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There is a one-to-one correspondence between �-quasi-cyclic codes
over a finite field Fq and linear codes over a ring R = Fq[Y ]/
(Y m − 1). Using this correspondence, we prove that every �-
quasi-cyclic self-dual code of length m� over a finite field Fq

can be obtained by the building-up construction, provided that
char(Fq) = 2 or q ≡ 1 (mod 4), m is a prime p, and q is a primitive
element of Fp . We determine possible weight enumerators of
a binary �-quasi-cyclic self-dual code of length p� (with p a prime)
in terms of divisibility by p. We improve the result of Bonnecaze
et al. (2003) [3] by constructing new binary cubic (i.e., �-quasi-
cyclic codes of length 3�) optimal self-dual codes of lengths
30,36,42,48 (Type I), 54 and 66. We also find quasi-cyclic optimal
self-dual codes of lengths 40, 50, and 60. When m = 5, we obtain
a new 8-quasi-cyclic self-dual [40,20,12] code over F3 and a new
6-quasi-cyclic self-dual [30,15,10] code over F4. When m = 7, we
find a new 4-quasi-cyclic self-dual [28,14,9] code over F4 and
a new 6-quasi-cyclic self-dual [42,21,12] code over F4.

© 2011 Elsevier Inc. All rights reserved.

0. Introduction

Self-dual codes have been one of the most interesting classes of linear codes over finite fields
and in general over finite rings. They interact with other areas including lattices [12,13], invariant
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Table 1
Binary extremal cubic self-dual codes of lengths up to 66.

Length n Highest min. wt. No. of extremal Ref.
cubic self-dual codes

6 2 1 Section 3
12 4 1 Section 3
18 4 1 Section 3
24 8 1 Section 3
30 6 8 Section 3 [3,36]
36 8 13 Section 3 [3,15,25]
42 8 1569 Section 3 [3,5,6]
48 10 � 4 Section 3 [3]
54 10 � 7 Section 3 [3]
60 12 � 3 [3]
66 12 � 7 Section 3 [3]

theory [37], and designs [1]. On the other hand, quasi-cyclic codes have been one of the most prac-
tical classes of linear codes. Linear codes which are quasi-cyclic and self-dual simultaneously are an
interesting class of codes, and this class of codes is our main topic. We refer to [28] for a basic
discussion of codes.

From the module theory over rings, quasi-cyclic codes can be considered as modules over the
group algebra of the cyclic group. For a special ring R = Fq[Y ]/(Y m −1), Ling and Solé [32,33] consider
linear codes over a ring R , where m is a positive integer coprime to q, and they use a correspondence
φ between (self-dual) quasi-cyclic codes over Fq and (self-dual, respectively) linear codes over R . We
call quasi-cyclic codes over Fq cubic, quintic, or septic codes depending on m = 3,5, or 7, respectively.
Bonnecaze et al. [3] studied binary cubic self-dual codes, and Bracco et al. [7] considered binary
quintic self-dual codes.

In this paper, we focus on construction and classification of quasi-cyclic self-dual codes over a
finite field Fq under the usual permutation or monomial equivalence. We note that the equivalence
under the correspondence φ may not be preserved; two inequivalent linear codes over a ring R under
a permutation equivalence may correspond to two equivalent quasi-cyclic codes over a finite field
Fq under a permutation or monomial equivalence. Hence, we first construct all self-dual codes over
the ring R using a building-up construction. Rather than considering the equivalence of these codes
over R , we consider the equivalence of their corresponding quasi-cyclic self-dual codes over Fq to get
a complete classification of quasi-cyclic self-dual codes over Fq .

We prove that every �-quasi-cyclic self-dual code of length m� over Fq can be obtained by the
building-up construction, provided that char(Fq) = 2 or q ≡ 1 (mod 4), m is a prime p, and q is a
primitive element of Fp . Our result shows that the building-up construction is a complete method for
constructing all �-quasi-cyclic self-dual codes of length m� over Fq subject to certain conditions of m
and q. We determine possible weight enumerators of a binary �-quasi-cyclic self-dual code of length
p� with p a prime in terms of divisibility by p.

