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Abstract 

We study the second-order partial differential equations 

L[u] = Aux, + 2Buxr + Cuyy + Dux + Euy = ,~nu, 

which have orthogonal polynomials in two variables as solutions. By using formal functional calculus on moment func- 
tionals, we first give new simpler proofs and improvements of the results by Krall and Sheffer and Littlejohn. We then 
give a two-variable version of A1-Salam and Chihara's characterization of classical orthogonal polynomials in one variable. 
We also study in detail the case when L[. ] belongs to the basic class, that is, Ay = Cx = 0. In particular, we characterize 
all such differential equations which have a product of two classical orthogonal polynomials in one variable as solutions. 
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AMS classification: 33C50; 35P99 

1. Introduction 

In this work, we are concerned with orthogonal polynomial solutions of second-order partial 
differential equations of spectral type 

L [ u ] : = A u x x + 2 B u x y + C u y y + D u x W E u y = 2 n U ,  n---- 0, 1 , 2 , . . . ,  (1.1) 

where  A(x,  y ) , . . . , E ( x ,  y )  are po lynomia ls ,  independent  o f  n, wi th  IAI + IBI + . . - +  IEI ¢ 0 and A n is 
the e igenvalue  parameter .  

In 1967, Krall  and Sheffer [3] posed  and part ial ly solved the fo l lowing  problem:  
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Classify, up to a linear change of variables, all orthogonal polynomial systems that arise as eigen- 
functions of  Eq. (1.1), assuming that Eq. (1.1) is admissible (see Definition 3.1). 

Krall and Sheffer first found necessary and sufficient conditions for weak orthogonal polynomials 
(see Definition 2.1 ) to satisfy an admissible Eq. (1.1) in terms of  the recurrence relations for moments 
of  the orthogonalizing measure. In doing so, they used a formal generating series 

oo 

G(x,y,s , t ):= ~ P~,(x,y)smt" 
re, n = 0  

of a polynomial sequence {emn(X, y)}. See Section 4 (in particular, Theorems 4.3 and 4.4) in [3]. 
Later, Littlejohn [7] employed a functional approach to investigate the same problem and made 

an important observation that the recurrence relations found by Krall and Sheffer can be restated in 
a much simpler closed form (see, [7, p. 117]) using a weak solution of  the weight equations for the 
differential operator L[. ]. 

Instead of moments and a formal generating series G (x,y,s , t)  used in [3] and a weak solution 
of  the weight equations used in [7], we use directly moment functionals (i.e., linear functionals on 
the space of  polynomials) and their formal calculus, which turn out to be quite successful in the 
study of orthogonal polynomials in one variable (see [4-6, 9, 10]). 

In this way, we can provide much simpler new proofs and some improvements of results in [3, 
7]. For example, the technical assumption, such as the unique solvability of  the moment equations, 
needed in [7, Theorem 2.3.1] can now be removed. 

In [3, 7], it is always assumed that Eq. (1.1) is admissible. However, since it is unknown whether 
Eq. (1.1) is admissible when it has orthogonal polynomials as solutions, we do not assume the 
admissibility of Eq. (1.1), whenever possible. 

We then find a characterization of  orthogonal polynomials satisfying the differential Eq. (1.1) via 
the so-called structure relation, which was first proved for classical orthogonal polynomials in one 
variable by A1-Salam and Chihara [1] (see also [4, 9]). 

Lastly in Section 4, we consider the particular case when L[-]  belongs to the basic class 
(cf. [8]), that is, when Ay -- Cx -- 0. We characterize differential Eq. (1.1) which have a prod- 
uct of two classical orthogonal polynomials in one variable as solutions. We also find conditions 
under which derivatives of  any orthogonal polynomial solutions to Eq. (1.1) are also orthogonal 
polynomials satisfying the same type of equations as (1.1). 

We refer to [2, 11] for works closely related to ours. See also [12, 13] and references therein for 
general theory of  multi-variable orthogonal polynomials including Favard's Theorem and Christoffel- 
Darboux formula. 

2. Preliminaries 

For any integer n >/0, let ~ ,  be the space of  real polynomials in two variables of  (total) de- 
gree ~< n and ~ = (.J,~>0~n. By a polynomial system (PS), we mean a sequence of polynomials 
{~)mn(X,y)}m°~,n=O such that deg(t~mn)= m + n  for m and n i> 0 and {q~-J,J}~=0 are linearly indepen- 
dent modulo ~ - 1  for n t> 0 (#-1 = {0}). 
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A PS {Pro.} is said to be monic if  

P~.(x, y)  = xmy" + R,..(X, y), m and n >~ 0, 

where Rmn(X, y) is a polynomial o f  degree ~< m + n - 1. 
For any moment  functional tr on ~ ,  we let 

(~x~, q~) = -<a,~x~b), (~yG, ~b)= -<(~, ~y~b), <~(7, (~)= <~, ~/,q~) 

for any polynomials ~b(x, y) and ~,(x, y). 

Definition 2.1 (Krall and Sheffer [3]). A PS {~mn} is a weak orthogonal polynomial system 
( W O P S )  if  there is a nonzero moment  functional a such that 

(G,(~mn~)kl)=O if m + n # k  + l. 

If, furthermore, 

< a, ~gmn~)kl ) = gmnt~mk(~nl , 

where Kmn are nonzero (respectively, positive) constants, we call {~bm.} an orthogonal polynomial 
system (OPS)  (respectively, a positive-definite OPS).  In this case, we say that {dPmn} is a WOPS 
or an OPS relative to tr. 

A PS {q~,..} is a WOPS relative to tr i f  and only if  (tr, ~PmnR) = 0 for any polynomial R(x, y) of  
degree ~ < m + n - 1 .  

For any PS {q~m.}, there is a unique moment  functional tr, called the canonical moment  functional 
o f  {q~m.}, defined by the conditions 

(tr, 1 ) - -  1 and (tr, gpm.)=0, m + n  >>- 1. 

Note that if  {C~mn} is a WOPS relative to tr, then tr must be a nonzero constant multiple o f  the 
canonical moment  functional o f  {dPmn}. 

Definition 2.2. A moment  functional tr is quasi-definite (respectively, positive-definite) if  there is 
an OPS (respectively, a positive-definite OPS)  relative to a. 

In treating multi-variable orthogonal polynomials, it is convenient (see [12]) to use the following 
vector notations: 

For a PS {q~m.}, we let 

~n:=[~bn0, t~._,,1 . . . . .  ~b0n] T, n~>0 ,  

O O  m n and use also { .}n=0 to denote the PS {4~m.}. For a matrix ~ = [~kij(x, Y)]i=0,j=0 of  polynomials and 
a moment  functional a, we let 

= 
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Then, a PS {~,},~0 is an OPS (respectively, a positive-definite OPS)  relative to O" i f  and only if  
(o", q~m qbT) =Hnbm,, m and n />  0 and Hn :=  (o", ~nq~T), n >/ 0, is a nonsingular (respectively, positive- 
definite) diagonal matrix. 

The following was proved in [3]. 

Proposition 2.1. For a moment  functional O- ~ O, the following statements are equivalent: 
(i) O- is quasi-definite (respectively, positive-definite); 

(ii) There is a unique monic W O P S  {Pn}~0 relative to O"; 
(iii) There is a monic W O P S  {D, }~  o such that H,  :----(o",PnDnr), n >1 O, is a nonsingular 

(respectively, positive-definite) symmetric matrix; 
( iv)  an = IDnl # 0 (respectively, D,  is positive-definite), where 

D n : =  

• O-00 0"10 (7"01 • • • O'n0 • • • O'0n 

O-10 0"20 O"11 • • • O " n + l , 0  • • • O"ln 

• O'0n O ' ln  O ' 0 , n + l  • • • O-nn • • • O-0,2n 

, n>> .O,  

and aij = (a, x i y ) ,  i and j>~O, are the moments  o f  a. 

