Topology and its Applications 12 (1981) 257–265 North-Holland Publishing Company

and the second the statistic of the second terms of the second terms of the second terms of the second terms of

ALMOST ARCWISE CONNECTED CONTINUA WITHOUT DENSE ARC COMPONENTS

Charles L. HAGOPIAN*

Devartment of Mathematics and Statistics, California State University, Sacramento, CA 95819, USA Brel A Margarian Pasterovan

an an an ann an an Ann an A

Received 10 March 1980 Revised 17 October 1980

A continuum M is almost arcwise connected if each pair of nonempty open subsets of M can be joined by an arc in M. An almost arcwise connected plane continuum without a dense arc component can be defined by identifying pairs of endpoints of three copies of the Knaster indecomposable continuum that has two endpoints. In [7] K.R. Kellum gave this example and asked if every almost arcwise connected continuum without a dense arc component has uncountably many arc components. We answer Kellum's question by defining an almost arcwise connected plane continuum with only three arc components none of which are dense. A continuum M is almost Peano if for each finite collection & of nonempty open subsets of M there is a Peano continuum in M that intersects each element of C. We define a hereditarily unicoherent almost Peano plane continuum that does not have a dense arc component. We prove that every almost arcwise connected planar λ -dendroid has exactly one dense arc component. It follows that every hereditarily unicoherent almost arcwise connected plane continuum without a dense arc component has uncountably many arc components. Using an example of J. Krasinkiewicz and P. Minc [8], we define an almost Peano A-dendroid that do a not have a dense arc component. Using a theorem of J.B. Fugate and L. Mohler [3], we prove that every almost arcwise connected λ-dendroid without a dense arc component has uncountably mather components. In Euclidean 3-space we define an almost Peano continuum with only countably nany arc components no one of which is dense. It is not known if the plane contains a continuum with these properties.

AMS (MOS) Subj. Class. (1970): Primary 54F15, 54F20, 54F25; Secondary 54F50, 54F55

dense arc component almost Peano continua plane continua

almost arcwise connected continua λ -dendroid almost continuous function fixed-point property

Introduction

Let f be a function of a continuum X into a continuum Y. In [13] J. Stallings defined f to be almost continuous if each open set in $X \times Y$ that contains f contains a continuous function of X into Y. Kellum [7] proved that if X is Peano and f is an almost continuous surjection, then Y is almost Peane. Kellum [7] also proved that 网络囊门 化结合剂

* The author was partially supported by NSF Grant MCS 79-16811.

every almost Pesino continuum is an almost continucus image of every Peano continuum.

Every almost continuous retract of a 2-cell has the fixed-point property [13, Theorem 3 and Proposition 1] (also see [4]). K. Borsuk [13, p. 263] observed that this theorem provides an interesting approach to the problem of whether every nonseparating plane continuum has the fixed-point property. For more information about almost continuous functions see [4–7] and [13].

Definitions. A continuum is a nondegenerate compact connected metric space. A *Peano continuum* is a locally connected continuum. A continuum is *hereditarily unicoherent* if each pair of its intersecting subcontinua has a connected intersection. A continuum is *decomposable* if it is the union of two of its proper subcontinua; otherwise, it is *indecomposable*. It is *hereditarily decomposable* if each of its subcontinua is decomposable. A continuum is a λ -dendroid if it is hereditarily unicoherent and hereditarily decomposable.

In this paper E^n is Euclidean *n*-space. The closure of a given set S is denoted by Cl S.

Example 1. There exists an almost arcwise connected continuum Z_1 with only three arc components none of which are dense in Z_1 .¹

To define Z_1 , let C be the Cantor ternary set in the unit interval [0, 1]. Let

$$P = \{(x, y) \in E^2 : x \in C, \frac{2}{3} \le y \le \frac{5}{6}\}.$$

For each positive integer n, let

$$Q_n = \left\{ (x, y) \in E^2 \colon x \in C, \, x = \frac{i}{3^n} \, (0 \le i \le 3^n), \, \frac{1}{2n+1} \le y \le \frac{1}{2n} \right\}.$$

For each *n*, let U_n be the union of the components of $C \times [0, 1]$ that intersect Q_n . Let $R_1 = Q_1$ and for $n = 2, 3, ..., let <math>R_n = Q_n \setminus U_{n-1}$. Let $x_1, x_2, ...$ be a sequence of inaccessible points of C that is dense in C. For each *n*, let S_n be the interval

$$\{x_n\} \times \left[1 - \frac{1}{25n}, 1 - \frac{1}{50n}\right].$$

In E^3 , modify $C \times [0, 1]$ so that each component of $F \cup \bigcup_{n=1}^{\infty} R_n \cup S_n$ is the limit bar of a sin 1/x curve as indicated in Fig. 1. Call the resulting space V.

