental torsional limb with internal pressure.
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With Eqs. (25) and (27), the small angle approximation then leads to the linear form
Dh � pR‘0

2RteE0 cos a
ð28Þ
It is noted that the results of Eqs. (26) and (28) apply to both a single cylindrical helical bellows and to a tight cluster of sev-
eral such bellows in the same geometric configuration.

Shown in Fig. 11 are the experimental and computed results for the rotation of the limb depicted in Fig. 8. The experi-
mental data (black circles) appear bilinear with an increase in stiffness at about 29 kPa. This could come about if there were
slip between adjacent bellows at the lower pressures p. However, the experimental bellows remained glued together, so that
relative slip was doubtful. Suppose instead that these data follow (within experimental error) a smooth curve with non-lin-
ear hardening as observed for the limbs of Figs. 6 and 7, in which the corrugations tended to straighten and flatten with
increasing pressure p. This latter interpretation is preferred for the torsional bellows.

The theoretical curves of Fig. 11 are based on dimensional parameters defined in Figs. 9 and 10: ‘0 ¼ 280 mm,
R ¼ 18:4 mm, a ¼ 0:923 rad, h ¼ 3p rad. These values were used to compute the tip rotation Dh of the experimental limb
as a function of internal pressure p. It is seen that linear theory, Eq. (28), overpredicts Dh, as compared to the more exact
non-linear theory, Eq. (26). In both theories, e ¼ 3:9, which was deduced as the best-fit constant to the measurements ob-
tained using the experimental limb. For this six-bellows limb, the apparent modulus in the direction of the helix is
eE0 = (3.9)(648) kPa = 2.53 MPa. This latter result can be compared to Young’s modulus of E = 2.6 MPa for a somewhat similar
but uniform material: latex rubber (Gibson and Ashby, 1999).

6. Summary and conclusions

Through theory and experiment, it was found that uniform bellows can be clustered and oriented in particular ways to
form actuator limbs. For instance, an optimal limb consisting of six-satellite bellows in a tight longitudinal cluster leads to
the peak bending action when three adjacent bellows are pressurized. Also, a limb designed of six tightly clustered pressur-
ized bellows oriented in a cylindrical helix produces rotation about the longitudinal axis. In this case, the helix angle pro-
ducing peak rotation is predicted to be 53� with respect to the transverse limb axis. With pressure control, such limbs
acting separately or in combination, mimic the muscle controlled action in the squid tentacle and the elephant trunk. Pres-
sure-controlled limbs can be employed for use as robotic actuators, especially in applications for which robust action is fa-
vored over the precision of movement.
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