In fact, Krall and Sheffer proved Proposition 2.1 only for the quasi-definite case. But, the p roof  
for the positive-definite case is similar. It is also easy (cf. [12]) to see that O- is positive-definite i f  
and only if  (a, ~b 2) > 0  for any polynomial  ~b(x, y ) #  0. 

L e m m a  2.2. Let  a and ~ be moment  functionals and R(x, y )  a polynomial. Then 
(i) a = 0 / f  and only i f  Oxa = 0 or ~ya = O. 

Assume that a is quasi-definite and let {~n}nO¢= 0 be an O P S  relative to a. Then 
(ii) R ( x , y ) a  = 0 i f  and only i f  R ( x , y )  = 0; 

(iii) (z, c~,,n) = O, m + n > k (k >>. 0 an integer) i f  and only i f  • = ~b(x, y )a  for  some polynomial 
~(x, y )  o f  degree <<. k. 

Proof. (i) and (ii) are obvious. 
(iii) ~ :  It is trivial from the orthogonali ty o f  {q~,}~0 relative to O-. 
(iii) =,.: Consider a momen t  functional ¥ = (~j=0~ ---CJ~J)a, 

where Cj = (Cj0, Cj - l ,1 , . . . ,  C0j), 0 ~< j ~< k, are arbitrary constant row vectors. 
Then 

k 
< '~,  ~ n )  Z ( O - ,  T T { O ,  n > k ,  

= ~ n ~ j  )Cj  = (if, T T 
j = O  

Hence, if  we take C.  = (~, ~n)Tmn "-1, 0 ~< n ~< k, then (v, ~ . )  = (~, ~ . ) ,  n t> 0, so that • = ¥. [] 
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3. Second-order differential equations 

It is easy to see (cf. [3]) that if the differential Eq. (1.1) has a PS {q~,},~o as solutions, then it 
must be of  the form 

L[u] : Auxx + 2Buxy + Cuyy + Dux + Euy 

= (ax 2 q- dlX + ely -? f l  )Uxx --k (2axy + d2x + e2y -q- f2)Uxy 

+(ay 2 + d3x + e3y + f3)Uyy "2V (gX "3i- hl)Ux + (gY + h2)uy 

: ,~n u, 

where )~n : =  an( n - 1 ) + on. 

(3.1) 

Definition 3.1 (Krall and Sheffer [3]). The differential equation (3.1) or the differential operator 
L[. ] is admissible if 2m ~ 2, for m ~ n or equivalently an + g ~ O, n >1 1. 

It is shown in [3] that Eq. (3.1) is admissible if and only if Eq. (3.1) has a unique monic PS as 
solutions. 

Assume that A = B = C = 0. Then, Eq. (3.1) becomes 

L[u] = (9x + hl)Ux + (9Y + h2)uy = gnu, (3.2) 

which can have a PS as solutions only when g ~ 0. Hence, by setting x * =  gx + hi and y * =  gy + h2, 
Eq. (3.2) becomes 

L[u] = XUx + yUy = nu, 

which has a unique monic PS {x"-JyJ}~0,j=~ 0 as solutions. However, the PS {x"-Jy}~0j=% is a 
WOPS but cannot be an OPS since its canonical moment functional 6(x, y)  is not quasi-definite (see 
Proposition 2.1 ). Therefore, from now on, we always assume that IAI + IBI + I CI # 0 and l a[ + 101 # 0 
in (3.1). 

Lemma 3.1. I f  Eq. (3.1) has a PS  {q~,}~o as solutions, then the canonical moment functional a 
o f  {~ ,}~o  must satisfy 

L*[a] = 0, (3.3) 

(a,D) = (a,E) = (a,A + xD) = (a, C + yE) = (a,B + yD) = (a,B + xE) = O, (3.4) 

where L*[.  ] is the formal Lagrange adjoint o f  L[. ] 9iven by 

L*[u] := (Au)xx + 2 (B u)x y  -[- ( C u ) y y  - (Du)x - ( E u ) y .  

Proofi For any m and n ~> 0 

4 ' m . )  = = = O, 
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since 2 0 = 0  and (o',~bmn) = 0 for m + n  /> 1. Hence, L*[o.] = O, that is, for any polynomial Q(x,y)  

(L* [0.], Q) = 0. 

In particular, (L*[o-],x)= (o.,L[x])= (o- ,D)=0 and similarly (o . ,E)=0.  We may assume that {4~,}~ o 
is a monic PS. Then 

D = 21q~1o and E = 214~ol, 

so that (o.,yD) : 21(o.,yq~10 ) = 21(0.,4)10~01) : (o.,xE). 
Now take Q(x, y ) =  x 2, xy,  and y2 to  obtain 

(L*[o.],x z) = (o.,L[x2]) = 2(o.,A + xD) = O, 

(L*[o.],xy) = (o.,L[xy]) = (o-,2B + yD + xE) = O, 

and 

(L*[o.], y 2) = (o.,L[y2]) = 2(0.,C + yE) = O. 

Hence, ( o . , A + x D ) = ( o . , C +  y E ) = ( o . , B +  y D ) = ( o . , B + x E ) = O .  [] 

Proposition 3.2. Assume that Eq. (3.1) has a P S  { ~ , } ~ 0  as solutions. I f  the canonical moment 
functional o. o f  { ~ , } ~ o  satisfies 

(o-,X~)mn) = (o-,YCmn) = 0, m + n ~> 2, (3.5) 

then 

Ml[o.] :=(Ao-)x + (Bo.)y -Do-  = 0 and M2[o-] := (Bo-)x + (Co-)y - E o -  = 0. (3.6) 

Proof.  We may assume that { ~ , } ~ 0  is a monic PS. Then for any polynomial ~(x ,y )  

2m+n(o-, ~)mn~l) = (o-,L[~)mn]~) = ( L * [ ~ o - ] ,  ~gmn ) 

+ + c yy]o. +  x[2(Ao.)x + 2(80.)y - Do-] 

+~by[Z(Bo.)x + 2(Co-)y - Eo-] + ~bL* [o-], ~bm,) 

=([A~kxx + 2B~bxy + C~byy]o. + ~kx[Z(Ao.)x + 2(Bo.)y - Do-] 

+¢y[Z(Bo-)x + 2(Co-)y - Eo-], q~m,), 

since L*[o-] = 0 by Lemma 3.1. 
We now take ~ ( x , y ) = x  and y. Then we have, by (3.5), for m + n >I 2 and m + n = 0 

(2(Ao-)x + 2(Bo-)y -Do-,  q~mn) = 2m+,(o',Xdpm,) = 0, (3.7) 

(2(Bo')x + 2(Co.)y - -  Eo., ~)mn) = 2m+n(o', y~bm,) = 0. (3.8) 

We also have by (3.5) 

(DO-, ~Pm.) = (EO., ~bm.) -- 0, m + n ~> 2. (3.9) 
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Hence, we have by (3 .7) - (3 .9)  

(Ml[tr],dPmn) -- (M2[a],dPmn) =0,  m + n >I 2. 

On the other hand, 

(Ml[O], q~oo) = ((Aa)x q- (Ba)y - Da, 1) = - ( a , D )  = 0 

and 

(M2[a], ~boo) = ((Ba)x + ( C(7)y - -  Ea, 1) = - ( a , E )  = O, 

by (3.4) so that in order to show (3.6) it only remains to show 

(Mj[a],q~o,) = (Mj[a],~blo) = 0 ,  j = 1,2. 

