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Abstract

The Carathéodory problem in the N-variable non-commutative Herglotz–Agler class and the
Carathéodory–Fejér problem in the N-variable non-commutative Schur–Agler class are posed. It
is shown that the Carathéodory (resp., Carathéodory–Fejér) problem has a solution if and only
if the non-commutative polynomial with given operator coefficients (the data of the problem
indexed by an admissible set �) takes operator values with positive semidefinite real part (resp.,
contractive operator values) on N-tuples of �-jointly nilpotent contractive n × n matrices, for
all n ∈ N.
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1. Introduction

The classical Carathéodory interpolation problem is the following: given a
sequence of complex numbers c0 > 0, c1, . . . , cm, find a holomorphic function
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f (z) = f0 + f1z + f2z
2 + · · · on the open unit disk D whose values in D have

positive real part (i.e., f belongs to the Herglotz, or Carathéodory, class H1, where the
subscript 1 stands for the one-variable case) such that

f0 = c0

2
, f1 = c1, . . . , fm = cm.

This problem has been posed by Constantin Carathéodory [21,22] where the criteria
of its solvability and of the uniqueness of its solution were presented. Toeplitz has
noticed in [58] that the original solvability criterion from [21], which was formulated
in terms of convex bodies, admits the following formulation in terms of the coefficients
ck, k = 0, . . . , m: the Carathéodory problem for these data has a solution if and only
if the (m + 1) × (m + 1) matrix

Tc =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c0 c∗
1 . . . c∗

m−1 c∗
m

c1
. . .

. . . . . . c∗
m−1

...
. . .

. . .
. . .

...

cm−1 . . .
. . .

. . . c∗
1

cm cm−1 . . . c1 c0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(1.1)

is positive semidefinite (here c∗
k = ck). From the integral representation by Riesz [49]

and Herglotz [32]

f (z) = 1

2

∫
T

1 + �̄z

1 − �̄z
d�(�) + i Im f (0), z ∈ D, (1.2)

which characterizes functions from H1 (here � is a positive Borel measure on the unit
circle T; in the case where f (0) = 1

2 the second term in the right-hand side of (1.2)
is dropped out and � has full variation |�| = 1) one obtains a representation for the
Taylor coefficients of f ∈ H1:

f0 = |�|
2

+ i Im f (0), fk =
∫

T
�̄
k
d�(�), k = 1, 2, . . . .

Thus, the Carathéodory problem has a solution if and only if there exists a positive
Borel measure � on T such that

ck =
∫

T
�̄
k
d�(�), k = 0, . . . , m, (1.3)

i.e., � solves the trigonometric moment problem for the data ck, k = 0, . . . , m.
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In the operator case the data of the Carathéodory problem are bounded linear opera-
tors c0 �0, c1, . . . , cm on a separable Hilbert space 2 Y , and the class H1 is replaced
by the class H1(Y) of holomorphic functions on D whose values are bounded linear
operators 3 on Y with positive semidefinite real part. Then the Carathéodory–Toeplitz
criterion, representation (1.2) for f ∈ H1(Y), and trigonometric moment representation
(1.3) hold true with the operator block matrix Tc in (1.1), a positive Borel L(Y)-valued
measure �, and the convergence of integrals in (1.2) and (1.3) in the strong operator
topology. Riesz–Herglotz representation (1.2) for the case where f (0) = IY

2 , and thus
moment representation (1.3) for the case where c0 = IY admit the following operator
form:

f (z) = 1
2V ∗(IH + zG)(IH − zG)−1V, z ∈ D, (1.4)

ck = V ∗GkV, k = 0, . . . , m, (1.5)

where G is a unitary operator on some auxiliary Hilbert space H, and V ∈ L(Y, H)

is an isometry. These results are due to Neumark [42].
A similar problem was considered first by Carathéodory and Fejér [23] for the Schur

class S1 of holomorphic contractive functions on D in the place of the Herglotz class
H1: given a sequence of complex numbers s0, . . . , sm, find a holomorphic function
F(z) = F0 + F1z + F2z

2 + · · · from the class S1 such that

F0 = s0, . . . , Fm = sm.

Schur has proved in [54] that the Carathéodory–Fejér problem has a solution if and
only if the matrix

Ts =

⎡⎢⎢⎢⎢⎣
s0 0 . . . 0

s1
. . .

. . .
...

...
. . .

. . . 0
sm . . . s1 s0

⎤⎥⎥⎥⎥⎦ (1.6)

is contractive 4 , i.e., ‖Ts‖�1. In the operator case the data of the Carathéodory–Fejér
problem are operators s0, . . . , sm ∈ L(U, Y), with Hilbert spaces U and Y , the class
S1 is replaced by the class S1(U, Y) of holomorphic functions on D whose values are
contractive operators from L(U, Y) and the Schur criterion is formulated in the same
way as in the scalar case, with the operator block matrix Ts .

2 In this paper we will consider separable Hilbert spaces only, and omit “separable” for brevity.
3 For Hilbert spaces Y and H, we shall use the notation L(Y, H) (resp., L(Y)) for the Banach space

of bounded linear operators from Y to H (resp., from Y to itself).
4 Matrix norm considered in this paper is operator (2, 2)-norm, i.e., the maximal singular value of a

matrix.
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Let us note that a common operatorial view at the Carathéodory problem,
Carathéodory–Fejér problem, and their relative Nevanlinna–Pick problem, and a certain
operator dilation scheme which unifies these problems were first presented in the fun-
damental paper of Sarason [53]. These ideas in an abstract form have been expressed
in the commutant lifting theorem of Sz.-Nagy and Foiaş (see [57]) which is used now
as one of the approaches to various interpolation problems. For further details on the
classical and operator versions of the Carathéodory problem and other interpolation
problems, see [7,25,31,37,51].

There exist various generalizations of the Carathéodory problem and other interpo-
lation problems to the case of several complex variables, depending on the type of a
classical domain in CN serving as a counterpart of D and on the class of interpolating
functions. Due to a version of the Riesz–Herglotz formula (1.2) for the unit polydisk
DN obtained by Korányi and Pukánszky [36], one can characterize the coefficients
of a function from the multivariable Herglotz class HN(Y) (the class of holomorphic
functions on DN taking operator values from L(Y) with positive semidefinite real part)
in terms of a L(Y)-valued positive Borel measure � whose Fourier coefficients with
multi-indices outside ZN+ and ZN− , the positive and the negative discrete octants, are
zero. However, an appropriate multivariable analogue of (1.4) (and thus, of (1.5)) can
be obtained either for the case N = 2 or for the subclass HAN(Y) ⊂ HN(Y) which
is proper for N > 2. The latter subclass, which is called the Herglotz–Agler class, has
been introduced by Agler in [3], where the analogue of (1.4) has been obtained. This
class HAN(Y) consists of holomorphic L(Y)-valued functions on DN whose values on
any N-tuple of commuting strict contractions on a common Hilbert space (in the sense
of hereditary functional calculus introduced in [3]) have positive semidefinite real part.
Some partial results on the Carathéodory–Fejér problem in the class SN (the Schur
class of contractive holomorphic functions on DN ) have been obtained in [28,43]. The
Carathéodory and Carathéodory–Fejér problems in the Herglotz–Agler class HAN(Y)

and the Schur–Agler class SAN(U, Y) (the class of holomorphic L(U, Y)-valued func-
tions on DN which take contractive operator values on any N-tuple of commuting strict
contractions, in the sense of Agler’s hereditary functional calculus), respectively, were
studied in [17,30,59]. Various versions of the Sarason theorem, the Sz.-Nagy–Foiaş
commutant lifting theorem and the Nevanlinna–Pick problem on DN , in the classes
HN(Y), HAN(Y), SN(U, Y) and SAN(U, Y) were considered in [4,17,18,24,27,30].
The Korányi–Pukánszky version of the Riesz–Herglotz formula has been generalized in
[6] to a wide class of domains in CN which contains, in particular, all classical sym-
metric domains. Certain partial results on the Carathéodory–Fejér problem for bounded
full circular domains in CN can be found in [28]. A generalization of the Agler rep-
resentation theorem from [3] to a class of so-called polynomially defined domains
in CN has been obtained in [9,15] where also the Nevanlinna–Pick problem in the
Schur–Agler class of functions on such a domain was studied. The Nevanlinna–Pick
and Carathéodory–Fejér problems in the class of contractive multipliers on the repro-
ducing kernel Hilbert space of holomorphic functions on the unit ball BN := {z ∈ CN :∑N

k=1 |zk|2 < 1}, with the reproducing kernel kN(z, z′) = 1
1−〈z,z′〉 , or more generally,

on the reproducing kernel Hilbert space of functions on a set �, with the reproducing
kernel whose reciprocal has exactly one positive square, were studied starting with the
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unpublished paper of Agler [1] by many authors (e.g., see [2,5,14,19,38,39,48]). Let us
mention also the approach to interpolation problems on BN via the commutant lifting
theorem in the non-commutative setting of the Toeplitz algebra of operators acting on
the Fock space by Popescu [44,45] and subsequent use of symmetrization argument
(see [10,29,46]). In this non-commutative setting the Carathéodory–Fejér problem was
studied in [26,46,47]. (A certain generalization of Popescu’s non-commutative setting
and a more general Nevanlinna–Pick interpolation problem appears in a recent paper
[41].) Let us remark that one can interprete the latter results in terms of functions on
the non-commutative unit ball BN which is the collection of strict row contractions,
i.e., N-tuples of bounded linear operators T = (T1, . . . , TN) on a common Hilbert space
E such that

∑N
k=1 TkT

∗
k < IE .

In the present paper, we are working on another domain, the non-commutative unit
polydisk DN which is the collection of N-tuples T = (T1, . . . , TN) of strict contractions
on a common Hilbert space E , i.e., ‖Tk‖ < 1, k = 1, . . . , N , or on the non-commutative
matrix unit polydisk, which is a subdomain DN

matr ⊂ DN consisting of N-tuples of strict
contractions on Cn, for all n ∈ N. The domain DN is a special case of a bit more
general non-commutative domain DG considered in the recent paper of Ball et al.
[16] where the non-commutative Schur–Agler class SAnc

N (U, Y) was introduced and
studied in the framework of structured non-commutative multidimensional conservative
linear systems. The domain DN

matr appears in [8]. We consider non-commutative formal
power series which converge on DN . We introduce the non-commutative Herglotz–
Agler class HAnc

N (Y) of such series which take on DN operator values with positive
semidefinite real part, and study the Carathéodory problem in this class, as well as the
Carathéodory–Fejér problem in the class SAnc

N (U, Y).
To give an idea on our main results, criteria of solvability of these problems, let us

first come back to the one-variable case. Let S denote the standard shift (m+1)×(m+1)

matrix:

S =

⎡⎢⎢⎢⎢⎣
0

1
. . .

