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a b s t r a c t

We present a detailed analysis of sexual HIV transmission from one source partner to two recipients. The
HLA haplotypes between the source partner and one recipient were very similar with 7 out of 8 HLA
alleles from four loci (HLA A, B, C and DRB) shared, while the other recipient shared only one allele. The
immunologic outcomes between the two recipients differed dramatically, despite the absence of
apparent virologic differences in their inoculums. We suggest that non-viral factors, which might be
related to differences in the HLA profile, played a role in determining different CD4þ T-cells dynamics for
these two recipients.

& 2013 Elsevier Inc. All rights reserved.

Introduction

Investigating how the host immune response influences HIV
evolution and disease progression is important to understand HIV
pathogenesis. Among the many viral and host factors affecting HIV
infection, MHC class I restricted cytotoxic T lymphocytes (CTL) are an
important determinant of viral evolution and disease outcome (Ahuja
et al., 2008). Mother-to-child studies have demonstrated an associa-
tion between the concordance of HLA haplotypes between an infected
mother and child with transmission and disease progression
(Drummond et al., 2012). We describe a sexual transmission cluster
in which concordant versus discordant HLA haplotypes between
source and recipients were associated with considerably different
disease trajectories.

Results

Source partner

The source was a 26-year-old male who reported sex with
other men as an HIV risk factor. He reported having unprotected
sexual intercourse with Recipients #1 and #2 during the first
several months after he was presumptively infected with HIV-1.
During this time, he had not yet been tested for HIV-1. He was
eventually diagnosed with HIV-1 at the same time as Recipient #2.
The EDI for the source was �5–6 months before the HIV-1
transmission events to both recipients. The first seminal and blood
samples were collected from the source �6 months after the EDI.
At that time the blood plasma viral load was 5.2 log10 HIV RNA
copies/mL while seminal plasma viral load was 4.8 log10 copies/
mL; CD4þ T-cell count was 270 cells/mm3 (Table 1).

Recipient #1
Recipient #1 was a 24 year-old MSM who noted having

receptive anal intercourse with the source partner during the
previous months. He was diagnosed with HIV six months after his
EDI. Initial blood plasma viral load was 4.6 log10 copies/mL and
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CD4þ T-cell count was 326 cells/mm3 (Fig. 1A). HLA haplotyping
revealed that Recipient #1 was a 7 out 8 match with the source at
the three MHC class I HLA loci and one MHC class II (DRB) locus
(Table 1).

Recipient #2
Recipient #2 was a 30 year-old MSM who also reported having

unprotected receptive anal sex with the same source partner
during the previous months. His EDI was two months before his
diagnosis. His initial blood plasma viral load was 3.8 log10 copies/
mL, and his initial CD4þ T-cell count was 962 cells/mm3 (Fig. 1A).
HLA haplotyping showed only a single allele match with the
source (Table 1).

Disease progression

Despite the same source partner and a closely related trans-
mitted virus (mean genetic distance of 0.008 substitution/site
between env sequences obtained at the earliest timepoint after
infection for Recipients #1 and #2), the trajectory of CD4 decline
was very different between the two recipients within the first
months of infection before ART initiation (started 318 and 308
days post-diagnosis respectively) (Fig. 1A). While Recipient #2
maintained a high CD4þ T cell count (nadir of CD4þ T-cells¼738/
mm3), Recipient #1's CD4þ T-cell count dropped to 246 cells/mm3

during the first 300 days of untreated HIV-1 infection. There was,
however, no difference in blood plasma viral load between
recipients (Fig. 1A).