Let \mathcal{T} be the set of all components T of P such that the projection of $C \times [0, 1]$ onto C sends T to a point of x_1, x_2, \ldots or to an accessible point of C. Let T_1, T_2, \ldots be the elements of \mathcal{T} . Let D_1, D_2, \ldots be a sequence of disjoint rectangular disks with the following properties. For each n,

- (1) the base interval of D_n is T_n ,
- (2) the height of D_n is less than 1/n, and
- (3) $D_* \cap V$ is a sin 1/x curve.

In a recent conversation, Kellum observed that every arcivise connected continuum without a dense arc component has at least three arc components.

Let $W = V \cup \bigcup_{n=1}^{\infty} D_n$. For each *n*, let d_n be the projection of D_n straight down onto T_n . Let *d* be the map of *W* into *W* such that *d* is the identity on $W \setminus \bigcup_{n=1}^{\infty} D_n$ and for each *n*, the restriction of *d* to D_n is d_n . Note that *d* defines a monotone upper semi-continuous decomposition of *W*.

Let X be the decomposition space associated with d. Note that the components of P that miss $\bigcup_{n=1}^{\infty} D_n$ are still limit bars of $\sin 1/x$ curves. Each component of X is a chainable continuum with two endpoints. Using methods similar to L.G. Oversteegen's [11, Theorem 2.2], embed X in E^2 between two parallel lines K and L so that each component of X meets $K \cup L$ only at its endpoints and has one endpoint in K and the other endpoint in L.

Let Y be the plane continuum $X/\{C \times \{0\}, C \times \{1\}\}$ [9, p. 533]. Let A and B be the arc components of Y that contain $C \times \{0\}$ and $C \times \{1\}$, respectively. Note that $Y = A \cup B$. Both A and B are dense in Y.

Let h_1 and h_2 be homeomorphisms of Y such that Y, $h_1[Y]$, and $h_2[Y]$ are disjoint. Define Z_1 to be the plane continuum obtained from $Y \cup h_1[Y] \cup h_2[Y]$ by identifying $C \times \{0\}$ with $h_1(C \times \{1\})$, $h_1(C \times \{0\})$ with $h_2(C \times \{1\})$, and $h_2(C \times \{0\})$ with $C \times \{1\}$. The three arc components of Z_1 are $A \cup h_1[B]$, $h_1[A] \cup h_2[B]$, and $h_2[A] \cup B$. Although Z_1 is almost arcwise connected, no arc component is dense in Z_1 . Note that Z_1 is not hereditarily unicoherent and not almost Peano.

259

Example 2. There exists an indecomposable hereditarily unicoherent almost Peano plane continuum Z_2 that does not have a dense arc component.

To define Z_2 , let U be Knaster's indecomposable continuum with one endpoint [9, p. 204]. Let G be an open subset of U that is homeomorphic to the product of (0, 1) and a Cantor set. In E^3 , modify U so that each component of Cl G is the limit bar of a sin 1/x curve as indicated in Fig. 2.

Fig. 2.

Note that the resulting continuum V is indecomposable. Let C_1, C_2, \ldots be a sequence of distinct composants of V.

For each positive integer n, let \mathcal{D}_n be a finite collection of rectangular disks with the following properties. For each element D of \mathcal{D}_n ,

- (a) the base interval of D is a component of $C_n \cap Cl G$,
- (2) the height of D is less than 1/n,
- (3) $D \cap V$ is a sin 1/x curve, and
- (4) **D** misses each element of $\bigcup_{i=1}^{c_0} \mathcal{D}_i \setminus \{D\}$.

Furthermore, an arc component of the union of C_n and the elements of \mathcal{D}_n is 1/n-dense in V.

Let W be the union of V and the elements of $\bigcup_{n=1}^{\infty} \mathcal{D}_n$. For each n, let d_n be the function that projects each element of \mathcal{D}_n straight down into C_n . Let d be the map of W into W that agrees with each d_n on each element of \mathcal{D}_n and is the identity everywhere else. The map d defines a monotone upper semi-continuous decomposition of W.