(MI[O'], (/)1o) = ((Acr)x -[- (B(7)y - -  Da, dp,o) = - ( a , A  + Dq~lO) -- -(o-,A q- xD) = O, 

( /~ [a ] ,  ~bo,) = ((Aa)x + (Bff)y - na ,  (~Ol) = - ( a , B  + n~boi) -- - ( a , B  + yD) = 0 

by (3.4). Similarly, (Mz[a], q~o) = (M2[a], q~o~) = 0. [] 

We call M~[a] = M2[a] = 0 the moment  equations for the Eq. (3.1). 

Corol lary 3.3. I f  Eq. (3.1) has a W O P S  {q~,}n~0 as solution, then the canonical moment functional 
a o f  {q~,},Z0 satisfies M1 [a] = M2[a] = L* [a] = 0. 

Proofi  Condition (3.5) is satisfied for any WOPS {~,}n~0 so that Ml[a]  = M2[a] = 0 by Proposi- 
tion 3.2. Finally, L*[a]  = 0 follows from Lemma 3.1 or from the relation 

L* [o'] ---- (M1 [o'])x + (M2[a])y.  [] (3.10) 

In terms o f  moments o f  a, we can express Ml[a]  = O, M2[o] = O, and L*[o-] = 0 as 

Cmn "= -2(Ml[a],xmy n) ---- 2{a(m + n) + g)O'm+i, n 

+ ( 2 d i m  + e2n + 2hl)amn + d2nam+l,n-1 Jr 2flmam-l,n 

+ f2na . . . .  1 + 2elmam-l,n+l = O; (3.1 1 ) 

Bran "= -2(M2[(7] ,xmy n) = 2{a(m + n) + g}O'm,n+ 1 

+e2ma,,-l,,+l + (d2m + 2e3n + 2h2)am, + f2mam-l,n 

+2 f3nam, n-1 q'- 2d3nam+l,n-1 ---- O; (3.12) 

and 

Amn :=  (L*[a],xmy ") = 1 1 ~mCm-l,, + ~nBm,,-1 

= 2,,+,am, + m[dl(m - 1) + e2n + hi]am-i, ,  
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+n[d2m + e3(n - 1) + h2]crm, n_ 1 

+flm(m -- 1)O'm-2,n + f2mn{Tm-l,n-1 

+ f3n (n  -- 1)O'm,n-2 + e l m ( m  -- l)O'm_2,n+ 1 

+d3n(n - 1)O'm+l,,-2 = 0 (3.13) 

for m and n ~> 0, where Gmn = 0 if m or n < 0. 
The relation (3.10) is equivalent to (see [3, Lemma 4.1]) 

2Amn = nBm, n-1 + mCm-l,n (B0,-1 z C-l,0 ~- 0), m and n ~> 0. 

Note that Proposition 3.2 gives a much simpler proof and some improvement of similar results in 
[3, 7]. To be precise, Krall and Sheffer (see [3, Theorem 4.3]) proved Corollary 3.3 in the form of  
(3.11)-(3.13) when Eq. (3.1) is admissible, using the formal generating series 

G(x ,y , s , t ) :=  ~ ~)mn(X,y)smt n 

m,n=O 

of  {~n}n°Z__O . 
Littlejohn (see [7, p. 1 17]) found the relations (3.11 )-(3.13) using a weak solution A(x, y)  to the 

weight equations M~[A] = 0 and M2[A] = 0 for L[. ] when the Eq. (3.1) is admissible. 

Proposition 3.4. I f  Eq. (3.1) /s admissible, then L*[a] = 0 h as  a unique solution up to a constant 
factor. 

Proof. Let a be the canonical moment functional of  any PS {~n}nC~=O of solutions to Eq. (3.1). Then, 
L*[a] - -0 ,  that is, Amn = 0  for m and n ~> 0 by Lemma 3.1 and (3.13). 

On the other hand, since 2m+n ~LO for m+n ~> 1, Eq. (3.13) is uniquely solvable for o,,n, m+n >~ 1, 
once o-00(#0) is fixed. Hence, i fL*[-c]=0 and z00=c, then -c=co-. [] 

Corollary 3.5. I f  Eq. (3.1) is admissible and has a W O P S  as solutions, then the moment equations 
Ml[o-] = 0 and M2[a] = 0 have a unique solution up to a constant factor. 

Proof. It follows immediately from Corollary 3.3 and Proposition 3.4. [] 

The converses of Proposition 3.2 and Corollary 3.3 hold also at least when Eq. (3.1) is admissible 
as we shall see now. 

Lemma 3.6. Let L[. ] be the differential operator as in (3.1). Then for  any moment functional a, 
the following statements are equivalent: 

(i) Ml[a] =M2[a] = 0; 
(ii) aL[. ] is formally symmetric on polynomials, that is, 

(L[P]a,Q) = (L[Q]a,P), P and Q E ~ .  (3.14) 
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Furthermore, i f  L[P] = 2P and L[Q] = #Q, 2 ¢ p, then for  any moment functional 17 satisfyin9 
M1 [17] = M2 [17] = 0, 

<17,PQ) = O. 

Proof. Since <L[P]a,Q)= <L*[Q17],P>, (3 .14) is  equivalent to 

L*[Q17] =L[Q]17, Q(x) c ~ .  

Since L*[Qa] - L[Q]17 = 20xQ. M1 [17] + 2~3yQ. M2117] + QL*[17], (3.14) is equivalent to 

M1 [17] = M2 [17] = L* [17] = 0, that is, MI [17] = M2 [17] = 0. 

Now, assume that L[P] = 2P, L[Q] = #Q, 2 ¢ #, and M1 [17] = M2117] = 0. Then 

(2 - I~ )(17,PQ) = (17,L[P]Q) - (17,L[Q]P) = O, 

by the first part of the lemma. Hence, (17,PQ)=0 since 2 -  # ~ 0 .  [] 

Theorem 3.7 (cf. [3, Theorems 4.4 and 4.5]). Let  {~0n}~0 be a P S  satisfyin9 an admissible 
Eq. (3.1) and 17 the canonical moment functional o f  {~,}~0. Then the followin9 statements are 
equivalent: 

(i) {qb,}~ 0 is a W O P S  relative to 17; 
( i i )  M1117] = 0; 

(iii) M2117] = 0; 
(iv) (17,X~Omn) ~ -  (17, y(gmn) = O, m + n >i 2. 

Proof. By Lemma 3.1 and (3.10), L*[17] = (M1117])x + (M2117])y = 0, so that (ii) and (iii) are equiv- 
alent by Lemma 2.2 (i). (i) implies (iv) trivially and (iv) implies (ii) and (iii) by Proposition 3.2. 