By employing our building-up constructions, we classify binary cubic self-dual codes of lengths
up to 24, and we construct binary cubic optimal self-dual codes of lengths 30,36,42,48 (Type I),
54 and 66. We point out that the advantage of our construction is that we can classify all binary
cubic self-dual codes in a more efficient way without searching for all binary self-dual codes. We
summarize our result on the classification of binary cubic extremal self-dual codes in Table 1. We
also give a complete classification of all binary quintic self-dual codes of even lengths 5� � 30, and
construct such optimal codes of lengths 40, 50, and 60. For various values of m and q, we obtain
quintic self-dual codes of length 5� over F3 and F4 and septic self-dual codes of length 7� over
F2, F4, and F5 which are optimal or have the best known parameters. In particular, we find a new
quintic self-dual [40,20,12] code over F3 and a new quintic self-dual [30,15,10] code over F4. We
also obtain a new septic self-dual [28,14,9] code over F4 and a new septic self-dual [42,21,12] code
over F4.

This paper is organized as follows. Section 1 contains some basic notations and definitions, and
Section 2 presents the building-up construction method of quasi-cyclic self-dual codes over finite
fields. In Section 3, we construct binary quasi-cyclic self-dual codes, and we find the cubic codes and
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quintic codes. In Section 4, we construct quasi-cyclic self-dual codes over various fields such as F2, F3,
F4, and F5, and we obtain the cubic codes, the quintic codes and the septic codes. We use Magma [8]
for computations.

1. Preliminaries

We briefly introduce some basic notions about quasi-cyclic self-dual codes. For more detailed de-
scription, we refer to [32,33].

Let R be a commutative ring with identity. A linear code C of length n over R is defined to be an
R-submodule of Rn; in particular, if R is a finite field Fq of order q, then C is a vector subspace of Fn

q

over Fq. The dual of C is denoted by C⊥ , C is self-orthogonal if C ⊆ C⊥ , and self-dual if C = C⊥ . We
denote the standard shift operator on Rn by T . A linear code C is said to be quasi-cyclic of index � or
�-quasi-cyclic if it is invariant under T � . A 1-quasi-cyclic code means a cyclic code. Throughout this
paper, we assume that the index � divides the code length n.

Let m be a positive integer coprime to the characteristic of Fq , Fq[Y ] be a polynomial
ring, and R := R(Fq,m) = Fq[Y ]/(Y m − 1). Then it is shown [32] that there is a one-to-one
correspondence between �-quasi-cyclic codes over Fq of length �m and linear codes over R
of length �, and the correspondence is given by the map φ defined as follows. Let C be
a quasi-cyclic code over Fq of length lm and index l with a codeword c denoted by c =
(c00, c01, . . . , c0,�−1, c10, . . . , c1,�−1, . . . , cm−1,0, . . . , cm−1,�−1). Let φ be a map φ : Fq

�m → R� defined
by

φ(c) = (
c0(Y ), c1(Y ), . . . , c�−1(Y )

) ∈ R�,

where c j(Y ) = ∑m−1
i=0 ci j Y i ∈ R, for j = 0, . . . , � − 1. We denote by φ(C) the image of C under φ.

A conjugation map − on R is defined as the map that sends Y to Y −1 = Y m−1 and acts as the
identity map on Fq , and it is extended Fq-linearly. On R� , we define the Hermitian inner product by
〈x,y〉 = ∑�−1

j=0 x j y j for x = (x0, . . . , x�−1) and y = (y0, . . . , y�−1).

It is proved [32] that for a,b ∈ F�m
q , T �k(a) · b = 0 for all 0 � k � m − 1 if and only if

〈φ(a),φ(b)〉 = 0, where · denotes the standard Euclidean inner product. From this fact, it follows
that φ(C)⊥ = φ(C⊥), where φ(C)⊥ is the dual of φ(C) with respect to the Hermitian inner product,
and C⊥ is the dual of C with respect to the Euclidean inner product. In particular, a quasi-cyclic code
C over Fq is self-dual with respect to the Euclidean inner product if and only if φ(C) is self-dual over
R with respect to the Hermitian inner product [32]. Two linear codes C1 and C2 over R are equivalent
if there is a permutation of coordinates of C1 sending C1 to C2. Similarly, two linear codes over Fq are
equivalent if there is a monomial mapping sending one to another. Note that the equivalence of two
linear codes C1 and C2 over R implies a permutation equivalence of quasi-cyclic linear codes φ−1(C1)

and φ−1(C2) over Fq , but not conversely in general.