Define Z_2 to be the decomposition space associated with d. Since Z_2 is a chainable continuum, it can be embedded in the plane [1, Theorem 4]. Since Z_2 is indecompos-

able, it has uncountably many arc components. Each arc component is nowhere dense. However Z_2 is almost Peano.

where the second of the second

Definition. A continuum M is a *n*-od if there exist a collection \mathcal{B} of *n* distinct continua and a closed connected set C properly contained in each element of \mathcal{B} such that M is the union of \mathcal{B} and C is the intersection of each pair of elements of \mathcal{B} .

Lemma. If an almost arcwise connected λ -dendroid M is a 4-od in E^2 , then M has a dense arc component.

Proof. Assume C and $\mathfrak{B} = \{B_1, B_2, B_3, B_4\}$ have the properties stated in the definition (above). Let D_1, D_2, D_3 , and D_4 be disjoint disks such that for each n, D_n is in $E^2 \setminus \bigcup_{i \neq n} B_i$ and B_n intersects the interior of D_n . Let H denote the continuum $M \cup \bigcup_{n=1}^{4} D_n$.

It follows from a theorem of H. Cook [2] that $E^2 \setminus M$ is connected. Each D_n intersects $E^2 \setminus M$. Hence there exist an arc segment A_1 in $E^2 \setminus H$ and an element K of $\{D_2, D_3, D_4\}$ such that (1) one endpoint of A_1 is in $D_1 \setminus M$ and the other endpoint is in $K \setminus M$ and (2) the unbounded component of $E^2 \setminus (A_1 \cup D_1 \cup K \cup M)$ intersects both elements of $\{D_2, D_3, D_4\} \setminus \{K\}$. Assume without loss of generality that $D_2 = K$.

There exist an arc segment A_2 in $E^2 \setminus (H \cup A_3)$ and an element L of $\{D_3, D_4\}$ such that (1) $D_2 \setminus C_1 A_1$ and $L \setminus M$ each contain an endpoint of A_2 and (2) the unbounded component of $E^2 \setminus (A_2 \cup D_2 \cup L \cup M)$ intersects both elements of $\{D_1, D_3, D_4\} \setminus \{L\}$. Assume without loss of generality that $D_3 = L$.

Let A_3 be an arc segment in $E^2 \setminus (H \cup A_1 \cup A_2)$ with endpoints in $D_3 \setminus Cl A_2$ and $D_4 \setminus M$. Let A_4 be an arc segment in $E^2 \setminus (H \cup A_1 \cup A_2 \cup A_3)$ with endpoints in $D_4 \setminus Cl A_3$ and $D_1 \setminus Cl A_1$.

Let U be the component of $E^2 \setminus \bigcup_{n=1}^4 (A_n \cup D_n)$ that contains C. The boundary of U is a simple closed curve S. Furthermore, the arcs $D_1 \cap S$ and $D_3 \cap S$ are separated in S by $(D_2 \cup D_4) \cap S$. Since M is hereditarily unicoherent and almost arcwise connected, there exist in $M \cap U$ an arc segment I from D_1 to D_3 and an arc segment J from D_2 to D_4 . Note that $I \cap J$ is a nonempty connected set in C [10, Theorem 28, p. 156].

For each open subset V of M that misses $J \cup J$ there exist an open set W in V and an open set X in $M \cap \bigcup_{n=1}^{4} D_n$ such that every arc in M from W to X intersects $I \cup J$. Hence the arc component of M that contains $I \cup J$ is dense in M. Thus the lemma is true.

Theorem 1. Suppose M is an almost arcwise connected λ -dendroid in E^2 . Then M has one dense arc component and every other arc component of M is nowhere dense.

Proof. Krasinkiewicz and Minc [8] proved that every planar λ -dendroid has at most one dense arc component. They [8] also proved that if a planar λ -dendroid has a

dense the component then every other arc component is nowhere dense. Hence it suffices to show that M has a dense arc component. We consider two cases.