Finally, assume that (ii) holds. Then, we also have M2117] = 0, so that 

(17,~mn~)kl)=O if m + n C k + l ,  

by Lemma 3.6 since 2m+n ¢ 2k+l when Eq. (3.1) is admissible and m + n C k + l. Hence, {~,}~0 is 
a WOPS relative to a, that is, (i) holds. [] 

We finally give equivalent conditions for an OPS {q~n}~0 to satisfy Eq. (3.1). For a PS {¢bn}~0, 
where 

~b,_j,j(x, y) = ~ " ,-k k a)kx y m o d u l o ~ _ b  0 ~<j ~< n, 
k=0  

ranln is nonsingular. We then call {IPn},~0, where P~ = A n i O n ,  n ~ O, the nor- the matrix An : =  t 9"kJj, k=0  

malization of { ,}n=O" Note that if { n}n=0 is a PS (respectively, an OPS) satisfying Eq. (3.1), 
then { ,},=0 is a monic PS (respectively, a monic WOPS (but not necessarily an OPS)) satisfying 
Eq. (3.1). 
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Theorem 3.8. Let  {~ ,}~0  be an OPS relative to a quasi-definite moment functional a and { ~ } ~ o  
the normalization o f  {~,,}~o. Then, the following statements are equivalent: 

(i) {~ ,}~o  satisfy Eq. (3.1); 
(ii) Mt[cr] = 0 and M2[o-] = 0; 

(iii) aLl.  ] is formally symmetric on polynomials; 
(iv) there are (n + 1 ) × (k + 1 ) matrices F~ ~ and G~ for  k = n - 1, n, n + 1 such that 

and 

AOx~ n --~ B~y~ n =Fn+l~n+l -+- Fnn~n + Fnnl ~l~Jn_l, 

BOx~n q- COy~n = Gn+l~n+l -]- Gn~n q- Gn_l~n_l,  

a satisfies 

( a, PloPol) ( a,A) - ( a,P?o) ( o,B) = 0 ,  

(a, P2,)(a,B) - (a ,P~oPol) (a ,C)=0,  

(o',p~l)(O',A) -- (o-,P12o> (¢7, C) = 0. 

n/> l, (3.15) 

n ~> 1, (3.16) 

(3.17) 

(3.18) 

(3.19) 

Proof.  (i) implies (ii) by Corollary 3.3. 
(ii) and (iii) are equivalent by Lemma 3.6. 
(ii) =~ (i): we have 

m+n 
Z[~Pmn] = ~m+nfPmn "~ R(X, y) = ~ Cij~)ij , deg(g)  <~ m + n - 1. 

i+j=0 

By Lemma 3.6, for any 0 ~< k + I < m + n, 

m+n 
0~- (~Y' ¢mnZ[f~kl]) = (lT'Z[~)mn]~)kl) = E Cij(ff' ~)ijCkl) = E Cij(G' ~)iJ6')" 

i+j=0 i+j=k+l 

Since {~,},~o is an OPS relative to or, Hk+~ = [(a, ~bq~bu)]i+j=k+t is a nonsingular diagonal matrix so 
that c o = 0 for any i + j < m + n. Hence, 

L[q~mn] ~- 2rn+n(Pmn q- R(X, y)  = E Cij~)iJ' 
i+j=m+n 

SO that Cmn = )%+n and all other cij = 0 since {q~ij}~+j=m+, are linearly independent modulo ~m+,-1. 
(i) ~ (iv): Since deg(A0xO, + B~y~,) <<. n + 1, 

n+l 

j=0 

where Fj n are (n + 1) × ( j  + 1) matrices. Then 

kJ =0 ] 

= - ( (A~)~ + (B~)~, +~+~) - (~, ~(~02+~ + BO,+~)) 

= - ( ~ ,  ~(O + Ae: + BG)+~), 0 ~ < k ~ n + l ,  
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since Ml[a] - -0 .  Hence,/~ '  = 0 ,  0 ~< k ~< n - 2, since deg{(D+AOx + B~y)~ T} ~< k +  1 ~< n - 1 for 
0 ~< k ~< n - 2 and [Hal 5 0 .  Therefore, we have (3.15). Similarly, we also have (3.16). 

On the other hand, 

<M, [a], P,o> = <(Arr)x + (Ba)y - DG e,o) : - <rr, A) - 2, <a, P2o) = 0 

and 

<M~[a ] ,Po l )  = <(Aa)x  + ( B a ) y  - D a ,  Pol) = - <a ,B)  - A, <a, P1oPol) = O, 

since D----,~IP10 and E=21P01 so that we have (3.17). Similarly, we also have (3.18) using M2 
instead of M1. Finally, (3.19) follows from (cf. (3 .4))  

<a ,A) - -  - <a, x D ) =  - 2,(a,  P12o) and < a , C ) =  - <a, y E ) - -  - 2,<a, Po21). 

( iv)  => (ii): Since Eq. (3.15) implies 

<(Aa)x + (Brr)y, ~n)  = - -  <a, AOxq~n + BOe~,> 
- - - < a ,  Fnn+l~n+l+F~n~n+Fn~_l~n_l)=0, n>~2, 

there is a polynomial D(x, y )  of degree ~< 1 such that 

(Aa)x + (Brr)y - Da  = 0 

by Lemma 2.2 (iii). We may write D as 

D = aP10 + flPol + ? (a, r ,  7 are constants). 

Then 

0 - -  ( (Ar r )x  + ( B a ) y ,  1> = <rr, D)  = <o-, o~P1o + flPol + ")'> = ~<o-, I>, 

so that y - - 0  and 

<rr, DP1o > = ~<o',P?o > q- fl<rr, PloPol) = <(Ao')x q- (B~)y, PIO > = -- <o',A>, 
<a, DPol) = o~<o,PloPol) + fl<rr, po21) ---- <(Arr)x + (Ba)y,Po,) = - <a,B). 

Hence, 

.111 <o 1o o.> 
k # , . I  k 

so that fl = 0 by (3.17) and so D = eP10. 
Similarly, we can see that there is a polynomial E = tiP0, such that 

(Brr)x -}- ( C r r ) y  - Err = O, 

from (3.16) and (3.18). Then (3.19) implies a = f l .  [] 

Note that we may replace {q~n}~0 by {~}~o  in Theorem 3.8(i) and (iv). 
In particular, the condition (iv) in Theorem 3.8 is the two-variable version of the well-known 

AI-Salam and Chihara [1] characterization of  classical orthogonal polynomial in one variable. As in 
[1], we may call (3.15) and (3.16) the structure relations for an OPS {~,}~0 satisfying Eq. (3.1). 
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4. Differential equations belonging to the basic class 

Definition 4.1 (Liskova [8]). The differential operator L[. ] in (3.1) belongs to the basic class if 
Ay = Cx = 0, that is, 

A(x, y) =A(x)  = ax 2 + dlX + f l  and C(x, y) = C(y) = ay 2 + e3y + f3. 

j k If L[. ] belongs to the basic class and L[u] = 2u, then v = OxOyU (j and k i> 0) satisfies 

Avxx + 2Bvxy + Cvyy -~- (D + jAx + 2kBy)vx + (E + 2jBx + kCy)vy 

= (,~ - - jO  x -- kEy - l j ( j  _ 1)Axx - 2jkBxy - lk (k  - 1)Cyy)V. (4.1) 

In the following, we use the standard terminologies for orthogonal polynomials in one variable as 
in [4, 5]. 

Proposition 4.1. Let {~}~0 be the monic P S  o f  solutions to the admissible Eq. (3.1). Then, the 
followin9 statements are equivalent: 

(i) Ay = 0 (respectively, Cx = 0); 
(ii) P~o(x,y)=P~o(X) (respectively, Pon(X,y)=Pon(Y)), n >1 0; 

(iii) P20(x, y) = P20(x) (respectively, Poe(X, y) = Poe(Y)); 
(iv) {Pn0(X,y)}~0 (respectively, {Po,(X, Y)}~o) satisfy the equation 

Aux~ + Dux = 2nu( respectively, Cuyy + Euy = 2nU); (4.2) 

(v) Pzo(X, Y) (respectively, Po2(X, y))  satisfies the equation (4.2). 
In this case, {P~o(x)}~o (respectively, {P0n(Y)}~=0) is a WOPS  (in one variable). I f  moreover, 

the canonical moment functional tr o f  {~}~o is positive-definite, then {P,o(X)}~o (respectively, 
{P0n(Y)}~0) is a positive-definite classical OPS. 