2. Construction of quasi-cyclic self-dual codes

Throughout this paper, let R = Fq[Y ]/(Y m − 1), and self-dual (or self-orthogonal) codes over R
means self-dual (or self-orthogonal) codes with respect to the Hermitian inner product.

We begin with the following lemma regarding the length of self-dual codes.

Lemma 2.1. Let R = Fq[Y ]/(Y m − 1).

(i) If char(Fq) = 2 or q ≡ 1 (mod 4), then there exists a self-dual code over R of length � if and only if 2 | �.
(ii) If q ≡ 3 (mod 4), then there exists a self-dual code over R of length � if and only if 4 | �.

Proof. To prove (i) and (ii), we observe the following. Suppose C is a self-dual code of length � over R .
We may assume that C1 in the decomposition of C in [32, Theorem 4.2] is a Euclidean self-dual code
over Fq of length �.
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For (i), suppose that char(Fq) = 2 or q ≡ 1 (mod 4). By the above observation, 2 | �. Conversely, let
� = 2k. We take a Euclidean self-dual code over Fq of length 2 using the following generator matrix:
[1 c], where c2 = −1. We can see that this matrix generates a self-dual code C over R of length 2.
Then the direct sum of the k copies of C is a self-dual code over R of length � = 2k.

For (ii), let q ≡ 3 (mod 4). It is well known [41, p. 193] that if q ≡ 3 (mod 4) then a self-dual code
of length n exists if and only if n is a multiple of 4. Hence by the above observation, 4 | �. Conversely,
let � = 4k for some positive integer k. It is known [29, p. 281] that if q is a power of an odd prime
with q ≡ 3 (mod 4), then there exist nonzero α and β in Fq such that α2 +β2 + 1 = 0 in Fq . We take
a Euclidean self-dual code over Fq of length 4 with the following generator matrix:

G =
[

1 0 α β

0 1 −β α

]
,

where α2 + β2 + 1 = 0 in Fq . We can see that this matrix generates a self-dual code C over R of
length 4. Then the direct sum of the k copies of C is a self-dual code over R of length � = 4k. �

The following theorem is the building-up constructions for self-dual codes over R , equivalently,
�-quasi-cyclic self-dual codes over Fq for any odd prime power q. The proof is similar to that of [30],
so the proof is omitted.

Theorem 2.2. Let C0 be a self-dual code over R of length 2� and G0 = (ri) be a k × 2� generator matrix for C0 ,
where ri is the ith row of G0 , 1 � i � k.

(i) Assume that char(Fq) = 2 or q ≡ 1 (mod 4).
Let c be in R such that cc = −1, x be a vector in R2� with 〈x,x〉 = −1, and yi = −〈ri,x〉 for 1 � i � k.
Then the following matrix

G =

⎡
⎢⎢⎢⎣

1 0 x

y1 cy1 r1
...

...
...

yk cyk rk

⎤
⎥⎥⎥⎦

generates a self-dual code C over R of length 2� + 2.
(ii) Assume that q ≡ 3 (mod 4) and � is even.

Let α and β be in R such that αα + ββ = −1 and αβ = αβ . Let x1 and x2 be vectors in R2� such
that 〈x1,x2〉 = 0 in R and 〈xi,xi〉 = −1 in R for each i = 1,2. For each i,1 � i � k, let si = −〈ri,x1〉,
ti = −〈ri,x2〉, and yi = (si, ti,αsi + βti, βsi − αti) be a vector of length 4. Then the following matrix

G =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 x1
0 1 0 0 x2

y1 r1
...

...

yk rk

⎤
⎥⎥⎥⎥⎥⎦

generates a self-dual code C over R of length 2� + 4.

The following theorem shows that the converses of Theorem 2.2 hold for self-dual codes over R
with some restrictions. It can be proved in a similar way as in [30], thus we omit the proof. The rank
of a code C means the minimum number of generators of C . The free rank of C is defined to be the
maximum of the ranks of free R-submodules of C .
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Theorem 2.3.