Case 1. Suppose M is irreducible between two points. Then there is a monotone map f of M onto [0, 1] such that the continuum $\operatorname{Cl} f^{-1}[(\frac{1}{4}, \frac{3}{4})]$ is irreducible between $f^{-1}[[0, \frac{1}{4}]]$ and $f^{-1}[[\frac{3}{4}, 1]]$ [14, Theorem 8, p. 14]. Since M is almost arcwise connected, there is an arc A in M from $f^{-1}[[0, \frac{1}{4}]]$ to $f^{-1}[[\frac{3}{4}, 1]]$. It follows that $\operatorname{Cl} f^{-1}[(\frac{1}{4}, \frac{3}{4})]$ is a subarc of A that contains a nonempty open subset of M. Hence the arc component of M that contains A is dense in M.

Case 2. Suppose M is not irreducible between two points. Then according to a theorem of R.H. Sorgenfrey [12, Theorem 3.2], M is a triod (3-od). Assume C and $\mathcal{B} = \{B_1, B_2, B_3\}$ have the properties stated in the definition (above).

Let H be $Cl(B_1 \setminus C)$. If H is not a continuum, then M is a 4-od, and, by the lemma (above), M has a dense arc component. Hence we assume that H is a continuum. Let K and L be proper subcontinua of H such that $H = K \cup L$. Since $C \cap H$ is nowhere dense in H, both $K \setminus L$ and $L \setminus K$ intersect $H \setminus C$.

If C intersects $K \cap L$, then the existence of the continua $K \cup C$, $L \cup C$, $B_2 \cup (K \cap L)$, and $B_3 \cup (K \cap L)$ implies that M is a 4-od, and, by the lemma (above), M has a dense arc component. Hence we assume that C misses $K \cap L$. It follows that the connected set $C \cap H$ is in either K or L.

Assume without loss of generality that K contains $C \cap H$ and $L \cap C = \emptyset$. Since M is almost arcwise connected, there is an arc P in K from L to C. Since M is hereditarily unicoherent, P intersects every arc in M that joins an open set in L with an open set in $B_2 \cup B_3$. Hence the arc component Q of M that contains P is dense in $L \cup B_2 \cup B_3$.

By a similar argument, there exists an arc component R of M that contains an arc in B_2 and is dense in $B_1 \cup B_3$. Since R intersects P, it follows that Q = R. Hence Q is dense in M. This completes the proof of Theorem 1.

Theorem 2. If M is a hereditarily unicoherent almost arcwise connected plane continuum without a dense arc component, then M has uncountably many arc components.

Proof. By Theorem 1, M has an indecomposable subcontinuum I. Since M is hereditarily unicoherent, no arc component of M intersects more than one composant of I. Hence M has uncountably many arc components.

Example 3. There exists an almost Peano λ -dendroid Z_3 that does not have a dense arc component.

In [8], Krasinkiewicz and Minc defined a λ -dendroid X that has uncountably many dense arc components. Define Z_3 by modifying X in the same way that knaster's continuum was modified to define Z_2 (Example 2). Note that Z_3 has uncountably many arc components. **Theorem 3.** Suppose M is an almost arcwise connected λ -dendroid with only countably many arc components. Then M has one dense arc component and every other arc component of M is nowhere dense.

Front. Fugate and Mohler [3, Corollary 1.10] proved that every λ -dendroid with only countably many arc components has at most one dense arc component. If a λ -dendroid with only countably many arc components has a dense arc component, then every other arc component is nowhere dense [3, Corollary 1.9]. Thus it suffices to show that M has a dense arc component.

Assume that no arc component of M is dense. By the Baire category theorem, there exists an arc component R of M such that CIR contains a nonempty open subset A of M. Let B be a nonempty open subset of $M \setminus CIR$. There exists an arc component S of M such that CIS contains a nonempty open subset C of B.

By [3, Corollary 1.5], R and S are G_{\emptyset} subsets of M. Since $R \cap S = \emptyset$ and R is dense in A, it follows that S is nowhere dense in A. Let D be a nonempty open set in $A \setminus Cl S$. Since M is almost arcwise connected, there is an arc P in M that intersects C and D.

If Q is an arc in M that intersects C and D, then Q intersects P; for otherwise, the intersection of Cl R and $P \cup Q \cup Cl S$ is not connected, and this contradicts the assumption that M is hereditarily unicoherent.

Hence the arc component T of M that contains P is dense in $C \cup D$. Since $T \cap C \neq \emptyset$, $T \neq R$. Therefore $R \cap T = \emptyset$. But R and T are G_{δ} subsets of M [3, Corollary 1.5] and both Cl R and Cl T contain the open set D. It follows from this contradiction that M has a dense arc component. Hence the proof is complete.