. . .
. . .

1 0

⎤⎥⎥⎥⎥⎦ , (1.7)

i.e., Sij = 1 for i − j = 1, and Sij = 0 otherwise. Then

Tc = Im+1 ⊗ c0 +
m∑

k=1

Sk ⊗ ck +
m∑

k=1

S∗k ⊗ c∗
k .

If one defines

p(z) := c0

2
+

m∑
k=1

ckz
k, z ∈ C,
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then the Carathéodory–Toeplitz criterion can be formulated as the positive semidefi-
niteness of the operator 2 Re pl(S) = pl(S) + pl(S)∗, where

pl(S) := Im+1 ⊗ c0

2
+

m∑
k=1

Sk ⊗ ck

or equivalently, of the operator 2 Re p(S), where

p(S) = pr(S) := c0 ⊗ Im+1

2
+

m∑
k=1

ck ⊗ Sk

(we shall usually omit the superscript “r”, however keep the superscript “l” when we
use the writing of a polynomial with powers on the left). By Arveson [12, Section 2.5],
any contraction T on a Hilbert space E which is nilpotent of rank at most m + 1, i.e.,
such that

T k = 0, k = m + 1, m + 2, . . . ,

admits a dilation of the form S ⊗ IH, with some Hilbert space H, i.e., there exists an
isometry V ∈ L(E, Cm+1 ⊗ H) such that

T k = V ∗(Sk ⊗ IH)V , k = 1, 2, . . . .

Since S is a nilpotent matrix with rank of nilpotency m + 1, we obtain the following
criterion: the Carathéodory problem with data c0 �0, c1, . . . , cm ∈ L(Y) has a solution
if and only if Re p(T )�0 for every nilpotent operator T with rank of nilpotency at
most m + 1. Analogously,

Ts =
m∑

k=0

Sk ⊗ sk.

If one defines

q(z) :=
m∑

k=0

skz
k, z ∈ C,

then the Schur criterion can be formulated as the contractivity of the operator q l(S)

where

q l(S) =
m∑

k=0

Sk ⊗ sk
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or equivalently, of the operator q(S), where

q(S) =
m∑

k=0

sk ⊗ Sk.

Thus, the Carathéodory–Fejér problem with data s0, . . . , sm ∈ L(U, Y) has a solution
if and only if ‖q(T )‖�1 for every nilpotent operator T with rank of nilpotency at most
m + 1.

The main results of the paper are generalizations of these criteria to the multivari-
able non-commutative case, where the positivity or contractivity of a non-commutative
polynomial is tested on N-tuples of jointly nilpotent contractions T = (T1, . . . , TN),
i.e., ‖Tk‖�1, k = 1, . . . , N, and Ti1 · · · Tik = 0 outside some finite set of strings
(i1, . . . , ik), k ∈ N. To obtain these criteria, we first deduce the analogue of (1.4)
for non-commutative formal power series of the class HAnc

N (Y) from the realization
formula obtained in [16] for the class SAnc

N (Y). Thus, an analogue of (1.5) is also
obtained. A counterpart of unitary operator G from (1.4) and (1.5) is N-tuple G =
(G1, . . . , GN) of bounded linear operators on a common Hilbert space satisfying the
following condition:

�G :=
N∑

k=1

�kGk is unitary for every � ∈ TN. (1.8)

We denote by GN the class of such N-tuples of operators. Note that an N-tuple G from
the class GN appears also in Agler’s representation formula for functions from the
(commutative) class HAN(Y) in [3], and in a realization formula for functions from
the subclass SA0

N(U, Y) ⊂ SAN(U, Y) which consists of functions vanishing at zero,
in [33]. We deduce the criterion of solvability of the Carathéodory–Fejér problem in the
class SAnc

N (U, Y) from the one for the Carathéodory problem in the class HAnc
N (Y),

which we obtain first.
The main tools in our work, besides the realization formula from [16] mentioned

above, are the following: the properties of operator N-tuples from the class GN which
have been established in [33] and some their new properties which we obtain in the
present paper; the factorization result of McCullough [40] for non-commutative hered-
itary polynomials; the Arveson extension theorem [13]; the Stinespring representation
theorem [56] for completely positive maps of C∗-algebras; the Sz.-Nagy and Foiaş
theorem on the existence of a unitary dilation of an N-tuple of (not necessarily com-
muting) contractions [57]; the Amitsur–Levitzki theorem on the non-existence of non-
commutative polynomial relations valid for infinitely many matrix rings Cnj ×nj , j =
1, 2, . . . (see, e.g., [50, pp. 22–23]).

The structure of the paper is the following. In Section 2 we study certain classes
of operator N-tuples. In particular, we establish duality properties of the classes GN

and UN . The latter is the class of N-tuples U = (U1, . . . , UN) of unitary operators on
a common Hilbert space, which serves as another generalization (in addition to GN )
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of the class of single unitaries. This duality is observed also in Lemma 4.5 which is
proved in Section 4. In Section 3 we introduce and characterize the non-commutative
Herglotz–Agler class HAnc

N (Y). In Section 4, we formulate the Carathéodory problem in
the class HAnc

N (Y) and prove the necessary and sufficient conditions for its solvability.
In Section 5, we formulate the Carathéodory–Fejér problem in the class SAnc

N (U, Y)

and obtain a criterion of its solvability.

2. Some classes of operator N -tuples

Let us define the classes of N-tuples of operators which are considered in this pa-
per. In addition to the classes DN , DN

matr, GN and UN already mentioned in Section
1, let us define the class CN which consists of N-tuples C = (C1, . . . , CN) of con-
tractions on a common Hilbert space, i.e., ‖Ck‖�1, k = 1, . . . , N . The class GN

is characterized by the following proposition which is a consequence of Kalyuzhniy
[33, Proposition 2.4].

Proposition 2.1. Let G = (G1, . . . , GN) ∈ L(H)N , with a Hilbert space H. The
following statements are equivalent:

(i) G ∈ GN ;
(ii) G satisfies the conditions

N∑
k=1

G∗
kGk = IH, (2.1)

G∗
kGj = 0, k 	= j, (2.2)

N∑
k=1

GkG
∗
k = IH, (2.3)

GkG
∗
j = 0, k 	= j, (2.4)

(iii) the operator G0 :=
N∑

k=1
Gk is unitary, and there exists a resolution of identity

IH = ∑N
k=1 P −

k , where (P −
k )2 = P −

k = (P −
k )∗, k = 1, . . . , N , and P −

k P −
j = 0

for k 	= j , such that

Gk = G0P −
k , k = 1, . . . , N,

(iv) the operator G0 := ∑N
k=1 Gk is unitary, and there exists a resolution of identity

IH = ∑N
k=1 P +

k , where (P +
k )2 = P +

k = (P +
k )∗, k = 1, . . . , N , and P +

k P +
j = 0

for k 	= j , such that

Gk = P +
k G0, k = 1, . . . , N,
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(v) for every U = (U1, . . . , UN) ∈ UN ∩L(K)N , with a Hilbert space K, the operator

U ⊗ G :=
N∑

k=1

Uk ⊗ Gk ∈ L(K ⊗ H) (2.5)

is unitary;
(vi) for every U = (U1, . . . , UN) ∈ UN ∩L(K)N , with a Hilbert space K, the operator

G ⊗ U :=
N∑

k=1

Gk ⊗ Uk ∈ L(H ⊗ K) (2.6)

is unitary.

Corollary 2.2. If G ∈ GN ∩ L(H)N then

(a) for every C ∈ CN ∩L(E)N , with a Hilbert space E , the operators G⊗C and C⊗G
are contractions;

(b) for every C ∈ DN ∩ L(E)N , with a Hilbert space E , the operators G ⊗ C and
C ⊗ G are strict contractions.

Proof. (a) Any C ∈ CN ∩L(E)N has a unitary dilation [57], i.e., there exists an N-tuple
U ∈ UN ∩ L(K)N , with some Hilbert space K ⊃ E , such that

Ci1 · · · Cil = PEUi1 · · · Uil |E , l ∈ N, i1, . . . , il ∈ {1, . . . , N},

where PE denotes the orthogonal projection onto the subspace E in K. Therefore,

G ⊗ C =
N∑

k=1

Gk ⊗ PEUk

∣∣E = (IH ⊗ PE )(G ⊗ U)|H⊗E

and since by Proposition 2.1 G ⊗ U is unitary, G ⊗ C is a contraction. Analogously,
C ⊗ G is a contraction.

(b) If C ∈ DN ∩ L(E)N is non-zero (otherwise the statement is trivial) then C̃ :=
(max1�k �N ‖Ck‖)−1C ∈ CN ∩ L(E)N . By (a) of this proposition, G ⊗ C̃ and C̃ ⊗ G
are contractions. Therefore, G⊗C and C⊗G are strict contractions with norm at most
max1�k �N ‖Ck‖. �

The following proposition is dual to Proposition 2.1.
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Proposition 2.3. Let U = (U1, . . . , UN) ∈ L(K)N , with a Hilbert space K. The fol-
lowing statements are equivalent:

(i) U ∈ UN ;
(ii) for every G ∈ GN ∩ L(H)N , with a Hilbert space H, the operator U ⊗ G ∈

L(K ⊗ H)N is unitary;
(iii) for every G ∈ GN ∩ L(H)N , with a Hilbert space H, the operator G ⊗ U ∈

L(H ⊗ K)N is unitary.

Proof. If U ∈ UN and G ∈ GN then implications (i)⇒(ii) and (i)⇒(iii) follow from
Proposition 2.1. For the proof of (ii)⇒(i) and (iii)⇒(i), one can choose

G(k) := (0, . . . , 0, 1, 0, . . . , 0) ∈ CN�L(C)N ,

where 1 is on the kth position and 0 is on the other positions. It is clear that G(k) ∈ GN .
Since for every k ∈ {1, . . . , N} the operator Uk = U ⊗ G(k) = G(k) ⊗ U is unitary,
U ∈ UN . �

For N-tuples of operators X = (X1, . . . , XN) ∈ L(X )N and Y = (Y1, . . . , YN) ∈
L(Y)N on Hilbert spaces X and Y , respectively, define their Schur tensor product as
the N-tuple of operators

X
◦⊗ Y := (X1 ⊗ Y1, . . . , XN ⊗ YN) ∈ L(X ⊗ Y)N . (2.7)

Proposition 2.4. For any G ∈ GN and U ∈ UN both G
◦⊗ U and U

◦⊗ G belong to
the class GN .