Proof. (i) ~ (ii): Assume Ay = 0, that is, A(x, y) =A(x)  = ax2+dlX+fl  . We will show that P~o(X, y) = 
Pno(X) by induction on n ~> 0. For n --0 and 1, it is trivial. Assume that Pko(x,y)=Pko(X), 0 <<.k <~ n, 
for some integer n/> 1. Express Pn+l,o(X, y) as 

Pn+1.0(X, Y) = x n+l ~- ~ Ck~k(X,  y), 
k=0 

where Ck = (Cko . . . .  , Cok). Then, we have from L[P,+I,o] = 2n+lPn+t,o 

n 

(n + 1)(din + hi)x" + f l (n  + 1)nx "-1 + ~ ( 2 k  - 2,+l)CkPk =0 .  (4.3) 
k=0 

Since Pko(x,y) =Pko(X), 0 ~< k ~< n, we may express (n + 1)(din + hi)x" as 

(n + 1 )(din + hi )x" = ~ ~kPko(X). 
k=0 
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Then (4.3) gives 

~nPno(x ) "~ ( •n -- ~n+l)Cn~n 
n 

= [(~n -~- (/~n -- /~n+l )Cno]Pno(x) "~ (~n -- ~-n+l ) ~ Cn-k, kPn-k,k( x, Y)  
k=l 

= 0 modulo ~ - 1 .  

Hence, Cn-k,k = 0, 1 ~< k ~< n, since {P,-k,k}~=0 are linearly independent modulo ~n-1 and L[ .  ] is 
admissible. Then, Eq. (4.3) gives 

(n + 1)(din + hl)x n + f l ( n  + 1)nx n-I H- (~'n -- l~n+l)fnoennO(x) 
n-1 

Ai-(,)],n- 1 -- ~,n+l)Cn-l,oPn-x,o(X) -b (/],n--I -- )~n+l ) Z Cn-l-k'ken-l-k'k(X' Y) 
k=l 

--- 0 m o d u l o ~ _ 2 ,  

o f  which the first four terms can be expressed as ~ = o  flkPk, o. Hence, 

n--1 

flnPno "~- fln-lPn-l,O(X) -~- (~,n-1 -- ~'n+l ) ~  Cn-l-k, kPn-l-k,k(X, y )  
k=l 

= 0 modulo Q-E,  

{en-l-k,k}k=O are linearly independent modulo so that Cn_l_k, k = 0, 1 ~< k ~< n - 1 since Pn0(X) and n-1 

~n-2. 
Continuing the same process, we obtain 

Ck_j,j = O, 1 <. k <. n and 1 <. j <. k 

so that Pn+I,0(X, y )  ----X "+1 + ~ = 0  Ck, oPk, o(X). 
(ii) ~ (iii) and (iv) ~ (v): They are trivial. 
( i i ) ~ ( i v ) :  IfPno(X,y)=P~o(X), n >~ O, then (Pn0)y=0, n />  0 so that (iv) follows. 
( i i i ) ~ ( i ) :  I f  P2o(x,y)=P2o(X), then 22Pzo(x)= L[Pzo] = 2A + D(Pzo )x so that A(x, y )  = 1[,~2P20 

D(P20)x] ---- A(x). 
(v)  ~ (iii): Let P20 = x  2 + ooc + fly + 7. Assume that A(P20)~ + D(P20)x = 22P20. Then 

L[P o] - - D(P O)x = E(P2o)  = 13E = O, 

so that fl---0 since E ( y ) ¢  0 when L[.  ] is admissible. Hence, we have (iii). 
Now,  assume that Ay=O, i.e., A ( x , y ) = A ( x )  and let a be the canonical moment  functional o f  

p. o0 { n}.=0" Let z be the restriction o f  o- on the space of  polynomials in x only. Then P.o(x,y)=Pno(X), 
n/> 0 by (ii) so that (z,P.0) -- (o',Pn0) = 6nO, n >>. O, that is, z is the canonical moment  functional o f  
{P~0(x)}.~ 0. Then by  (iv) 

0 = 2.(z,P.o) (z, APn'o' + DPno) = (Dz - ' ' = ' ,Pno), n >i 0 

so that Dz - (Az)' = 0. Hence, 

(2,n -- 2.)(z,P~0P~0) ---- (z, A W~m. + DWmn) = (Dz - (Az )', W,~.) = 0 ,  
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for m and n ~> 0, where Wm,(x)=Pm~o(x)P,o(X)--Pmo(X)P~'o(X ). Therefore, <r,P~oP~o)=0 for m ¢ n ,  that 
is, {Pno(X)}.~ o is a WOPS relative to "r since 2m # 2n for m # n. 

If  o" is positive definite, then ('C, Pn~ ) = <o',P~) > O, n /> 0 so that {P~o(X)}.~ o is a positive-definite 
classical OPS satisfying 

A(x)Pno'(X) + D(x)Pno(X) = 2,Pno(X), n >10. 

The proof for the case Cx = 0 is the same as for the case Ay = O. [] 

Corollary 4.2. Let  { ~ } ~ o  be the monic P S  o f  solutions to the admissible Eq. (3.1). 
following statements are equivalent: 

(i) Ay = Cx : O, that is, L[. ] belongs to the basic class; 
(ii) PnO(X,y)=P~o(X) and Pon(x,Y)=Po,(Y), n >>, 0; 

(iii) P2o(X, y) = P=o(X) and Po2(X, y) = Po2(y); 
(iv) {P.o(x, y)}Zo and {Po.(X, Y)}Zo satisfy 

Then, the 

A(Pno)xx + D(Pno)x -- 2nP~o and C(Pon)yy + E(Pon)y = 2nPon, n >i 0; (4.4) 

(v) P2o(X, y)  and Po2(X, y)  satisfy 

A(P2o)xx + D(P2o)x = 22P2o and C(eo2)yy + E(Po2)y = ~2Po2- 

In this case, {P,o(X)}~o and {Po,(Y)}~o are WOPS's  (in one variable) and we may express 
( .)°=o as 

m--I n--1 

P~(x, y)  = Pmo(x)Pon(Y) + Y ~  Y ~  C}~'n)P~o(x)Poj(Y), 
i=0 j = 0  

m and n ~> 0. (4.5) 

lf, moreover, the canonical moment functional a o f  {Pn}~=0 is positive definite, then {P~o(X)}~o and 
{Pon(Y)}nC~__o are positive definite classical OPS's. 

Proof. All others except (4.5) follow from Proposition 4.1. Since each P~,(x,y) is monic and 
{Pmo(x)Po,(Y)}~+,=o is a monic PS, we have (4.5). [] 

Lemma 4.3. Consider a second-order ordinary differential equation 

ot(x)y"(x) + fl(x)y'(x) = mY,  (4.6) 

where ~(x) = ax: + bx + c( ~ 0), fl(x) --- dx + e, and #, = an(n - 1 ) + dn. 
Then, Eq. (4.6) has an OPS  (respectively, a positive-definite OPS)  as solutions i f  and only i f  

(i) s n : = a n + d ¢ O ,  n~>0; 
(ii) e(-(tn/s2,))  # 0 (respectively, (S,_l/S=,_ls2,+l)e(-(t,/s2,)) < 0), n >1 O, 

where tn = bn + e and s_l = 1. 