Transmission origins

Using env sequences, both Bayesian Markov chain Monte Carlo
(BMCMC) between-host phylogenetic analyses (Fig. 2) and pair-
wise genetic distance (env mean genetic distance source–recipient
#1¼0.003 and source–recipient #2¼0.001) supported the epide-
miologic history of a single source partner transmitting HIV-1 to

Recipients #1 and #2. Subsequent analyses allowed a more precise
characterization of the transmission event and the origin of
transmitted variant(s). First, phylogenetic reconstruction (Fig. 2)
for the pair of source and recipient #1 suggested that the viral
population sampled from the recipient's blood plasma originated
from one variant most likely originating from the source's blood
plasma (posterior probability¼0.62, Fig. 2). Visual inspection of
tree topology for the pair of source and recipient #2 suggested
multiple founder variants originating from both source semen and
blood; however, with only limited branch support (posterior
probability¼0.47, Fig. 2). Investigation of co-receptor usage within
the source and both recipients revealed a mixed population of X4
and R5 virus in the semen of the source, but only R5 in blood,
while recipient #1 had only R5 virus in blood and recipient #2 had
both X4 and R5 variants in blood. These observations supported
the origin of the transmitted variants inferred by phylogenetic
analysis (Fig. 2).

Viral evolution

The rate of evolution of HIV-1 env differed significantly
(po0.001) between the recipients despite the same source part-
ner (Fig. 1B). Recipient #1 showed little evidence of viral diver-
gence from baseline during the first year of infection (0.004
substitution/site), while Recipient #2 demonstrated early and high
diversification of the env sequences (0.143 substitution/site). Long-
itudinal samples obtained from the recipients permitted the
estimation of the rate of evolution in the viral population using
BMCMC inference (Gao et al., 2001). Two different patterns of viral
genetic diversification were observed (Fig. 1B), with a 3.4-fold
higher median rate of evolution within env for Recipient #2
(7.09�10�5 substitution per nucleotide site per day [1.56�10�6

–9.47�10�5]) versus Recipient #1 (2.09�10�5 substitution per
nucleotide site per day [4.13�10�6 –2.61�10�5]). This pattern
was not seen in gag or pol/RT likely because of limited sequence
variation in these genes early during infection.

Table 1
Subjects' characteristics.

Variable Source Recipient #1 Recipient #2

Age at EDI, years 26 24 30
Risk factor MSM MSM MSM
Number of reported sexual
partners

3 1 1

Mean CD4 T cell count, cell/
mm3 [min–max]

264.7 [230–294] 294.0 [246–358] 877.6 [738–1344]

Mean CD4 T cell percentage
[min–max]

19.7 [18–21] 15.6 [12–18] 38.6 [33–49]

Mean CD8 T cell count, cell/
mm3 [min–max]

654 [588–764] 1088.9 [716–1780] 1040.4 [634–1188]

Mean CD8 T cell percentage
[min–max]

52.3 [51–53] 55.0 [52–60] 45.8 [34–53]

Mean blood plasma HIV RNA
level, log-copies/mL
[min–max]

5.03 [4.86-5.20] 4.86 [4.39–5.20] 4.93 [3.80–5.43]

Seminal plasma HIV RNA level,
log-copies/mL at diagnosis

4.82 NA NA

Viral subtype B B B
EDI in days to first visit 170 188 70
Drug resistance genotype-
Protease-Reverse
transcriptase

-L10I – None -L10I – None -L10I – None

HLA alleles A*02 (A1) A*32 (A2) B*13 (B1) B*49 (B2)
C*06 (C1) C*07 (C2) DRB1*11 DRB2*13

A*02 (A1) A*23 (A2) B*13 (B1) B*49 (B2)
C*06 (C1) C*07 (C2) DRB1*11 DRB2*13

A*24 (A1) A*26 (A2) B*39 (B1) B*40 (B2)
C*03 (C1) C*07 (C2) DRB1*04 DRB2*08

EDI: Estimated Date of Infection.
* Mean within the first month for source partner and within the first 300 days for both recipient before antiretroviral treatment initiation. In bold: HLA alleles matching with
source partner.
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CTL epitope evolution