Proof. For an arbitrary Ũ ∈ UN the operator

(G
◦⊗ U) ⊗ Ũ =

N∑
k=1

Gk ⊗ Uk ⊗ Ũk = G ⊗ (U
◦⊗ Ũ)

is unitary, by Proposition 2.1 and due to the fact that Uk ⊗ Ũk are unitary operators

for all k = 1, . . . , N , i.e., U
◦⊗ Ũ ∈ UN . Thus, again by Proposition 2.1, G

◦⊗ U ∈ GN .

Analogously, U
◦⊗ G ∈ GN . �

Let us note that for the classes introduced above the following inclusions hold:

GN

∩
DN

matr ⊂ DN ⊂ CN ⊃ UN.

A couple of additional classes of operator N-tuples will be considered in Section 4.
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3. The non-commutative Herglotz–Agler class

Let us give some necessary definitions in our non-commutative setting. The free
semigroup FN with the generators g1, . . . , gN (the letters) and the neutral element ∅
(empty word) has a product defined as follow: if two its elements (words) are given by
w = gi1 · · · gim and w′ = gj1 · · · gjm′ then their product is ww′ = gi1 · · · gimgj1 · · · gjm′ ,
and w∅ = ∅w = w. The length of the word w = gi1 · · · gim is |w| = m, and |∅| = 0.
The non-commutative algebra L(Y)〈〈z1, . . . , zN 〉〉 consists of formal power series f
with coefficients fw ∈ L(Y), w ∈ FN , for a Hilbert space Y , of the form

f (z) =
∑

w∈FN

fwzw,

where for the indeterminates z = (z1, . . . , zN) and words w = gi1 · · · gim one sets
zw = zi1 · · · zim, z∅ = 1. We assume that indeterminates zk formally commute with
coefficients fw. A formal power series f is invertible in this algebra if and only if f∅
is invertible. Indeed, if f (z)�(z) = �(z)f (z) = IY then f∅�∅ = �∅f∅ = IY , i.e.,
�∅ = f −1

∅ . Conversely, if f∅ is invertible then the series

�(z) =
∞∑

k=0

(IY − f −1
∅ f (z))kf −1

∅

is the inverse of f. This formal power series is well defined since the expansion of (IY −
f −1

∅ f )k contains words of length at least k, and thus the expressions for coefficients �w

are finite sums. The subalgebra L(Y)〈z1, . . . , zN 〉 of the algebra L(Y)〈〈z1, . . . , zN 〉〉
consists of non-commutative polynomials p of the form

p(z) =
∑
w∈�

pwzw,

where � ⊂ FN is a finite set. We will consider also the space L(U, Y)〈〈z1, . . . , zN 〉〉
of formal power series with coefficients in L(U, Y) and the space L(U, Y)〈z1, . . . , zN 〉
of non-commutative polynomials with coefficients in L(U, Y).

Let us introduce now the non-commutative Herglotz–Agler class HAnc
N (Y) of formal

power series f ∈ L(Y)〈〈z1, . . . , zN 〉〉 such that the series

f (C) :=
∑

w∈FN

fw ⊗ Cw

converges in the operator norm and Re f (C)�0 for every C ∈ DN ∩ L(E)N , with
a Hilbert space E . Here for w = gi1 · · · gim ∈ FN we set Cw := Ci1 · · · Cim , and



252 Dmitry S. Kalyuzhnyı̆-Verbovetzkiı̆ / Journal of Functional Analysis 229 (2005) 241–276

C∅ = IE . The subclass HAnc,I
N (Y) ⊂ HAnc

N (Y) consists of formal power series f such
that f∅ = IY .

Theorem 3.1. A formal power series f ∈ L(Y)〈〈z1, . . . , zN 〉〉 belongs to the class
HAnc,I

N (Y) if and only if there exist a Hilbert space H, an N-tuple G ∈ GN ∩ L(H)N ,
and an isometry V ∈ L(Y, H) such that

f (z) = V ∗(IH + zG)(IH − zG)−1V, (3.1)

where zG := ∑N
k=1 zkGk and thus

(IH − zG)−1 =
∞∑

j=0

(
N∑

k=1

zkGk

)j

=
∑

w∈FN

Gwzw. (3.2)

Proof. If (3.1) holds then f ∈ HAnc,I
N (Y). Indeed, for any C ∈ DN ∩ L(E)N , with

a Hilbert space E , by Corollary 2.2 the operator G ⊗ C is a strict contraction. Then
the series in (3.2) evaluated at C converges in the operator norm, thus the operator
(IH⊗E + G ⊗ C)(IH⊗E − G ⊗ C)−1 is well defined and, as the Cayley transform of a
strict contraction, has positive semidefinite real part, and so is f (C). Clearly, since V
is an isometry, f∅ = IY .

Let us prove the converse. The formal power series

F(z) := (f (z) − IY )(f (z) + IY )−1 (3.3)

is well defined since f∅ + IY = 2IY is invertible and so is f (z) + IY . Moreover, F
belongs to the non-commutative Schur–Agler class SAnc

N (Y), i.e., the formal power
series F evaluated at any C ∈ DN is well defined and ‖F(C)‖�1. By Ball et al. [16],
there exists a Hilbert space H, a resolution of identity P = (P1, . . . , PN) ∈ L(H)N ,

and a unitary operator U =
[

A B

C D

]
∈ L(H ⊕ Y) such that

F(z) = D + C(IY − (zP)A)−1(zP)B, (3.4)

where we set zP := ∑N
k=1 zkPk . To get the representation (3.1) for f, we will apply a

trick which is well known in one-variable system theory (see, e.g., [11]). Consider a
non-commutative linear system � = (N; U ; P; H, Y), i.e., a system of equations{

x(z) = (zP)Ax(z) + (zP)Bu(z),

y(z) = Cx(z) + Du(z),
(3.5)

where x(z) ∈ L(H)〈〈z1, . . . , zN 〉〉, u(z), y(z) ∈ L(Y)〈〈z1, . . . , zN 〉〉 (the corresponding
system of equations for coefficients of these formal power series is one of the systems
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with evolution on the free semigroup considered in [16]). The system (3.5) is equivalent
to the system

{
x(z) = (IH − (zP)A)−1(zP)Bu(z),

y(z) = F(z)u(z).
(3.6)

The second equation means that F is the transfer function of the system �, or � is a
realization of the formal power series F. Let us find a realization �̃ = (N; Ũ ; P; H, Y)

of f. To this end (now the trick appears!) we apply the so-called diagonal transform:

u(z) = ỹ(z) + ũ(z), y(z) = ỹ(z) − ũ(z). (3.7)

Then we get ỹ(z) = f (z)̃u(z), i.e., an analogue of the second equation in (3.6). Suppose
that the operator IY −D is invertible. Then an easy calculation gives the desired system
realization �̃: {

x(z) = (zP)Ãx(z) + (zP)B̃u(z),

y(z) = C̃x(z) + D̃u(z),
(3.8)

where

Ã = A + B(IY − D)−1C, B̃ = 2B(IY − D)−1,

C̃ = (IY − D)−1C, D̃ = (IY − D)−1(IY + D).

In our case D̃ = f∅ = IY and D = F∅ = 0. Then

Ã = A + BC, B̃ = 2B, C̃ = C.

Moreover, since U is a unitary operator, in this case B is an isometry, C is a coisometry,
A + BC is unitary, and A∗B = 0, AC∗ = 0. Thus, we may write

f (z) = IY + 2C(IH − (zP)(A + BC))−1(zP)B

= IY + 2C(IH − (zP)(A + BC))−1(zP)(A + BC)(A + BC)∗B

= IY + 2C(IH − (zP)(A + BC))−1(zP)(A + BC)C∗

= C(IH + (zP)(A + BC))(IH − (zP)(A + BC))−1C∗

= V ∗(IH + zG)(IH − zG)−1V,

where Gk = Pk(A + BC), k = 1, . . . , N and V = C∗. By Proposition 2.1, G ∈ GN .
Since C is a coisometry, V = C∗ is an isometry. Thus we have obtained a representation
(3.1) of f. �
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Corollary 3.2. A formal power series f ∈ L(Y)〈〈z1, . . . , zN 〉〉 belongs to the class
HAnc

N (Y) and satisfies f∅ = IY
2 if and only if there exist a Hilbert space H, an

N-tuple of operators G ∈ GN ∩ L(H)N , and an isometry V ∈ L(Y, H) such that the
sequence

a∅ := IY , aw := fw for w ∈ FN \ {∅},

satisfies

aw = V ∗GwV, w ∈ FN.

Proof. The statement follows from the representation (3.1) for f̃ = 2f :

f̃ (z) = V ∗(2(IH − zG)−1 − IH)V = V ∗
⎛⎝2

∞∑
j=0

(zG)j − IH

⎞⎠V

= IH + 2V ∗
⎛⎝ ∑

w∈FN\{∅}
Gwzw

⎞⎠V. �

Remark 3.3. In [8] it has been shown that a formal power series F belongs to the
class SAnc

N (Y) (or more generally, to the class SAnc
N (U, Y)) if and only if the series for

F(C) converges to a contractive operator for every C ∈ DN
matr, i.e., it is enough to test

values of F on N-tuples of strictly contractive matrices of same size n×n, n = 1, 2, . . ..
The analogous statement for the class HAnc

N (Y) is true, too: a formal power series f
belongs to the class HAnc

N (Y) if and only if the series for f (C) converges and Re f (C)

is positive semidefinite for every C ∈ DN
matr. Indeed, this follows from the fact that

the Cayley transform f �→ F defined by (3.3) is an injection from HAnc
N (Y) into

SAnc
N (Y).