Proof. See [5, Theorem 2.9] and [10, Theorem 2]. 
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Theorem 4.4. Let  {~}~o  be the monic P S  o f  solutions to the admissible equation (3.1). 
(i) I f  Ay = 0 ,  then {P.o(X)}~o is a classical OPS  (respectively, a positive-definite classical OPS) 

i f  and only i f  

A ( - ( t . / s 2 . ) ) # O  (respectively (sn_l/s2._ls2.+l)A(-(t./s2.)) < 0), n >>. O. (4.7) 

(ii) I f  Cx = O, then {Pon(Y)}n°°= 0 is a classical OPS  (respectively, a positive definite classical OPS)  
i f  and only i f  

C(--(Un/S2n)) # 0 (respectively (Sn_l/S2n_lS2n+l)f(--(Un/S2n)) < 0), n >10. (4.8) 

Here, s, = an + g, tn = din + hx, u, = e3n + h2 for  n >>. 0 and s-1 = 1. 

Proof. It follows immediately from Proposition 4.1 and Lemma 4.3 since s, = an + g # O, n/> O, 
when L[. ] is admissible. [] 

When is the monic PS { ,},=0 of solutions to Eq. (3.1) the product of two monic PSs in one 
variable ? 

For any two moment functionals ~ and # on the space of polynomials in one variable, we let 
® # be the moment functional on ~ defined by 

(T ® #, qb(x)~(y)) = (~, dp)(#, O) 

and linearity. 

Theorem 4.5. Let  {P~}n~=o be the monic P S  o f  solutions to Eq. (3.1) with A y = C x = B = O :  

L[u] =A(x)Ux~ + C(y)Uyy q- D(x)ux + E(y)Uy = 2.u (4.9) 

and let tr be the canonical moment functional o f  {~}n~=0 . Then 
(a) P~o(x,y)----P~o(X), Pon(X,y):Pon(Y), and Pmn(X,y)=Pmo(X)POn(Y), m and n >i 0; 
(b) { n}. = o is a w o e s ;  
(c) the following statements are equivalent: 

(i) tr is quasi-definite (respectively, positive definite); 
(ii) {P.}~=o is an OPS  (respectively, a positive definite OPS); 

(iii) {P.o(X)}.~__o and {P0n(Y)}~=0 are classical OPSs (respectively, positive definite classical 
OPSs). 

Proof. Since a = 0, g # 0 so that 2n = gn ~ 0, n/> 1 and L[- ] is admissible. Hence, there is a unique 
monic PS { n}.=o of solutions to Eq. (4.9). 

(a) By Corollary 4.2, {Pno(X, y ) =  P.o(X)}~=o and {POn(X, y ) =  Po.(y)}.~=o are WOPSs satisfying the 
Eq. in (4.4). Then, {P._k,o(x)Pok(Y)}n~=o, ff=o is also a monic PS satisfying Eq. (4.9), so that 

Pn_k,o(X)Pok(y)=Pn_k,k(x, y), O<<.k <<.n, 

since the admissible Eq. (4.9) has a unique monic PS as solutions. 
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(b) Let z and # be the restrictions of a on the space of polynomials of  x only and y only, 
respectively. Then {P,0(x)}~= 0 and {P0,(Y)}~=0 are WOPSs relative to • and #, respectively by 
Corollary 4.2. We also have a = z ® # since we have 

('~ ~ #,Pmn) = (T, Pmo) (#,Pon) = ( 0-,Pmo) ( 0-,Pon) = ~m+n,O ~--- ( G, Pran) 

for m and n i> 0. Hence, 

(0-,P,n,Xk y t) = ('~ @ #,PmnXk y l) = (z, Pmoxk)(#,Po, y ') = 0 ,  0 ~< k + l < m + n, 

so that {Pn},~0 is a WOPS relative to 0-. 

(c) We have by (a) and (b) 

H o .  (0-,PnP. 2 2 . = = [(v, Pg_k,o)(#,P~k)6jk]j,k= o, n ~ O, 

is a diagonal matrix. Hence, o- is quasi-definite (respectively, positive definite) (cf. Proposition 2.1) 
if and only if 

(z, p2) and (#,Po2n), n~>O, 

are nonzero (respectively, positive). Therefore, (i)¢=~(ii)¢~ (iii). [] 

We can now characterize completely Eq. (3.1) with B =  0, which has an OPS as solutions. 

Theorem 4.6. We assume B = 0  in Eq. (3.1). Then, Eq. (3.1) has an O P S  (respectively, a positive 
definite OPS)  as solutions i f  and only i f  L[.  ] belongs to the basic class and 

9fl - dl(dln + hi ) ¢ 0 (respectively, < 0), n >/O; (4.10) 

gf3 -- e3(e3n + h2) 7 ~ 0 (respectively, < 0), n >10. (4.11) 

In this case, Eq. (3.1) has a monic O P S  {~}n~=0 as solutions, which is a product o f  two classical 
OPSs  in one variable. 

P r o o f .  Since a = 0 ,  g ¢ 0  so that L[ . ]  is admissible and Eq. (3.1) has a monic PS {~}~=0 as 
solutions. Note that when L[. ] belongs to the basic class, that is, A(x)  = d lX+f l  and C(y )  = e3y+f3 ,  
the conditions (4.7) and (4.8) are equivalent to the conditions (4.10) and (4.11) since s, = g, n ~> 0. 

Assume that L[. ] belongs to the basic class and the Conditions (4.10) and (4.11) hold. Then, by 
Theorem 4.4, {Pn0(X)}~= 0 and {P0,(Y)}~=o are classical OPSs (respectively, positive definite classical 
OPSs). Then, by Theorem 4.5, {Pn}~=0 is a monic OPS (respectively, a monic positive definite OPS) 
which is a product of two classical OPSs {P,0(x)}~= 0 and {P0,(Y)}~=0. 

Conversely, assume that Eq. (3.1) has an OPS (respectively, a positive definite OPS) {~,},~0 as 
solutions and let 0" be the canonical moment functional of { ,},=o. Since L[. ] is admissible, we 
may assume that D ( x ) = x  and E ( y ) = y  by a linear change of  variables. Hence, we have from (3.4) 
and M110"] =M210-] =L*[0-] = 0 (cf. Corollary 3.3) 

0-10 =O"01 = 0"11 = 0 ;  0"20 = - -  f l ,  0"02 = - -  f 3  
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and 

(M1 [cr], y2) = _ (o', y2D) = - ~12 = O, 

(Mz[0-],x 2) = - (a, xZE) = - crzl = O, 

(L*[G],x2y) = 2(0-, yA  + x y D )  + (a, xZE) = O, 

(L*[a], x y  2) = 2(a ,  x C  + x y E )  + (a, y2D) = O, 

so that 

0-12 = 0"21 = 0 ,  d30"20 = - d s f l  = O, 

On the other hand, since a is quasi-definite, 

A 1 = 0"20 Oo2 = f l f3  ¢ 0, 

el0-O2 = - -  e l f 3  = 0 .  

so that d3 = e l  = 0 ,  which means that L[-]  belongs to the basic class. 
Now, let {~}n~=0 be the normalization of {~,}n~=0 . Then {~}~=0 is a monic WOPS relative to a 

satisfying Eq. (4.9) and a is the canonical moment functional of {~}~=o- Since a is quasi-definite, 
condition (iii) in Theorem 4.5 holds so that we have (4.7) and (4.8) or equivalently (4.10) and 
(4.11) by Theorem 4.4. [] 

Theorem 4.6 implies that if Eq. (3.1) with B----0 has an OPS {~n}~=o as solutions, then the 
normalization { Pn }~= 0 of { ~n}ff= 0 must be a product of two classical OPSs, which are either Laguerre 
or Hermite polynomials since deg(A) ~< 1 and deg(C) ~< 1. 

Example 4.1. Consider the following equation: 

(x + 00Uxx + 2(y + 1)Uyy +XUx + yUy = n u .  (4.12) 

Krall and Sheffer [3] showed that Eq. (4.12) has an OPS as solutions. But, they might not recognize 
that Eq. (4.12) has a product of  two monic PS's in one variable as solutions. 