In this study, the source partner and Recipient #1 expressed HLA
class I alleles and class II alleles at the DRB locus that were almost
perfectly concordant (7/8 allele match) (Table 1), but between the
same source and Recipient #2 only one HLA class I allele was
matched. To investigate the hypothesis that HIV variants transmitted
to Recipient #2 (but not to Recipient #1) evolved to escape new CTL
selective pressure, we looked for evidence of CTL escape within
sequences from the two recipients using computationally predicted
changes in MHC binding scores (O'Brien et al., 2001) in relation to
each recipient's HLA haplotype. In the partial pol-RT sequences, there
were significant changes in binding affinity at several epitopes
(defined as 42 fold change in the IC50 [nM]) (Table 2). For example,
Recipient #2 was the only individual with HLA C*03, and there was a
change in binding affinity for the pol-RT epitope (FSVPLDKEF). The
viral population in the source's blood had the epitope sequence
(FSVPLDKEF) and an IC50 of 11.12 (nM), while at the last timepoint
available, Recipient #2 had the epitope sequence (FSVPLBHKDF) and
an IC50 of 29.16 (nM) (Tables 1 and 2), suggesting viral escape from
CTL pressure. Notably, the mutations were absent in the earliest
sequences obtained from Recipient #2 and the observed mutations
D120H and E122D were stable overtime with no evidence of
reversion. The second example of probable escape was at the HLA
B*40 pol-RT epitope (EDFRKYTAF). Only Recipient #2 had this HLA
allele. The viral population in the source's blood had the epitope
sequence (EDFRKYTAF) and an IC50 of 97 (nM), while at the last
timepoint available, Recipient #2 had the epitope sequence

(DDFRKYTAF) and an IC50 of 15523 (nM) (Tables 1 and 2). No
evidence of escape in HLA predicted epitopes were found in
recipient #1.

Discussion

We describe a transmission cluster from one source partner to
two recipients. Recipient #1 shared 7 out of 8 HLA alleles with the
source, while Recipient #2 shared only one. Similar to reports of
mother to child transmission (Ahuja et al., 2008; Drummond et al.,
2012), we observed a greater CD4 count decline in the recipient
who shared the most HLA alleles with the source. To investigate
possible mechanisms for this clinical discordance, we evaluated
differences in transmitted variants (compartment of origin, co-
receptor usage and number of transmitted variants), evolution of
viral populations after transmission, and estimated changes in CTL
binding affinity in putative epitopes.

Several possible differences in the transmitted variants
between the two recipients were identified. Although not con-
clusive, phylogenetic analysis suggested that Recipient #1 was
infected with a single transmitted/founder variant derived from
the blood of the source, while Recipient #2 was possibly infected
with multiple variants arising from the blood and semen of the
source. Additionally, Recipient #1 appeared to have been infected
with a pure R5-tropic variant while Recipient #2 appeared to be
infected with mixed R5-X4 tropic variants. Previous larger studies
have demonstrated that viral replicative capacity is a major
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Fig. 1. (A) Comparative virological data for Recipients #1 and #2. The CD4þ counts (/mm3) and log viral loads (copies/ml) for Recipient #1 (blue) and Recipient #2 (red) are
shown. Both recipients were exposed to the same index source partner within the same period of time. They remained off therapy for 400–500 days post estimated date of
infection (EDI). Whilst Recipient #1 showed a low stable CD4þ – cell count during this period, the CD4þ T-cell count for Recipient #2 remained above 800/mm3. (B) Genetic
divergence from baseline within partial env region for Recipients #1 and #2. Genetic distance between curated partial env sequences at each sampled time (nucleotide
position relative to HXB2 genome start 6887-7287) relative to sequences sampled at first time-point. Initial sampling dates were respectively 188 and 70 days from
estimated date of infection (EDI) for subjects B and C. Follow-up duration was respectively 279 and 351 days. During that period, both subjects remained off treatment.
Genetic distances were measured under a TN93 Model as implemented in MEGA v5.
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determinant of pathogenesis within recipients and correlates
significantly with CD4þ T-cell decline (Richman et al., 2003).
Infection with multiple variants, higher viral diversity and mixed
tropism are also associated with a more rapid CD4 decline (Le
et al., 2013). In this transmission cluster we found the opposite to
be true. Recipient #2, who had evidence of a multiple variant
transmission and higher viral diversity, and mixed tropism, pre-
sented with slower initial immunologic progression as demon-
strated by significantly higher peripheral CD4þ T-cell counts
compared to Recipient #1 (Fig. 1A). This increased viral diversity
in env may have been due to recombination events between
transmitted variants, or other factors like differences in neutraliz-
ing antibody between subjects, (not evaluated in this report).
However, the lack of evidence for viral escape from CTL epitopes
suggests that the differences in HLA haplotypes was not the
driving force for the increased diversity seen in Recipient #2.
These observations are limited by the sequence data available, and
so it is conceivable that over time, the HLA haplotype differences
could contribute more to viral evolution.

