Rhinosporidiosis can affects both, humans and animals, including the horse. It is caused by a Mesomycetozoa, Rhinosporidium seeberi (Family Rhinosporideaceae), which is found in aquatic environments. It is a non-contagious, chronic granulomatous disease, which leads to the formation of polyps, growths or warty, highly vascular, friable and sessile or pedunculated masses, bearing in mind that there are endemic areas for this disease in Argentina.

174 Rhinosporidiosis Associated Laryngeal Chondropathy. A Case Report

R.A. López 1,2, C. Zubía 1, G.J. Madariaga 1, V. Ferreira 1, R.P. Miranda 1, H.O. Hernández 2, M.G. Muriel 1,2

1 Large Animals Medicine and Surgery Service, Teaching Hospital; 2 Equine Sports Physiology and Pathophysiology Laboratory; 3 Special Veterinary Pathology Laboratory “Dr. B. Epstein”, Faculty of Veterinary Sciences, National University of La Plata, Argentina

Rhinosporidiosis can affects both, humans and animals, including the horse. A horse, male, 10 years old, dapple coat, cavity and nasopharynx, being the rare laryngeal presentation. Nasal secretions may be less reliable for the detection of S. equi subsp. equi when compared to nasopharyngeal swabs and washes or guttural pouch lavages. Other poorly characterized viral pathogens (adenovirus, EHV-2, EHV-5) also may be involved with IURD.

Cases of pneumonia in foals caused by Pneumocystis carinii infection have been reported. However, in humans a considerable percentage of healthy infants seroconvert to P. carinii, suggesting that the presence of P. carinii does not necessarily lead to a definitive diagnosis of disease. The status of P. carinii infection in healthy foals remains unknown, although it is suspected that P. carinii is an opportunistic pathogen in the same way as it is in human infants. We used real-time PCR to perform surveillance of P. carinii in tracheal aspirate (TA) samples collected from Thoroughbred foals born in Japan. TA samples were collected from eight healthy foals. The foals had been bred on the same ranch and pastured with other horses since the age of 3 weeks. TA samples were collected at 3, 4, 6, 8, 10, and 12 weeks of age. Sterile disposable silicone tubes were used for sample collection, and samples were stored at −80°C until DNA extraction. Samples were homogenized by using a mucus catalytic enzyme before DNA extraction. Specific primers targeting a 75-bp fragment from the large-subunit mitochondrial ribosomal RNA gene region of P. carinii were used in real-time PCR assays conjugated with fluorescent SYBR® Green I dye. More than one copy per PCR reaction was considered positive. All eight healthy foals gave positive results. The P. carinii gene was detected in two foals at 4 weeks of age, three foals at 6 weeks, and three foals at 8 weeks. Once the foals had become positive they stayed positive through to the end of the study at 12 weeks. The highest number of P. carinii gene copies during the surveillance period varied among the foals: the highest copy numbers ranged from 37 to 597 per PCR reaction. These results illustrate that, at least in Japan, foals are commonly exposed to P. carinii early in life, suggesting that P. carinii is an opportunistic pathogen in horses in the same way as in humans. Therefore, not only molecular diagnosis using clinical samples (e.g. by real-time PCR) but also pathological approaches will be needed to make a definitive diagnosis of P. carinii pneumonia in horses.