Since Eq. (4.12) is admissible, it always has a unique monic PS as solutions, which is a product of  
two monic PS's in one variable for any choice of 0~. On the other hand, by Theorem 4.6, Eq. (4.12) 
has a monic OPS (which cannot be positive definite) as solutions if and only if c~ # 0, 1 ,2 , . . . .  To 
be precise, by setting x * =  - x -  ~ and y * =  - l ( y  + 1), Eq. (4.12) becomes 

XUxx + yUyy + (--0~ -- X)U x -Jr- ( 1  _ y)Uy = -- nu.  ( 4 . 1 3 )  

of which the monic PS of  solutions is 

f L ( - ~ - l ) ,  ~L(-3/2)~ , ~ o o  n 
{ ~ ( ~ ) } ~ - - 0  = ~ n-k ~,X) k I,Y)~n=O,k=O, 

where {L(,~)(x)}~=0 is the monic Laguerre polynomials of the order ~. Hence, {Pn~)}~=o is a monic 
OPS (but not a positive definite OPS) if and only if ~ # 0 ,  1 ,2 , . . . .  

Example 4.2. Consider the following equation: 

3yUxx + 2Uxy -- XUx -- yUy = - nu. (4.14) 
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Krall and Sheffer [3] showed that Eq. (4.14) has an OPS {q~,}~=0 as solutions. If {P,}~=o is the 
normalization of {~,}n~o, then we have by Proposition 4.1 

Po, (x , y )=Po , (y )  and yPo'n(Y)=nPo,(y), n >>. 0 

so that Pon(Y) = yn, n >10. Since {y"}n~=0 is not an OPS, {~,}ff=o cannot be a positive definite OPS. 
As a converse to Theorem 4.5, we have: 

Theorem 4.7. Assume that Eq. (3.1) has a monic P S  {Pn}~=0 as solutions, which is a product o f  
two monic PSs  in one variable. Then we have: 

(i) Ay = Cx = O, that is, L[. ] belongs to the basic class; 
(ii) / f a = 0 ,  then B = 0  so that Eq. (3.1) must be o f  the f o rm  (4.9) and the conclusions (a), (b), 

and (c) o f  Theorem 4.5 hold; 
(iii) i f  a ¢ O ,  then Eq. (3.1) must be o f  the f o rm  

a(x - ~)2u.,~ + 2a(x - ~) (y  - ~)Uxy + a(y  - fl)2Uyy 

+9(x - OOUx + 9(Y - f l ) U y  = ~.n u (4.15) 

for  some constants ~ and ~. 

Proof. Assume that Pm,(X,y)=q~m(X)~kn(y), m and n >~ O, where {qbn(X)}~= o and {~k,(y)}n~=O are 
monic PSs in one variable. Then Pn0(X, y ) =  ~b,(x) and Po,(X, y ) =  ~bn(y), n >>. O. Hence, Ay = Cx = 0 
by Proposition 4.1. Here, we note that we do not need the admissibility of  L[. ] in proving (iii) ~ (i) 
in Proposition 4.1. Since D -- 21Plo, E = 21Pro, and LIP11] =L[PloPol] = 2B + DPoa + E P l o  = 22Pll, 

B ( x , y ) =  ½(22 - 221)Pll =aPn .  (4.16) 

Hence, if  a = 0, then B = 0 so that (ii) follows from (i) and Theorem 4.5. We now assume a ¢ 0. 
Since Pm,(X,y)=Pmo(X)POn(Y), we have from (4.4) 

A(Pm,)x~ + C(Pmn)yy -~-D(Pmn)~ + E(Pmn)y = (};m -~- •n)Pmn • (4.17) 

Subtracting (4.17) from L[Pm,] = 2m+,Pm, and using (4.16), we have 

B(Pmn)xy = aPll (Pm,)xy = amnPm,, m and n >~ 0. 

Since a ~ 0, we have 

Plo(X)Pol(Y)P'mo(x)Po'n(y) = mnPmo(x)Po,(y), m and n i> 0 

so that 

P10(x)Ptmo(X) = mPmo(X), POl(Y)Po'~(Y) = nPon(y), rn and n/> 0. 

m j We may express Pmo(X) as PmO(X)= ~ j = 0  aj(Plo(X)) , where am = 1. Then 

m 

P1o(x)P~mo(X) - mPmo(X)= E ( j  - m)aj(P,o(X)) j = O. 
j=o 
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Hence aj = 0, 0 ~< j ~< m - 1 so that Pmo(X)= (Plo(X)) m, m >~ O. Similarly, Pon(y)=  (Pol(Y)) n, n />  0. 
Set Plo(x) ----x - c~ and Pol(Y) = Y - / 3 .  Then 

L[Plo] = D(Plo)x = D = ~.lPlo; 

L[P01] z E (P01)y  ----E = 21P01; 

L[P20]  = 2A + D ( P z o ) x  = 2A + 2DP1o = , ~ , 2 P 2 0  = 22(P10)2;  

L[Pla] = 2B + D(Pll)x + E(Pll)y = 2B + DPol + EPlo = ~,2PI1 = 22P10P01; 

L[P02] = 2C + E(PoE)y = 2C + 2EPol = 22Po2 = 22(P01 )z. 

Hence, 

A ( x )  = 1 ~(22 - 221 )(P10) 2 = a(x - ~t) 2, 

B(x, y ) =  ½(2z - 221 )PloP01 = a(x - ~) (y  - fl), 

C ( y )  = 1(22 - 221 )(P01 )2 = a(y  - fl)2, 

D(x)  = 21P10 = g(x - ~), 

E ( y )  ---- 21Pol = 9(Y - fl), 

so that (4.15) follows. [] 

We now claim that Eq. (4.15) cannot have an OPS as solutions. By  a linear change of  variables, 
we may transform Eq. (4.15) into 

X2Ux~ + 2XyUxy + yEuyy + gUx + guy = 2nu. (4.18) 

Assume that Eq. (4.18) has an OPS { ,}n=0 relative to tr as solutions. Then L*[a]  = 0 by Lemma 3.1 
so that by  (3.13) 

A m n = 2 m + , t r m n = ( m + n ) ( m + n - l + g ) a m n = O ,  m a n d n ~ > 0 .  

Hence, (Tmn ---~0 for m + n ¢ O  and m + n  > g - 1  so that An = 0  for n > m a x ( 0 , g -  1), which contradicts 
the quasi-definiteness of  tr. Hence, Eq. (4.18) or equivalently Eq. (4.15) cannot have an OPS as 
solutions. 

Therefore, from Theorems 4.5 and 4.7, we obtain: if  Eq. (3.1) has a monic OPS { n}n=0 as 
solutions, which is a product o f  two monic PSs in one variable, then Eq. (3.1) must be o f  the form 
(4.9) and { n}n=0 must be a product o f  two classical OPSs in one variable. 

It is well known (see, for example, [4, 10]) that classical OPSs (in one variable) are the only 
OPSs such that their derivatives are also orthogonal. In particular, if  {~bn(x)}~= 0 is a classical OPS 
satisfying Eq. (4.6), then {qb'n(x)},~ 1 is also a classical OPS satisfying the same type o f  the equation 
as (4.6). 

We finally consider two-variable analogue of  this property. Assume that Eq. (3.1) is admissible 
and has an OPS {~,},~=o as solutions. Let tr be the canonical moment functional o f  {~n}~=o- Then, 
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we may assume that D ( x ) = x  and E ( y ) =  y so that we have by (3.4): 

(o.,D) =O1o=0,  (o-,E) =0-01 =0, 
(a,A + xD) = (a + 1 )o.2o + fl  = 0, 

(a,B + y D ) =  (a + 1)o.ll + ½fz = 0, 

(o-,C + yE) =(a  + 1)0"02 + f3 =0 .  