(i) Assume that char(Fq) = 2 or q ≡ 1 (mod 4).
Any self-dual code C over R of length 2� + 2 with free rank at least two is obtained from some self-dual
code over R of length 2� by the construction method in Theorem 2.2(i).

(ii) Assume that q ≡ 3 (mod 4) and � is even.
Any self-dual code C over R of length 2� + 4 with free rank at least four is obtained from some self-dual
code over R of length 2� by the construction method in Theorem 2.2(ii).

As seen in Theorem 2.3, there is some restriction (i.e. minimum free rank) for the converses. In
order to release this restriction, in Theorem 2.7 we find certain conditions of m and q under which the
converse is true without the restriction. The following lemma is needed for the proof of Lemma 2.6
and Theorem 2.7, and it finds the explicit criterion for Y m − 1 to have exactly two irreducible factors
over Fq[Y ], and it also characterizes the unit group of R .

Lemma 2.4.

(i) Y m − 1 has exactly two irreducible factors over Fq[Y ] if and only if m is a prime p and q is a primitive
element of Fp .

(ii) Assume that the condition in (i) holds. Then the unit group R∗ of R consists of f (Y ) in Fq[Y ] of degree �
p − 1 such that f (1) ∈ F∗

q and Φp(Y ) � f (Y ), where Φp(Y ) = Y p−1 + Y p−2 +· · ·+ Y + 1. Equivalently,
f (Y ) in Fq[Y ] of degree � p − 1 is not a unit in R if and only if Y − 1 | f (Y ) or Φp(Y ) | f (Y ) in Fq[Y ].
Hence we have |R∗| = (q − 1)(qp−1 − 1).

(iii) Assume that the condition in (i) holds. Then the ideal 〈Y − 1〉 of R has cardinality qp−1 and the ideal
〈Φp(Y )〉 of R has cardinality q. That is, dimFq 〈φ−1(Y − 1)〉 = p − 1 and dimFq 〈φ−1(Φp(Y ))〉 = 1.

Proof. For (i), we note that a primitive mth root of unity ζ belongs to some extension field of Fq as
(m,q) = 1. There exists a prime divisor p of m. If p 
= m then Y m − 1 = (Y − 1)Φp(Y )( Y m−1

Y p−1 ) has at
least three irreducible factors over Fq . Thus, if Y m − 1 has exactly two irreducible factors over Fq[Y ],
then we should have m = p. If m = p, then Φp(Y ) is irreducible if and only if all the roots of Φp(Y )

are Galois conjugates over Fq , or equivalently, q is a primitive element of Fp . The other direction is
obvious.

To show (ii), by the Chinese Remainder Theorem we have the following canonical isomorphism

ψ : R → Fq[Y ]/(Y − 1) ⊕ Fq[Y ]/(Φp(Y )
)
.

Then f (Y ) is a unit of R if and only if ψ( f (Y )) is a unit, equivalently, f (1) ∈ F∗
q and Φp(Y ) � f (Y ),

so the result follows.
(iii) is clear. �

Lemma 2.5. Let F1 and F2 be finite fields, and consider a ring R = F1 × F2 . Let ei ∈ F ×
i for i = 1,2 and

f1 = (e1,0), f2 = (0, e2) ∈ R. Then every linear code over R has a generator matrix (up to permutation
equivalence) as follows:

G =
[ Ik1 A12 A13 A14 A15

O f1 Ik2 f2Mk2 B24 B25
O O O α Ik3 αD35

]
, (1)

where α ∈ { f1, f2}, Iki is the ki ×ki identity matrix i = 1,2,3, Mk2 is a k2 ×k2 diagonal matrix with elements
in the main diagonal not contained in R f1 , all the elements of B24 and B25 are 0 or nonunits in R, A1 j

( j = 2,3,4,5), D35 are matrices of appropriate size over R.
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Proof. We note that R = F1 × F2 = R f1 ⊕ R f2 is a commutative ring with unity 1R = (1,1), zero
0R = (0,0) and f1 f2 = 0R . In fact, the group R∗ of units of R is R − (R f1 ∪ R f2) = F ×

1 × F ×
2 , there

exist r1, r2 ∈ R such that 1R = r1 f1 + r2 f2, and R fi = 〈 f i〉 is a maximal ideal of R for i = 1,2.
Let G0 be a generator matrix for C . We first note that there are four possible cases for each row

of G0. The first case is that a row contains a unit of R, and the second one is that a row has no units
but it contains both a nonzero element in 〈 f1〉 and a nonzero element in 〈 f2〉. The third case is that a
row consists of only the elements in 〈 f1〉, and the last case is that a row contains only the elements
in 〈 f2〉. Below we transform G0 into G by column permutation and elementary row operations.