Previous reports showed a correlation between viral setpoint of
donors and recipient (Zagordi et al., 2011). Here, we did not find
any evidence for differing viral replicative capacity between the
two recipients (Fig. 1A). This suggests that the two potential CTL

escape mutations we observed in pol-RT HLA epitopes B*40 and
C*03 of the HIV sampled from Recipient #2 did not affect viral
replication. Given that there was only one discordant HLA allele
between the source and Recipient #1, we did not find any escape
mutations in that subjects HIV (Table 1). Previous studies showed
that specific HLA epitopes (e.g. HLA-B*57 and HLA-B*27 alleles) are
associated with slower disease progression (Prince et al., 2012;
Gianella et al., 2011). However, none of the major protective HLA
alleles were identified in our study. Sequence changes in other
regions such as nef also need to be evaluated along with additional
phenotypic characterization to more finely evaluate the CTL
immune response.

In conclusion, we found that in this unique transmission
cluster, neither transmission of multiple variants, X4 tropic virus,
nor higher viral diversity was associated with a more rapid CD4þ
T cell decline. These findings suggest that a non-virologic factor
was associated with the differences in immunologic outcomes
between the two recipients. Although HLA concordance has been
associated with more rapid CD4þ T cell decline (Draenert et al.,
2006), it has been demonstrated mainly through effects on
virologic evolution. Here we demonstrate that despite significant
virologic differences, another factor had a more significant effect
on the CD4þ T-cell counts of the two recipients. Further
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investigation is necessary to determine what this host factor is,
and if it is related to the HLA haplotype concordance we observed
between the source and Recipient #1 (Prince et al., 2012; Gianella
et al., 2011).

Methods

The source and recipient partners were identified in the San
Diego Primary Infection Cohort (Hecht et al., 2010; Lundegaard
et al., 2008). The estimated date of infection (EDI) of each subject
was determined as previously described (Lundegaard et al., 2008).
HLA typing was performed by sequence-specific PCR according to
standard procedures (Gianella et al., 2012). Blood and semen were
collected from each subject at baseline and HIV RNA was quanti-
fied in each fluid specimen (Beerenwinkel et al., 2003). For next
generation sequencing (NGS), HIV RNA was extracted using the
QIAmp kit (Qiagen, Carlsbad, CA) from blood and seminal plasma
and PCR-amplified HIV-1 env C2-V3 (HXB2 coordinates 6928–
7344), pol reverse transcriptase (RT, HXB2 2708-3242), and gag
p24 (HXB2 1366-1619) were sequenced (454 FLX Roche) (Hecht
et al., 2010). All NGS data were screened for in-house cross-
contamination (Goulder et al., 2001), and underwent haplotype
reconstruction with ShoRAH (Dalmau et al., 2009). NGS haplotypes
were analyzed for co-receptor prediction with the Geno2pheno
tool (Butler et al., 2010) with a false-positive rate of 5%, and
underwent phylogenetic analysis using the Bayesian Markov chain
Monte Carlo (BMCMC) inference implemented in BEAST v1.7.4
(Gao et al., 2001) with optimized parameters and priors (Fig. 2).
Sequences were investigated for evidence of CTL escape using
computationally predicted changes in MHC binding scores
(O'Brien et al., 2001). Epitopes were defined as sites with a
predicted IC50 (nM) of o100 for a HLA Class 1 molecule. Sig-
nificant changes in binding affinity were defined by a greater than
two fold increase in the IC50 (nM) using an established algorithm
(O'Brien et al., 2001).
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