4. The Carathéodory interpolation problem

In this section we will consider FN as a sub-semigroup of the free semigroup with
involution F̂2N . The latter is the free semigroup F2N with the generators g1, . . . , gN ,

gN+1, . . . , g2N and the neutral element ∅, endowed with the involution “∗” defined
as follows: g∗

k := gk+N for k = 1, . . . , N , g∗
k := gk−N for k = N + 1, . . . , 2N ,

∅∗ := ∅, and (gi1 · · · gil )
∗ := g∗

il
· · · g∗

i1
for every l ∈ N and ij ∈ {1, . . . , 2N},

j = 1, . . . , l. For a set � ⊂ F̂2N we define the set �∗ := {w ∈ F̂2N : w∗ ∈ �}. Let
us introduce also the unital ∗-algebra AN(Y) as the algebra L(Y)〈z1, . . . , zN , zN+1,

. . . z2N 〉 endowed with the involution “∗” defined as follows: 1) z∗
k := zk+N for k =

1, . . . , N , z∗
k := zk−N for k = N + 1, . . . , 2N , (zi1 · · · zil )

∗ := z∗
il

· · · z∗
i1

for every
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l ∈ N and ij ∈ {1, . . . , 2N}, j = 1, . . . , l, thus for ẑ := (z1, . . . , zN , zN+1, . . . z2N) =
(z1, . . . , zN , z∗

1, . . . , z
∗
N) and w ∈ F̂2N one has (ẑw)∗ = ẑw∗

; 2) for arbitrary finite set

� ⊂ F̂2N and a polynomial p(ẑ) = ∑
w∈� pwẑw,

p(ẑ)∗ =
⎛⎝∑

w∈�

pwẑw

⎞⎠∗
:=

∑
w∈�

p∗
wẑw∗ =

∑
w∈�∗

p∗
w∗ ẑw

(here p∗
w is the adjoint operator to pw in L(Y)).

A finite set � ⊂ FN will be called admissible if gkw ∈ FN \ � and wgk ∈ FN \ �
for every w ∈ FN \ � and k = 1, . . . , N . Clearly, if the set � is admissible and
non-empty then ∅ ∈ �, and if � is admissible, non-empty and � 	= {∅} then there is
a k ∈ {1, . . . , N} such that gk ∈ �. For example, the set �m := {w ∈ FN : |w|�m}
is admissible.

Let us pose now the Carathéodory interpolation problem in the class HAnc
N (Y).

Problem 4.1. Let � ⊂ FN be an admissible set. Given a collection of operators
{cw}w∈� ∈ L(Y), with c∅ �0, find f ∈ HAnc

N (Y) such that

f∅ = c∅
2

, fw = cw for w ∈ � \ {∅}.

We will start with the special case of this problem where c∅ = IY .

Problem 4.2. Let � ⊂ FN be an admissible set. Given a collection of operators
{cw}w∈� ∈ L(Y), with c∅ = IY , find f ∈ HAnc

N (Y) such that

f∅ = c∅
2

= IY
2

, fw = cw for w ∈ � \ {∅}.

From Corollary 3.2 we obtain the following result.

Theorem 4.3. Problem 4.2 has a solution if and only if there exist a Hilbert space H,
an N-tuple of operators G ∈ GN ∩ L(H)N , and an isometry V ∈ L(Y, H) such that

cw = V ∗GwV, w ∈ �. (4.1)

Remark 4.4. Theorem 4.3 holds true for the case where Problem 4.2 is formulated for
an arbitrary set � ⊂ FN , not necessarily finite and admissible.

Let us note that (4.1) is a non-commutative multivariable counterpart of (1.5). Theo-
rem 4.3 gives a criterion on solvability of Problem 4.2 in the “existence terms”. We are
going to obtain also another criterion, in terms of positivity of certain non-commutative
polynomial whose coefficients are determined by the problem data.
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Let E be a Hilbert space, and T = (T1, . . . , TN) ∈ L(E)N . Then set

T̂ := (T1, . . . , TN , T ∗
1 , . . . , T ∗

N) ∈ L(E)2N.

For a finite set � ⊂ F̂2N and a polynomial p(ẑ) = ∑
w∈� pwẑw ∈ AN(Y) define

p(T) = p(T̂) :=
∑
w∈�

pw ⊗ T̂w ∈ L(Y ⊗ E).

In particular, if � = � ∪ �∗ where � ⊂ FN is a finite set, and

p(ẑ) =
∑

w∈�∪�∗
pwẑw = p∅ +

∑
w∈�\{∅}

pwzw +
∑

w∈�∗\{∅}
pwz∗w,

we have

p(T) =
∑

w∈�∪�∗
pw ⊗ T̂w = p∅ ⊗ IE +

∑
w∈�\{∅}

pw ⊗ Tw +
∑

w∈�∗\{∅}
pw ⊗ T∗w,

where z∗ := (z∗
1, . . . , z

∗
N) and T∗ := (T ∗

1 , . . . , T ∗
N), and one identifies zw = ẑw, Tw =

T̂w for w ∈ FN ⊂ F̂2N , and z∗w = ẑ∗w, T∗w = T̂∗w for w ∈ F∗
N ⊂ F̂2N . Thus, the

evaluation of polynomials from AN(Y) on N-tuples of operators is well defined.

Lemma 4.5. Let ∅ ∈ � ⊂ FN be a finite set.
(I) A polynomial

p(ẑ) = IY +
∑

w∈�\{∅}
pwzw +

∑
w∈�∗\{∅}

pwz∗w ∈ AN(Y)

is positive semidefinite on UN if and only if there exist a Hilbert space H, an
N-tuple of operators G ∈ GN ∩ L(H)N , and an isometry V ∈ L(Y, H) such that

pw = p∗
w∗ = V ∗GwV, w ∈ �, (4.2)

0 = V ∗GwV, w ∈ FN \ �. (4.3)

(II) A polynomial

p(ẑ) = IY +
∑

w∈�\{∅}
pwzw +

∑
w∈�∗\{∅}

pwz∗w ∈ AN(Y)
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is positive semidefinite on GN if and only if there exist a Hilbert space K, an
N-tuple of operators U ∈ UN ∩ L(K)N , and an isometry W ∈ L(Y, K) such that

pw = p∗
w∗ = W ∗UwW, w ∈ �, (4.4)

0 = W ∗UwW, w ∈ FN \ �. (4.5)

Proof. (I) If the polynomial p is positive semidefinite on UN then pw = p∗
w∗ for

w ∈ �. This can be seen from a McCullough factorization [40]: p(ẑ) = h(z)∗h(z),
where h(z) = ∑

w∈FN : |w|�m hwzw ∈ L(Y, V)〈z1, . . . , zN 〉, with an auxiliary Hilbert
space V . Set

f (z) := IY
2

+
∑

w∈�\{∅}
pwzw.

Then p(C) = 2 Re f (C)�0 for every C ∈ DN ∩L(E)N , with a Hilbert space E . Indeed,
since C has a unitary dilation (see [57]) U ∈ UN ∩ L(K)N , i.e., K ⊃ E and

Cw = PEUw
∣∣E , w ∈ FN

and p(U) = 2 Re f (U)�0, we get

p(C) = (IY ⊗ PE )p(U)
∣∣Y⊗E �0.

Thus, f ∈ HAnc
N (Y) and f∅ = IY

2 . By Corollary 3.2, there exists a representation
(4.2)–(4.3).

Conversely, if p has a representation (4.2)–(4.3) then p(ẑ) = f (z) + f (z)∗, where

f (z) = IY
2

+
∑

w∈�\{∅}
pwzw = IY

2
+

∑
w∈�\{∅}

V ∗GwV zw.

By Corollary 3.2, f ∈ HAnc
N (Y). Hence,

p(U) = 2 Re f (U) = lim
r↑1

2 Re f (rU)�0, U ∈ UN.

(II) Let p be positive semidefinite on GN . Let AUN be the C∗-algebra obtained as the
norm completion of the quotient of unital ∗-algebra AN = AN(C) with the seminorm

‖q‖ := sup
U∈UN

‖q(U)‖ = sup
U∈UN

‖q(U1, . . . , UN, U∗
1 , . . . , U∗

N)‖,

by the two-sided ideal of elements of zero seminorm.
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Let us show that the restriction of the quotient map above to the subspace BN ⊂ AN

of polynomials of the form

q(ẑ) = q∅ +
∑

w∈FN : 0<|w|�m

qwzw +
∑

w∈F∗
N : 0<|w|�m

qwz∗w (4.6)

is injective, i.e., that if q ∈ BN is non-zero then the corresponding coset [q] ∈ AUN

is non-zero. Indeed, if [q] = [0] then q(U) = 0 for every U ∈ UN . In particular, q is
positive semidefinite on UN . By McCullough [40], there exists a polynomial h(z) =∑

w∈FN : |w|�m hwzw ∈ L(C, Cr )〈z1, . . . , zN 〉, with some r ∈ N, such that q(ẑ) =
h(z)∗h(z). Then h vanishes on UN . In particular, for every n ∈ N the polynomial
h vanishes on UN ∩ (Cn×n)N . The latter set is the uniqueness set for functions of
matrix entries, which are holomorphic on a domain containing this set (see, e.g., [55]).
Then h vanishes on the all of (Cn×n)N , for each n ∈ N. By the Amitsur–Levitzki
theorem (see [50, pp. 22–23]) such a polynomial should be zero, i.e., hw = 0 for all
w ∈ FN : |w|�m. Then qw = 0 for all w ∈ FN ∪ F∗

N : |w|�m.
Denote by BUN the image of the subspace BN under the quotient map above. This

subspace of the C∗-algebra AUN is self-adjoint, i.e.,

B∗
UN := {[q]∗ = [q∗] : [q] ∈ BUN } = BUN .