Therefore, A1 = o.:oa02 - (0-11) 2 = (1/(a + 1)2)(flf3 _ ~(f:)a = )¢0 .  In particular, B e - A C ¢ O  since 
1 2 ~ ( f  2) - f l f 3  is the constant term of B 2 - AC. 

We now consider Eq. (3.1), which is admissible and belongs to the basic class 

Z[u] =A(x)Uxx + 2B(x, y)Uxy + C(y)Uyy + D(x)ux + E(y)Uy : )~nU. (4.19) 

Let {~},%o be the unique monic PS of solutions to Eq. (4.19). We know by Corollary 4.2 that 
Pno(X,y)=Pno(X) and Po,(X,y)=POn(Y), n >~ O. Set 

pn(X_~,j - 1 n _ j + l ( ~ _ j + l j ) x ,  O<~j<~n, 
p(y). . _ 1 

n--J,j j+I(P"-J 'J+I)Y'  0~<j~<n .  

Then, {~(x))~__ o = {P~X~.,j}~oj~ o and {Pn(Y)}~ o = {P,(_Y),j}~ojn0 are monic PS's satisfying (cf. (4.1)) 

L(1)[u] =Au~x + 2Buxy + Cuyy -~- (D -Jr Ax)u x --~ (E -~- 2Bx)uy 

= n[a(n + 1 ) + g]u, (4.20) 

L(2)[u] =Auxx + 2Buxy + Cuyy + (D + 2By)ux + (E + Cy)uy 

=n[a(n + 1) + 9]u, 

respectively. Note that Eqs. (4.20) and (4,21) are also admissible. 

(4.21) 

Theorem 4.8. Assume that Eq. (4.19) is admissible and has an OPS  {~n},~o as solutions. Let  
{Pn)n~=0 be the normalization o f  {~n)~=0 and o. the canonical moment functional o f  {~n)~=0" 

(i) I f  {~(x))~= o is a W O P S  relative to f (x ,y )o ,  for  some polynomial f ( x , y ) (  ¢O),  then f 
must satisfy 

Afx + Bfy - A x f  = 0; (4.22) 

Bfx + Cfy - 2Bx f  = 0. (4.23) 

Moreover, A, B, and C must satisfy the compatibility condition 

[2BBx - AxC] 0 [AxB - 2ABx ] (4.24) 
Oy[ --~---A-C J =~L ~--~ J 

Conversely, 
(ii) i f  Eqs. (4.22) and (4.23) have a nonzero polynomial solution f ,  then {~(x)}ff= o is a monic 

W O P S  relative to fo.. 
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Proof. We first note that by Theorem 3.8, o" satisfies 

M I [ O - ]  = (Acr)x + (Bo-)y - Do" = 0 and M2[o-] = (Ba)x + ( C a ) y  - Ea = O. 

(i) Assume that {P}x)}~=0 is a WOPS relative to f ( x ,  y )a  for some polynomial f ¢ 0. Then by 
Theorem 3.7, 

M1 [fo-] = (Afff)x q- (Bfff)y - (O .+ Ax)fo- = 0, (4.25) 

M2[fff] = (Bfa)x + ( C f o - ) y  - (E + 2Bx) fa  = 0. (4.26) 

Since Ml[fo-] = f[(Ao-)x + (Ba)y - Do-] + (Af~ + Bfy - Axf)o- = ( A f  x + Bfy - Axf)o- = 0 and o- is 
quasi-definite, we have (4.22). Similarly, we have (4.23) from M2[fo-]=0.  We may solve Eqs. 
(4.22) and (4.23) for f~ and fy as 

(B 2 - AC)fx  = (2BBx - A x C ) f  and (B 2 - AC) fy  = (AxB - 2ABx)f ,  

from which (4.24) follows since B 2 - A C  ~ O. 
(ii) Assume that f (  ~ 0) satisfies Eqs. (4.22) and (4.23). Then fo- is a nonzero moment functional 

and satisfies Eqs. (4.25) and (4.26). Let "c be the canonical moment functional of  {~(X)}n~= 0. Then, 
both f a  and "c satisfy 

Z(1)* [ fo  "] = L(1)* ['c] = 0 

by (3.10) for fo- and by Lemma 3.1 for "c. Since L(1)[ • ] is admissible, we must have 

G ~ C'~, 

where c = <fo-, 1) = (o-, f )  ¢ 0 by Proposition 3.4. Hence, -c also satisfies (4.25) and (4.26). Therefore, 
{P~)}n~=0 is a monic WOPS relative to fo- by Theorem 3.7. [] 

We can also state Theorem 4.8 for {~(Y)}nC~=0 instead of {Pn(X)}~=0, for which Eqs. (4.22)-(4.24) 
must be replaced by 

Af~ + Bfy - 2Byf  ---- 0, (4.27) 

Bf~ + Cfy - Cy f  = O, (4.28) 

and 

O [ B C y - 2 B y C ]  ~ [ 2 B B y - A C y  ] 
ayL  B-i ~ ]=~--~x/ ~ 5 - - ~  j. 

It is easy to see that when the compatibility condition (4.24) is satisfied, Eqs. (4.22) and (4.23) 
always have a nonzero solution f ( x ,  y),  which however may or may not be a polynomial. 

When B = 0 ,  f = A ( x )  or f = C ( y )  satisfies (4.22), (4.23) or (4.27), (4.28), respectively. 
Moreover, it is easy to see that if { n}n=0 is a monic OPS relative to o- satisfying Eq. (4.9) 
so that {~}~=o is a product of  two classical OPSs (cf. Theorem 4.5), then {DZn(X)}n~=0 and {~n(Y)}~= 0 
are also monic OPSs relative to A(x)o- and C ( y ) a  satisfying (4.20) and (4.21), 
respectively. 
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Example 4.3. Consider the following equation: 

( X  2 - -  1)Ux~ + 2XyUxy + (y2 _ 1)Uyy q- g(XUx q- yUy) =n(n - 1 + 9)u (9 > 1), (4.29) 

which is known to have an OPS, called circle polynomials, as solutions (cf. [3]). Let {~}~=0 be the 
P. ~ is orthogonal on ~ = {(x, y)lx 2 + y2 < 1} monic polynomial solutions to Eq. (4.29). Then, { ,}n=0 

relative to the weight function w(x, y ) - - ( 1  - x  2 -  y2)(g-3)/2. In  this case, f (x ,  y ) =  1 - x  2 -  y2 satisfies 
both (4.22), (4.23) and (4.27), (4.28) so that by Theorem 4.8, {P,(X)}n~= 0 and {Pn(Y)}~= 0 are also 
orthogonal relative to (1 - x 2 - y2)(g-1)/2 on 9 .  

We finally note that Theorem 4.8 remains to hold for {Pn(X)}~=0 or {~(Y)}n~=0, respectively, when 
either Cx=O, but Ay¢O or Ay=O, but Cx¢O. For example, if we consider Eq. (4.14), where 
C = 0 ,  but A y = 3 ¢ 0 ,  then Eqs. (4.22) and (4.23) have f ( x , y ) =  1 as a nonzero solution. In fact, 
if  {Pn}n%0 is the monic PS of  solutions to Eq. (4.14), then {P~(X)}n% 0 is also a monic PS satisfying 
the Eq. (4.20), which in this case, is the same as (4.14) so that {P~{X)}n~=0 = { n}n=O" 
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