Corollary. Every almost arcwise connected λ -dendroid without a dense arc component has uncountably many arc components.

The continuum, Z_1 (Example 1) is not almost Peano. This is consistent with the fact that every almost Peano continuum without a dense arc component has infinitely many arc components. The almost Peano continua Z_2 (Example 2) and Z_3 (Example 3) each have uncountably many arc components. One might wonder if every almost Peano continuum without a dense arc component has uncountably many arc components.

Example 4. There exists an almost Peano continuum Z_4 in E^3 with only countably many arc components no one of which is dense in Z_4 .

To define Z_4 , let C be the Cantor ternary set in [0, 1]. For each positive integer n, let

$$P_n = \left\{ (x, y) \in E^2 \colon x \in C, \, x = \frac{i}{3^n} \, (0 \le i \le 3^n), \, y = 1 - \frac{1}{3^n} \right\}$$

and a strain of the state of a final a strain a strain the state of the strain of the strain of the

and

$$Q_n = \left\{ (x, y) \in E^2 : x \in C, x = \frac{i}{3^n} (0 \le i \le 3^n), \frac{1}{2n+1} \le y \le \frac{1}{2n} \right\}.$$

For each *n*, let U_n be the union of the components of $C \times [0, 1]$ that intersect Q_n . Let $R_1 = Q_1$ and $S_1 = P_1$. For $n = 2, 3, ..., let <math>R_n = Q_n \setminus U_{n-1}$ and $S_n = P_n \setminus U_{n-1}$.

Modify $C \times [0, 1]$ (as in Example 1) so that each component of $\bigcup_{n=1}^{\infty} R_n$ is the limit bar of a sin 1/x curve. Call the resulting space X.

Let $\mathcal{D} = \{C \times \{0\}, C \times \{1\}\} \cup \{S_1, S_2, \ldots\}$. In the continuum X/\mathcal{D} replace the point $C \times \{1\}$ with a limit bar L (as indicated in Fig. 3). Do this in such a way that the sequence S_1, S_2, \ldots converges to a point p of L. Call the resulting continuum Y. Note that Y has only countably many arc components and only one arc component is dense in Y. Each S_n misses the dense arc component of Y.

Let h be a homeomorphism of Y such that $Y \cap h[Y] = \emptyset$. Define Z₄ to be the continuum obtained from $Y \cup h[Y]$ by identifying p with h(p), and for each n, identifying S_n with $h(S_n)$.

Fig. 3.

Question. Does every almost Peano plane continuum without a dense arc component have uncountably many arc components?

References

- [1] R.H. Bing, Snake-like continua, Duke Math. J. 18 (1951) 653-663.
- [2] H. Cook, Tree-likeness of dendroids and λ -dendroids, Fund. Math. 68 (1970) 19-22
- [3] J.B. Fugate and L. Mohler, The fixed point property for λ-dendroids with finitely many arc components, Pacific J. Math. 57 (1975) 393-402.
- [4] B.D. Garrett, Almost continuous retracts, in: General Topology and Modern Analysis (Academic Press, New York, 1981) 229-238.
- [5] H.B. Hoyle, III, Connectivity maps and almost continuous functions, Duke Math. J. 37 (1970) 671-680.
- [6] K.R. Kellum, Non-continuous retracts, Studies in Topology, (Academic Press, New York, NY, 1975) 255-261.
- [7] K.R. Kelbun, Almost continuous images of Peano continua, Topology and its Appl. 11 (1980) 293-296.
- [8] J. Krasinkiewicz and P. Minc, Approximations of continua from within, Bull. Acad. Polon. Sci. 25 (1977) 283-289.
- [9] K. Kuratowski, Topology, Vol. 2, 3rd ed., Monografie Mat., TOM 21 (PWN, Warsaw 1961; English translation, Academic Press, New York; PWN, Warsaw, 1968).
- [10] R.L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ., Vol. 13 (Amer. Math. Soc., Providence, RI, 1962).
- [11] L.G. Oversteegen, Fans and embeddings in the plane, Pacific J. Math. 83 (1979) 495-503.
- [12] R.H. Sorgenfrey, Concerning triodic continua, Amer. J. Math. 66 (1944) 439-460.
- [13] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959) 249-263.
- [14] E.S. Thomas, Jr., Monotone decompositions of irreducible continua, Rozprawy Matematyczny 50 (1966) 1-74.