Define the linear map � : BUN → L(Y) by �([zw]) = pw for w ∈ �, �([z∗w]) = pw

for w ∈ �∗, and �([zw]) = �([z∗w∗ ]) = 0 for w ∈ FN \ �. By the result of the
previous paragraph together with the Amitsur–Levitzki theorem mentioned there, this
linear map is correctly defined. Let us show that � is completely positive, i.e., that for
every n ∈ N the map

�n := idn ⊗ � : Cn×n ⊗ BUN → Cn×n ⊗ L(Y)

(here idn is the identity map from the C∗-algebra Cn×n onto itself) is positive. The
latter means, in turn, that �n maps positive elements (in the sense of the C∗-algebra
Cn×n ⊗AUN ) from Cn×n ⊗BUN into positive elements in the C∗-algebra Cn×n ⊗L(Y).
Let [q] ∈ Cn×n ⊗ BUN be a positive element of the C∗-algebra Cn×n ⊗ AUN , i.e.,
[q] = [h]∗[h] with some [h] ∈ Cn×n ⊗ AUN . One can think of [q] as of the n × n

matrix ([q]ij )i,j=1,...,n whose entries [q]ij = [qij ] ∈ BUN and qij ∈ BN , and thus
q ∈ Cn×n ⊗BN is a polynomial of the form (4.6) with the coefficients from Cn×n. Let
us observe that by virtue of the definition of the C∗-algebra AUN , for an arbitrary [x] ∈
AUN its values on UN are well defined. In particular, if x ∈ BN then [x](U) = x(U)

for any U ∈ UN . Therefore, for an arbitrary [x] = ([x]ij )i,j=1,...,n = ([xij ])i,j=1,...,n ∈
Cn×n⊗AUN one defines correctly [x](U) := ([xij ](U))i,j=1,...,n, U ∈ UN . In particular,
if x = (xij )i,j=1,...,n ∈ Cn×n ⊗ BN then [x](U) = x(U) = (xij (U))i,j=1,...,n for any
U ∈ UN . Since q(U) = [q](U) = [h](U)∗[h](U) is positive semidefinite for every
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U ∈ UN , it follows that the polynomial q (with the coefficients from Cn×n) is positive
semidefinite on UN . From the McCullough factorization theorem [40] we deduce that
q∅ �0. If q∅ = In, then by (I) of this lemma, there exist a Hilbert space H, an N-tuple
of operators G ∈ GN ∩ L(H)N , and an isometry V ∈ L(Cn, H) such that

qw = q∗
w∗ = V ∗GwV, w ∈ FN : |w|�m,

0 = V ∗GwV, w ∈ FN : |w| > m.

Then we have

�n([q]) = (idn ⊗ �)

⎛⎝In ⊗ [1] +
∑

w∈FN : 0<|w|�m

qw ⊗ [zw]

+
∑

w∈F∗
N : 0<|w|�m

qw ⊗ [z∗w]
⎞⎠

= ICn⊗Y +
∑

w∈�\{∅}
V ∗GwV ⊗ pw +

∑
w∈�∗\{∅}

V ∗G∗wV ⊗ pw

= (V ∗ ⊗ IY )pl(G)(V ⊗ IY )�0

(positivity in the C∗-algebra Cn×n⊗L(Y)�L(Cn⊗Y) is operator positive semidefinite-
ness). In the case where q∅ > 0 we define q̃(ẑ) := q

−1/2
∅ q(ẑ)q

−1/2
∅ . Since �n([q̃])�0,

we get

�n([q]) = (q
1/2
∅ ⊗ IY )�n([q̃])(q1/2

∅ ⊗ IY )�0.

In the case where the matrix q∅ is degenerate we set q�(ẑ) := �In + q(ẑ) for � > 0.
Then q� is positive definite on UN and (q�)∅ = �In + q∅ > 0. Since �n([q�])�0, we
get

�n([q]) = lim
�↓0

�n([q�])�0.

Finally, we have obtained that � : BUN → L(Y) is completely positive.
Since we have �([1]) = IY , by the Arveson extension theorem [13] there exists

a completely positive map �̃ : AUN → L(Y) which extends �. By the Stinespring
theorem [56], there exists a ∗-representation � of AUN in some Hilbert space K and
an isometry W ∈ L(Y, K) such that

�̃(a) = W ∗�(a)W, a ∈ AUN .
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In particular, we get

pw = �([zw]) = �̃([zw]) = W ∗�([zw])W = W ∗UwW, w ∈ �, (4.7)

pw = �([z∗w]) = �̃([z∗w]) = W ∗�([z∗w])W = W ∗U∗wW, w ∈ �∗, (4.8)

0 = �([zw]) = �̃([zw]) = W ∗�([zw])W = W ∗UwW, w ∈ FN \ �, (4.9)

where we set U := (�([z1]), . . . , �([zN ])). We have U ∈ UN . Indeed, since

‖[1 − z∗
kzk]‖AUN

= ‖[1 − zkz
∗
k ]‖AUN

= 0,

we get [z∗
kzk] = [zkz

∗
k ] = [1]. Hence

U∗
k Uk = �([zk])∗�([zk]) = �([z∗

kzk]) = �([1]) = IK, k = 1, . . . , N,

UkU
∗
k = �([zk])�([zk])∗ = �([zkz

∗
k ]) = �([1]) = IK, k = 1, . . . , N.

Clearly, (4.7) and (4.8) imply that pw = p∗
w∗ for w ∈ �. Thus, representation (4.7)–(4.9)

for the coefficients of p is a desired representation (4.4)–(4.5).
Conversely, if the coefficients of p have a representation (4.4)–(4.5) then for any

G ∈ GN ∩ L(H)N one has

p(G) = IY⊗H +
∑

w∈�\{∅}
pw ⊗ Gw +

∑
w∈�∗\{∅}

pw ⊗ G∗w

= IY⊗H +
∑

w∈�\{∅}
W ∗UwW ⊗ Gw +

∑
w∈�∗\{∅}

W ∗U∗wW ⊗ G∗w

= IY⊗H +
∑

w∈FN\{∅}
W ∗UwW ⊗ Gw +

∑
w∈F∗

N\{∅}
W ∗U∗wW ⊗ G∗w

(note that the sums are finite!). A formal power series

f (z) := IH
2

+
∑

w∈FN\{∅}
Gwzw

by Corollary 3.2 belongs to the class HAnc
N (H). Therefore, for 0 < r < 1 one has

IY⊗H +
∑

w∈FN\{∅}
W ∗(rU)wW ⊗ Gw +

∑
w∈F∗

N\{∅}
W ∗(rU)∗wW ⊗ G∗w

= (W ∗ ⊗ IH)2Re f l(rU)(W ⊗ IH)�0.
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The sum on the left is finite. Hence, by letting r ↑ 1, we get p(G)�0. Thus, p is
positive semidefinite on GN . �

Let us introduce the class NilpN of N-tuples T = (T1, . . . , TN) of jointly nilpotent
bounded linear operators on a common Hilbert space, i.e., such that for some r ∈ N

one has

Tw = 0 for all w ∈ FN : |w|�r.

The minimal such r is called the rank of joint nilpotency. Let � ⊂ FN be an admissible
set. We shall say that T = (T1, . . . , TN) ∈ NilpN is an N-tuple of �-jointly nilpotent
operators if

Tw = 0 for all w ∈ FN \ �.

In this case the rank of joint nilpotency of T is at most maxw∈� |w|+1. We denote the
class of N-tuples of �-jointly nilpotent operators by NilpN(�). For �m := {w ∈ FN :
|w|�m}, N-tuples of �m-jointly nilpotent operators are exactly those whose rank of
joint nilpotency is at most m + 1.

Example 4.6. Let � ⊂ FN be an admissible set. Let H� be a finite-dimensional Hilbert
space whose orthonormal basis is identified with the set �. For k = 1, . . . , N define
the non-commutative backward shifts Sk ∈ L(H�) by their action on basis vectors:

Skw =
{

w′ if w = gkw
′ with some w′ ∈ FN,

0 otherwise.

Since � is admissible, these operators are correctly defined (if w = gkw
′ and w ∈ �

then w′ ∈ �). The N-tuple S := (S1, . . . , SN) belongs to the class NilpN(�). Indeed, if
v ∈ FN \ � and w ∈ � then Svw 	= 0 implies w = vw′ with some w′ ∈ �. But in this
case (the set � is admissible!) we get w ∈ FN \ � which is impossible. Thus Sv = 0
for every v ∈ FN \ �. Since for every w ∈ � we have Sww = ∅ 	= 0, we obtain that
S does not belong to the class NilpN(�̃) for any admissible proper subset �̃ ⊂ �. We
can see also that S ∈ CN : for arbitrary x = ∑

w∈� xww ∈ H�, with xw ∈ C (w ∈ �),
and k ∈ {1, . . . , N} we get

‖Skx‖2 =
∥∥∥∥∥∥
∑
w∈�

xwSkw

∥∥∥∥∥∥
2

=
∥∥∥∥∥∥

∑
w′∈�: gkw

′∈�

xgkw
′w′
∥∥∥∥∥∥

2

=
∑

w′∈�: gkw
′∈�

|xgkw
′ |2 �

∑
w∈�

|xw|2 = ‖x‖2,

which means that Sk are contractions.
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Proposition 4.7. Let � ⊂ FN be an admissible set. If a non-commutative polynomial
p(z) = ∑

w∈� pwzw ∈ L(U, Y)〈z1, . . . , zN 〉, with some Hilbert spaces U and Y ,
satisfies p(T) = 0 for an arbitrary N-tuple of �-jointly nilpotent contractive n × n

matrices, n ∈ N, then pw = 0 for all w ∈ �. Moreover, it suffices to take n equal to
#(�), the number of words in �.

Proof. We have p(S) = 0, where S is the N-tuple of backward shifts from Example 4.6.
Since S ∈ L(H�)N , and dim H� = #(�), one can consider S as an N-tuple of �-jointly
nilpotent contractive n × n matrices, with n = #(�), as well as �S := (�S1, . . . , �SN)

for any � ∈ D. Therefore, a one-variable polynomial

rS(�) =
m∑

k=0

rS,k�
k :=

m∑
k=0

⎛⎝ ∑
w∈�: |w|=k

pw ⊗ Sw

⎞⎠ �k =
∑
w∈�

pw ⊗ (�S)w = p(�S),

where m = maxw∈� |w|, vanishes on D, and hence vanishes identically. Thus

rS,k =
∑

w∈�: |w|=k

pw ⊗ Sw = 0

for k = 0, . . . , m. For a fixed k and any u ∈ U and v ∈ � : |v| = k (the word v is
identified with a basis vector in H�, or equivalently, with a standard basis vector in
Cn), we have:

0 =
∑

w∈�: |w|=k

(pw ⊗ Sw)(u ⊗ v) =
∑

w∈�: |w|=k

pwu ⊗ Swv = pvu ⊗ ∅.

Since ∅ 	= 0, we get pvu = 0. Since k ∈ {0, . . . , m}, v ∈ � and u ∈ U were chosen
arbitrarily, the statement of this Proposition follows. �

Proposition 4.8. Let m ∈ N. An N-tuple T ∈ L(E)N belongs to the class NilpN(�m)

if and only if there exists a decomposition E = E1 ⊕ · · · ⊕ Em+1 such that the opera-
tors Tk, k = 1, . . . , N , have strictly lower block-triangular form with respect to this
decomposition:

Tk =

⎡⎢⎢⎢⎢⎣
0 . . . . . . 0

∗ . . .
. . .

...
...

. . .
. . .

...

∗ . . . ∗ 0

⎤⎥⎥⎥⎥⎦ .

Proof. Clearly, any N-tuple T ∈ L(E)N of bounded linear operators on a Hilbert space
E which have strictly lower block-triangular form with respect to some decomposition
E = E1 ⊕ · · · ⊕ Em+1 is �m-jointly nilpotent.
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Conversely, let T ∈ L(E)N be �m-jointly nilpotent. Set

E1 :=
⎛⎝ ∨

w∈FN : |w|�0

TwE
⎞⎠�

⎛⎝ ∨
w∈FN : |w|�1

TwE
⎞⎠

· · · · · · · · ·

Em−1 :=
⎛⎝ ∨

w∈FN : |w|�m−2

TwE
⎞⎠�

⎛⎝ ∨
w∈FN : |w|�m−1

TwE
⎞⎠

Em :=
⎛⎝ ∨

w∈FN : |w|�m−1

TwE
⎞⎠�

⎛⎝ ∨
w∈FN : |w|=m

TwE
⎞⎠

Em+1 :=
∨

w∈FN : |w|=m

TwE,

where
∨

� X� denotes the closed linear span of the sets X� (⊂ E). Then

E =
m+1⊕
�=1

E� =
∨

w∈FN : |w|�0

TwE

and

TkEj ⊂
m+1⊕

�=j+1

E� =
∨

w∈FN : |w|� j

TwE, TkEm+1 = {0}, k = 1, . . . , N, j = 1, . . . , m,

which means that Tk, k = 1, . . . , N , have strictly lower block-triangular form with
respect to the decomposition E = E1 ⊕ · · · ⊕ Em+1. �

Remark 4.9. The special case of Proposition 4.8 where dim E < ∞ can be formulated
as follows: an N-tuple of matrices T = (T1, . . . , TN) ∈ (Cn×n)N is jointly nilpotent,
with rank of joint nilpotency at most m + 1, if and only if T is unitary similar to an
N-tuple T̃ = (T̃1, . . . , T̃N ) of strictly lower block-triangular (m+1)× (m+1) matrices,
with not necessarily square non-diagonal blocks. (Here unitary similarity means that
there exists a unitary n × n matrix U such that Tk = U−1T̃kU, k = 1, . . . , N .) This
statement is a bit stronger than one in [34] where only similarity of an N-tuple of jointly
nilpotent matrices to some N-tuple of strictly triangular matrices was mentioned.

Lemma 4.10. Let � ⊂ FN be an admissible set, U ∈ UN ∩ L(K)N , and let W ∈
L(Y, K) be an isometry, with Hilbert spaces Y and K, such that

W ∗UwW = 0 for w ∈ FN \ �. (4.10)
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Then there exist a Hilbert space E and an N-tuple T ∈ CN ∩ L(E)N of �-jointly
nilpotent operators such that

K ⊃ E ⊃ WY

and U is a unitary dilation of T:

Tw = PEUw
∣∣E , w ∈ FN.

In particular,

W ∗UwW = W̃ ∗TwW̃ , w ∈ FN, (4.11)

where W̃ = PEW ∈ L(Y, E) is an isometry. If the space Y is finite dimensional then
one can choose E finite dimensional, too.

Proof. Define the following subspaces in K:

E0 :=
∨

w∈FN\�
UwWY,

E :=
⎛⎝ ∨

w∈FN

UwWY
⎞⎠�

⎛⎝ ∨
w∈FN\�

UwWY
⎞⎠

and define the operators

Tk := PEUk

∣∣E , k = 1, . . . , N.

Clearly, T = (T1, . . . , TN) ∈ CN . Since both E0 and E0 ⊕ E = ∨
w∈FN

UwWY are
invariant subspaces for every Uk, k = 1, . . . , N , the space E is an orthogonal difference
of two invariant subspaces for these unitary operators, i.e., a semi-invariant subspace.
Thus, by the Sarason lemma [52, Lemma 0] U is a unitary dilation of T. Since for
every w ∈ FN \ � one has UwE ⊂ E0, we get Tw = PEUw

∣∣E = 0, i.e., T ∈ NilpN(�).
Since by (4.10) W ∗E0 = {0}, and WY ⊂ E0 ⊕ E = ∨

w∈FN
UwWY , we get WY ⊂ E ,

as desired. Thus, (4.11) holds true as well, with an isometry W̃ = PEW ∈ L(Y, E).
In the case where dim Y < ∞, we may write

E0 ⊕ E =
⎛⎝ ∨

w∈FN\�
UwWY

⎞⎠⊕ PE

⎛⎝∨
w∈�

UwWY
⎞⎠ = E0 ⊕ PE

⎛⎝∨
w∈�

UwWY
⎞⎠

and since the set � is finite, both
∨

w∈� UwWY and E = PE
(∨

w∈� UwWY) are
finite-dimensional subspaces. �
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Theorem 4.11. Problem 4.1 has a solution if and only if the polynomial

p(z) := c∅
2

+
∑

w∈�\{∅}
cwzw (4.12)

satisfies Re p(T)�0 for every N-tuple T of �-jointly nilpotent contractive operators.
Moreover, for the solvability of Problem 4.1 it is enough to assume that Re p(T)�0
holds for every N-tuple T of �-jointly nilpotent contractive n × n matrices, for all
n ∈ N.

Proof. If Problem 4.1 has a solution f ∈ HAnc
N (Y) then for any C ∈ DN ∩ L(E)N ,

with a Hilbert space E , the series

f (C) :=
∑

w∈FN

fw ⊗ Cw

converges in the operator norm, and Re f (C)�0. If T ∈ CN ∩ L(E)N is an N-tuple of
�-jointly nilpotent operators then so is rT = (rT1, . . . , rTN) ∈ DN ∩ L(E)N for every
r : 0 < r < 1. Therefore,

Re p(rT) = Re f (rT) = Re

⎛⎝c∅ ⊗ IE
2

+
∑

w∈�\{∅}
cw ⊗ (rT)w

⎞⎠ �0.

By letting r ↑ 1, we obtain Re p(T)�0.
For the converse direction, let us consider first the case where c∅ = IY . Let

Re p(T)�0 hold for every N-tuple T of �-jointly nilpotent contractive n × n ma-
trices, for all n ∈ N. Let AGN

be the C∗-algebra obtained as the norm completion of
the quotient of unital ∗-algebra AN (which has been introduced in the proof of Lemma
4.5 above) with the seminorm

‖q‖ := sup
G∈GN

‖q(G)‖ = sup
G∈GN

‖q(G1, . . . , GN, G∗
1, . . . , G

∗
N)‖,

by the two-sided ideal of elements of zero seminorm.
Let us show that the restriction of the quotient map above to the subspace BN ⊂ AN

of polynomials of the form (4.6) is injective, i.e., that if q ∈ BN is non-zero then the
corresponding coset [q] ∈ AGN

is non-zero. Indeed, if [q] = [0] then q(G) = 0 for
every G ∈ GN ∩ L(H)N , with a Hilbert space H. Define q̃(ẑ) := 1 + q(ẑ). Then
q̃(G) = IH > 0 for every G ∈ GN ∩ L(H)N . In particular, q̃(G�) = 1 for G� :=
(�, 0, . . . , 0) ∈ GN ∩ CN, � ∈ T. Therefore,

q̃∅ =
∫

T
q̃(G�) d� = 1
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and q∅ = 0. By (II) of Lemma 4.5, there exist a Hilbert space K, an N-tuple of
operators U ∈ UN ∩ L(K)N , and an isometry W ∈ L(C, K) such that

q̃w = q̃∗
w∗ = W ∗UwW, w ∈ FN : |w|�m,

0 = W ∗UwW, w ∈ FN : |w| > m.

Then

qw = q̃w = q̃∗
w∗ = q∗

w∗ = W ∗UwW̃ , w ∈ FN : 0 < |w|�m.

For an arbitrary G ∈ GN ∩ L(H)N the one-variable trigonometric polynomial

tG(�) := q(�G) =
m∑

k=1

⎛⎝ ∑
w∈FN : |w|=k

qwGw

⎞⎠ �k +
m∑

k=1

⎛⎝ ∑
w∈F∗

N : |w|=k

qwG∗w

⎞⎠ �̄
k

is identically zero, which implies in particular

∑
w∈FN : |w|=k

qwGw = 0, k = 1, . . . , m.

For arbitrary n ∈ N and Ũ ∈ UN ∩ (Cn×n)N , by virtue of Proposition 2.4 we have

G
◦⊗ Ũ ∈ GN , therefore

∑
w∈FN : |w|=k

qw(G
◦⊗ Ũ)w =

∑
w∈FN : |w|=k

qwGw ⊗ Ũw = 0, k = 1, . . . , m.

Since UN ∩ (Cn×n)N is a uniqueness set for holomorphic functions of matrix entries
(see e.g., [55]), the non-commutative polynomial

∑
w∈FN : |w|=k qwGwzw vanishes on

the all of (Cn×n)N , for every k ∈ {1, . . . , m} and n ∈ N:

∑
w∈FN : |w|=k

qwGw ⊗ Zw = 0, Z ∈ (Cn×n)N .

Thus, by the Amitsur–Levitzki theorem (see [50, pp. 22–23]),

qwGw = 0, w ∈ FN : 0 < |w|�m.
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For every w ∈ FN : 0 < |w|�m one can find G ∈ GN such that Gw 	= 0. Indeed, the
non-commutative polynomial 	(z) = 1+zw belongs to the class HAnc,1

N = HAnc,1
N (C),

thus by Corollary 3.2, there exist a Hilbert space H, an N-tuple of operators G ∈
GN ∩ L(H)N , and an isometry V ∈ L(C, H) such that 	w = 1 = 2V ∗GwV , which
implies Gw 	= 0. Therefore, qw = 0 for all w ∈ FN : 0 < |w|�m. Since we
have shown already that q∅ = 0, and qw = q∗

w∗ for w ∈ FN : 0 < |w|�m, we
get q = 0.

Denote by B� ⊂ BN the finite-dimensional subspace of polynomials of the form

q(ẑ) = q∅ +
∑

w∈�\{∅}
qwzw +

∑
w∈�∗\{∅}

qwz∗w (4.13)

and let B�,GN
be the image of the subspace B� under the quotient map above. This

subspace of the C∗-algebra AGN
is self-adjoint, i.e., B∗

�,GN
= B�,GN

. Define the lin-
ear map � : B�,GN

→ L(Y) by �([1]) = IY , �([zw]) = cw for w ∈ � \ {∅},
and �([z∗w]) = c∗

w∗ for w ∈ �∗ \ {∅}. By the previous paragraph together with the
above-mentioned Amitsur–Levitzki theorem, this linear map is correctly defined. Let
us show that � is completely positive. Let n ∈ N, and let [q] ∈ Cn×n ⊗ B�,GN

be a positive element of the C∗-algebra Cn×n ⊗ AGN
, i.e., [q] = [h]∗[h] with some

[h] ∈ Cn×n ⊗ AGN
. One can think of [q] as of the n × n matrix ([q]ij )i,j=1,...,n whose

entries [q]ij = [qij ] ∈ B�,GN
and qij ∈ B�, and thus q ∈ Cn×n ⊗ B� is a polyno-

mial of the form (4.13) with the coefficients from Cn×n. Let us observe that by virtue
of the definition of the C∗-algebra AGN

, for an arbitrary [x] ∈ AGN
its values on

GN are well defined. In particular, if x ∈ B� then [x](G) = x(G) for any G ∈ GN .
Therefore, for an arbitrary [x] = ([x]ij )i,j=1,...,n = ([xij ])i,j=1,...,n ∈ Cn×n ⊗ AGN

one defines correctly [x](G) := ([xij ](G))i,j=1,...,n, G ∈ GN . In particular, if x =
(xij )i,j=1,...,n ∈ Cn×n ⊗ B� then [x](G) = x(G) = (xij (G))i,j=1,...,n for any G ∈ GN .
Since q(G) = [q](G) = [h](G)∗[h](G) is positive semidefinite for every G ∈ GN , it
follows that the polynomial q (with the coefficients from Cn×n) is positive semidef-
inite on GN . In particular, q(G�)�0 for G� := (�, 0, . . . , 0) ∈ GN ∩ CN, � ∈ T.
Therefore,

q∅ =
∫

T
q(G�) d��0.

If q∅ = In, then by (II) of Lemma 4.5 there exist a Hilbert space K, an N-tuple of
operators U ∈ UN ∩ L(K)N , and an isometry W ∈ L(Cn, K) such that

qw = q∗
w∗ = W ∗UwW, w ∈ �,

0 = W ∗UwW, w ∈ FN \ �.
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Then we have

�n([q]) = (idn ⊗ �)

⎛⎝In ⊗ [1] +
∑

w∈�\{∅}
qw ⊗ [zw] +

∑
w∈�∗\{∅}

qw ⊗ [z∗w]
⎞⎠

= ICn⊗Y +
∑

w∈�\{∅}
W ∗UwW ⊗ cw +

∑
w∈�∗\{∅}

W ∗U∗wW ⊗ c∗
w∗

= (W ∗ ⊗ IY )2 Re pl(U)(W ⊗ IY ).

By Lemma 4.10, there exist a finite-dimensional Hilbert space E and an N-tuple T ∈
CN ∩ L(E)N of �-jointly nilpotent operators such that (4.11) holds with an isometry
W̃ ∈ L(Cn, E). Thus,

�n([q]) = (W̃ ∗ ⊗ IY )2 Re pl(T)(W̃ ⊗ IY )

is a positive semidefinite operator by the assumption that Re p(T)�0 or, equivalently,
Re pl(T)�0. In the case where q∅ > 0 we can define q̃(ẑ) := q

−1/2
∅ q(ẑ)q

−1/2
∅ . Since

�n([q̃])�0, we get

�n([q]) = (q
1/2
∅ ⊗ IY )�n([q̃])(q1/2

∅ ⊗ IY )�0.

In the case where the matrix q∅ is degenerate we set q�(ẑ) := �In + q(ẑ) for � > 0.
Then q� is positive definite on GN and (q�)∅ = �In + q∅ > 0. Since �n([q�])�0, we
get

�n([q]) = lim
�↓0

�n([q�])�0.

Finally, we have obtained that � : B�,GN
→ L(Y) is completely positive.

Since we have �([1]) = IY , by the Arveson extension theorem [13] there exists
a completely positive map �̃ : AGN

→ L(Y) which extends �. By the Stinespring
theorem [56], there exists a ∗-representation � of AGN

in some Hilbert space H and
an isometry V ∈ L(Y, H) such that

�̃(a) = V ∗�(a)V, a ∈ AGN
.

In particular, we get

cw = �([zw]) = �̃([zw]) = V ∗�([zw])V = V ∗GwV, w ∈ �, (4.14)
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where we set G := (�([z1]), . . . , �([zN ])). We have G ∈ GN . Indeed, since by Propo-
sition 2.1 we have∥∥∥∥∥

[
1 −

N∑
k=1

z∗
kzk

]∥∥∥∥∥
AGN

=
∥∥∥∥∥
[

1 −
N∑

k=1

zkz
∗
k

]∥∥∥∥∥
AGN

= 0

and

‖[z∗
kzj ]‖AGN

= ‖[zkz
∗
j ]‖AGN

= 0, k 	= j,

we get [∑N
k=1 z∗

kzk] = [∑N
k=1 zkz

∗
k ] = [1], and [z∗

kzj ] = [zkz
∗
j ] = [0] for k 	= j . Hence

N∑
k=1

G∗
kGk =

N∑
k=1

�([zk])∗�([zk]) = �

([
N∑

k=1

z∗
kzk

])
= �([1]) = IH,

G∗
kGj = �([zk])∗�([zj ]) = �([z∗

kzj ]) = �([0]) = 0, k 	= j,

N∑
k=1

GkG
∗
k =

N∑
k=1

�([zk])�([zk])∗ = �

([
N∑

k=1

zkz
∗
k

])
= �([1]) = IH,

GkG
∗
j = �([zk])�([zj ])∗ = �([zkz

∗
j ]) = �([0]) = 0, k 	= j,

which means that G ∈ GN , according to Proposition 2.1. Finally, since (4.14) coincides
with (4.1), from Theorem 4.3 we obtain that Problem 4.2 has a solution.

Consider now the case where c∅ > 0. Set c̃w := c
−1/2
∅ cwc

−1/2
∅ , w ∈ �, and p̃(z) :=

c
−1/2
∅ p(z)c

−1/2
∅ , where p(z) is given by (4.12). Clearly, c̃∅ = IY . Since Problem 4.2

for the data c̃w, w ∈ �, is solvable if and only if Rep̃(T)�0 for every N-tuple T of
contractive �-jointly nilpotent square matrices of same size, and since Rep̃(T)�0 ⇔
Re p(T)�0 and f ∈ HAnc

N (Y) ⇔ c
−1/2
∅ f c

−1/2
∅ ∈ HAnc

N (Y), Problem 4.1 for the data
c∅ > 0, cw (w ∈ � \ {∅}) is solvable if and only if Re p(T)�0 for every N-tuple T
of contractive �-jointly nilpotent square matrices of same size.

Consider now the general case c∅ �0. Suppose that Re p(T)�0 for every N-tuple
T of contractive �-jointly nilpotent n × n matrices, for all n ∈ N. Then for any such
T the polynomial

fT(�) := p(�T) = c∅ ⊗ In

2
+

m∑
k=1

⎛⎝ ∑
w∈�: |w|=k

cw ⊗ Tw

⎞⎠ �k, � ∈ D,

where m = maxw∈� |w|, belongs to the Herglotz class H1(Y⊗Cn). Since its coefficients
are c0(T)

2 := (fT)0 = c∅⊗In

2 , ck(T) := (fT)k = ∑
w∈�: |w|=k cw ⊗ Tw, k = 1, . . . , m,

from the Carathéodory–Toeplitz criterion of solvability of the one-variable Carathéodory
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problem with data c = {ck(T)}k=0,...,m we obtain Tc �0, where the operator block matrix
Tc is defined by (1.1). The condition Tc �0 implies for k = 1, . . . , m the following
inequalities:

| 〈ck(T)x, y〉 |2 � 〈(c∅ ⊗ In)x, x〉 〈(c∅ ⊗ In)y, y〉 , x, y ∈ Y ⊗ Cn, (4.15)

which yield ker c∅ ⊗ Cn ⊂ ker ck(T), and ker c∅ ⊗ Cn ⊂ ker ck(T)∗. Let x ∈ ker c∅
and k ∈ {1, . . . , m}. Then the non-commutative polynomial

∑
w∈�: |w|=k(cwx)zw with

coefficients in Y�L(C, Y) vanishes on N-tuples of contractive �-jointly nilpotent n×n

matrices, for every n ∈ N. By Proposition 4.7, cwx = 0 for all w ∈ � : |w| = k.
Therefore, for every w ∈ � we have ker c∅ ⊂ ker cw. Analogously, ker c∅ ⊂ ker c∗

w

for every w ∈ �. We obtain that our data of Problem 4.1 have the following operator
block matrix form with respect to the decomposition Y = ker c∅ ⊕ ran c∅:

cw =
[

0 0
0 c

(22)
w

]
, w ∈ �.

Since c
(22)
∅ > 0, and the polynomial

p(22)(z) := c
(22)
∅
2

+
∑

w∈�\{∅}
c(22)
w zw

satisfies the condition that Re p(22)(T)�0 for every N-tuple T of contractive �-jointly
nilpotent square matrices of same size, by the result of the previous paragraph, Problem
4.1 for the data c

(22)
w , w ∈ �, has a solution f (22) ∈ HAnc

N (ran c∅). Then Problem 4.1
for the data cw, w ∈ �, has a solution

f =
[

0 0
0 f (22)

]
∈ HAnc

N (Y). �

Let us remark that the condition that Re p(T)�0 for every N-tuple of �̃-jointly
nilpotent contractive n × n matrices, for all n ∈ N, where �̃ ⊃ � is a wider admis-
sible set, is sufficient for the solvability of Problem 4.1. For instance, one might find
convenient to test this condition for the set �̃ = �m, with m = maxw∈� |w|, and use
the structure of �m-jointly nilpotent matrices described in Remark 4.9. However, one
should remember that in general this condition is not necessary for the solvability of
Problem 4.1.

Example 4.12. Let � = {∅, g1, g2, g1g2, g2g1} ∈ F2, and the scalar data of the
Carathéodory problem are c∅ = 1, cg1 = cg2 = 1

2 , cg1g2 = cg2g1 = 1
4 . Then the
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formal power series

1

2

(
1 + z1 + z2

2

)(
1 − z1 + z2

2

)−1

= 1

2
+

∞∑
j=1

(
z1 + z2

2

)j

∈ HAnc
2

is a solution to this problem. By Theorem 4.11, for the polynomial

p(z) := 1

2
+ z1 + z2

2
+ z1z2 + z2z1

4

and for every pair of n × n matrices T = (T1, T2) ∈ C2 ∩ Nilp2(�), n ∈ N, one has
Re p(T)�0. Let �̃ := {∅, g1, g2, g1g2, g2g1, g

2
1} ⊃ �, and T = (T1, T2) ∈ (C3×3)2 be

given by

T1 :=
⎡⎣ 0 1 0

0 0 1
0 0 0

⎤⎦ , T2 :=
⎡⎣ 0 1 0

0 0 0
0 0 0

⎤⎦ .

It is easy to see that T ∈ C2 ∩ Nilp2(�̃), and T /∈ Nilp2(�) since T 2
1 	= 0. Since

det(2 Re p(T)) =
∣∣∣∣∣∣

1 1 1/4
1 1 1/2

1/4 1/2 1

∣∣∣∣∣∣ = − 1

16
< 0,

the condition Re p(T)�0 is not fulfilled. The same is true for the (admissible) set �̃ :=
{∅, g1, g2, g1g2, g2g1, g

2
2} ⊃ �, where we take the previous example of T = (T1, T2)

and interchange T1 ↔ T2. Clearly, the condition Re p(T)�0 cannot be fulfilled for all
pairs of n × n matrices T ∈ C2 ∩ Nilp2(�2), n ∈ N.

The following example shows that sometimes the above-mentioned condition for a
wider set �̃ ⊃ � is necessary for the solvability of Problem 4.1.

Example 4.13. Let � = {∅, g1, g
2
1, . . . , gm

1 } ⊂ FN and c∅ �0, cg1 , cg2
1
, . . . , cgm

1
∈

L(Y), with some m ∈ N and some Hilbert space Y . Then the class NilpN(�) consists of
N-tuples of operators of the form T = (T1, 0, . . . , 0), where T1 is a nilpotent operator.
The condition that Re p(T) = Re( c∅⊗I

2 +∑m
j=1 c

g
j
1

⊗ T
j

1 )�0 for every nilpotent con-

tractive square matrix T1 is necessary and sufficient for the solvability of Problem 4.1
for these data (and equivalent to the Carathéodory–Toeplitz criterion for the solvability
of a one-variable Carathéodory problem, see Section 1). Then for every admissible set
�̃ ⊃ � such that gm+1

1 /∈ �̃ the condition Re p(T)�0 is fulfilled for every N-tuple of

matrices T ∈ CN ∩ NilpN(�̃). In particular it is fulfilled for �̃ = �m.
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Thus, natural open questions are the following. For which admissible sets � ⊂ FN

and data cw, w ∈ �, the condition that Re p(T)�0 for every N-tuple T of n × n

matrices T ∈ CN ∩ NilpN(�m), n ∈ N, where m = maxw∈� |w|, is necessary for the
solvability of Problem 4.1? Which admissible sets � ⊂ FN are maximal in the sense
that, for a certain choice of problem data cw, w ∈ �, the condition above fails not
only for �m ⊃ � but also for every admissible set �̃ ⊃ �?

5. The Carathéodory–Fejér interpolation problem

Recall that the non-commutative Schur–Agler class SAnc
N (U, Y) consists of formal

power series F(z) = ∑
w∈FN

Fwzw ∈ L(U, Y) 〈〈z1, . . . , zN 〉〉 such that for every C ∈
DN (or equivalently, for every C ∈ DN

matr, see [8]) the series
∑

w∈FN
Fw⊗Cw converges

in the operator norm to the contractive operator F(C).
Let us pose now the Carathéodory–Fejér problem in the class SAnc

N (U, Y).

Problem 5.1. Let � ⊂ FN be an admissible set. Given a collection of operators
{sw}w∈� ∈ L(U, Y), find F ∈ SAnc

N (U, Y) such that

Fw = sw, w ∈ �.

Theorem 5.2. Problem 5.1 has a solution if and only if the polynomial

q(z) :=
∑
w∈�

swzw (5.1)

satisfies ‖q(T)‖�1 for every N-tuple T of �-jointly nilpotent contractive operators.
Moreover, for the solvability of Problem 5.1 it is enough to assume that ‖q(T)‖�1
holds for every N-tuple T of �-jointly nilpotent contractive n × n matrices, for all
n ∈ N.

Proof. If Problem 5.1 has a solution F ∈ SAnc
N (Y) then for any C ∈ DN ∩ L(E)N ,

with a Hilbert space E , the series F(C) := ∑
w∈FN

Fw ⊗Cw converges in the operator
norm, and ‖F(C)‖�1. If T ∈ CN ∩L(E)N is an N-tuple of �-jointly nilpotent operators
then so is rT = (rT1, . . . , rTN) ∈ DN ∩ L(E)N for every r : 0 < r < 1. Therefore,

‖q(rT)‖ = ‖F(rT)‖ =
∥∥∥∥∥∥
∑
w∈�

sw ⊗ (rT)w

∥∥∥∥∥∥ �1.

By letting r ↑ 1, we obtain ‖q(T)‖�1.
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For the converse direction, let us consider first the case where U = Y and −IY �s∅ =
s∗
∅ �0. Then the operator IY − s∅ is boundedly invertible, and (IY + s∅)(IY − s∅)−1 �0.

Moreover, a formal power series h(z) := (IY+q(z))(IY−q(z))−1 ∈ L(Y) 〈〈z1, . . . , zN 〉〉
is well defined. Suppose that ‖q(T)‖�1 holds for every N-tuple T of �-jointly nilpotent
contractive n × n matrices, for all n ∈ N. Then Re h(T)�0 for such a T (here h(T) =∑

w∈� hw ⊗ Tw is well defined). Define c∅ := 2h∅ = 2(IY + s∅)(IY − s∅)−1 �0, cw :=
hw for w ∈ �\{∅}. For the polynomial p(z) defined by (4.12) the condition that Re p(T)

(= Re h(T)) is a positive semidefinite operator for every N-tuple T of �-jointly nilpotent
contractive n × n matrices, for all n ∈ N, is fulfilled. By Theorem 4.11, there exists
f ∈ HAnc

N (Y) such that f∅ = c∅
2 = h∅, fw = cw = hw for w ∈ �\{∅}. Then the formal

power series F(z) := (f (z) − IY )(f (z) + IY )−1 ∈ L(Y) 〈〈z1, . . . , zN 〉〉 is well defined
and belongs to the class SAnc

N (Y) (see Section 3). Since f (T) = h(T) = p(T) for any
N-tuple T of �-jointly nilpotent contractive n×n matrices, n ∈ N, we get F(T) = q(T)

for such a T. Thus, the polynomial
∑

w∈�(Fw − sw)zw ∈ L(Y) 〈z1, . . . , zN 〉 vanishes
on N-tuples of �-jointly nilpotent contractive n × n matrices, for every n ∈ N. By
Proposition 4.7, Fw = sw for all w ∈ �, i.e., F solves Problem 5.1 for the data
sw, w ∈ �.

Consider now the case where U = Y , however s∅ is not necessarily self-adjoint and
negative semidefinite. The operator s∅ has a polar decomposition s∅ = UR, where U ∈
L(Y) is unitary and R ∈ L(Y) is positive semidefinite. Suppose that ‖q(T)‖�1 holds
for every N-tuple T of �-jointly nilpotent contractive n×n matrices, for all n ∈ N. Then
s∅ is a contraction, and −IY � − R�0. Define the operators s̃w := −U∗sw, w ∈ �,

and the polynomial q̃(z) := −U∗q(z). Clearly, ‖q̃(T)‖�1 holds for every N-tuple T of
�-jointly nilpotent contractive n × n matrices, for all n ∈ N, and −IY � s̃∅ = −R�0.
By the result of the previous paragraph, there exists a solution F̃ (z) ∈ SAnc

N (Y) to
Problem 5.1 for the data s̃w, w ∈ �. Then F(z) := −UF̃ (z) ∈ SAnc

N (Y) is a solution
to Problem 5.1 for the data sw, w ∈ �.

Consider now the case where U does not necessarily coincide with Y . Suppose that
‖q(T)‖�1 holds for every N-tuple T of �-jointly nilpotent contractive n× n matrices,
for all n ∈ N. Define

s̃w :=
[

0 0
sw 0

]
∈ L(U ⊕ Y), w ∈ �,

q̃(z) :=
[

0 0
q(z) 0

]
∈ L(U ⊕ Y ) 〈z1, . . . , zN 〉 .

Clearly, ‖q̃(T)‖�1 holds for every N-tuple T of �-jointly nilpotent contractive n × n

matrices, for all n ∈ N. By the result of the previous paragraph, there exists a solution
F̃ (z) ∈ SAnc

N (U⊕Y ) to Problem 5.1 for the data s̃w, w ∈ �. Then F(z) := PY F̃ (z)
∣∣U ∈

SAnc
N (U, Y) is a solution to Problem 5.1 for the data sw, w ∈ �.

Remark 5.3. The referee suggested that the fact that the quotient of an operator algebra
by an ideal is itself an operator algebra (see [20]) may provide an alternate approach
to proving Theorem 5.2. We leave it now for a possible further exploration.
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Let us remark also that the examples analogous to Examples 4.12 and 4.13 can be
easily constructed for the setting of the present section, and one can ask the following
questions. For which admissible sets � ⊂ FN and data sw, w ∈ �, the condition
that ‖q(T)‖�1 for every N-tuple T of n × n matrices T ∈ CN ∩ NilpN(�m), n ∈
N, where m = maxw∈� |w|, is necessary for the solvability of Problem 5.1? Which
admissible sets � ⊂ FN are maximal in the sense that, for a certain choice of problem
data sw, w ∈ �, the condition above fails not only for �m ⊃ � but also for every
admissible set �̃ ⊃ �?
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