We notice that G0 can be transformed into G1 such that the first k1 rows (respectively the first
k1 columns) of G1 are equal to the first k1 rows (respectively the first k1 columns) of G in Eq. (1).
Deleting the first k1 rows and the first k1 columns of G1, we make G2. We may assume that there is
no unit component in G2 (up to row equivalence); otherwise we can increase k1.

Now assume that the first row of G2 is (g1 f1, g2 f2, . . .) with g1 = (a1,b1) /∈ 〈 f2〉 and g2 =
(a2,b2) /∈ 〈 f1〉. Since g1 = (a1,b1) /∈ 〈 f2〉, we have a1 
= 0, that is, a1 ∈ F ×

1 , and similarly, b2 ∈ F ×
2 .

Thus there exists g̃1 = (a−1
1 , c2) in R∗ such that g1 f1 g̃1 = f1. Multiplying the first row of G2 by g̃1,

we may assume that the first row of G2 is ( f1, g̃2 f2, . . .) with g̃2 := g̃1 g2 /∈ 〈 f1〉.
We claim that all the components of the first column of G2 are in 〈 f1〉. Suppose g = (a,b) is in

the first column of G2 with g /∈ 〈 f1〉. If g /∈ 〈 f2〉, then g is a unit, which is impossible. Thus, g ∈ 〈 f2〉.
This leads to a unit component in G2 (up to row equivalence).

We therefore may assume that all the components of the first column after f1 are zero by ele-
mentary row operations. Likewise each component of the second column of G2 is in 〈 f2〉. Suppose G2
has the following form

⎡
⎢⎣

f1 g̃2 f2 · · ·
0 g̃′

2 f2 · · ·
...

...

⎤
⎥⎦

for some g̃2 = (ã2, b̃2), g̃′
2 = (a′

2,b′
2) /∈ 〈 f1〉, where we have b̃2,b′

2 ∈ F ×
2 . We add (0,−b′

2/b̃2) × (the
first row of G2) to the second row of G2. Then we have

⎡
⎣ f1 g̃2 f2 · · ·

0 0 · · ·
...

...

⎤
⎦ .

In this way, we may assume that the components of the second column after f2 are all zero. Now
assume that the second row of G2 is (0,0, f1, g3 f2, . . .) for some g3 /∈ 〈 f1〉. In other words, G2 has
the following form

⎡
⎣ f1 g̃2 f2 β γ · · ·

0 0 f1 g3 f2 · · ·
...

...
...

...

⎤
⎦ .

By the same reasoning as above, we may assume that β = γ = 0. Repeating the above process, after
some possible column changes, we may thus assume that G2 has the following form for some k2.

[
f1 Ik2 f2Mk2 B

O O D

]
.

The rest of the theorem follows in a similar way. �
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Lemma 2.6. Let m be a prime p and q be a primitive element of Fp . Then a linear code C over the ring
R = Fq[Y ]/(Y m − 1) has a generator matrix G in the following form (up to permutation equivalence):

G =
[ Ik1 A12 A13 A14 A15

O (Y − 1)Ik2 Φp(Y )Mk2 B24 B25
O O O α Ik3 αD35

]
, (2)

where Iki is the ki × ki identity matrix i = 1,2,3, Mk2 is a k2 × k2 diagonal matrix with nonzero elements in
the main diagonal over Fq, all the elements of B24 and B25 are 0 or nonunits, and α is Y − 1 or Φp(Y ).

Proof. As m is a prime p and q is a primitive element of Fp , Y m − 1 has exactly two irreducible
factors Y − 1 and Φp(Y ) by Lemma 2.4(i). From Lemma 2.4 and Lemma 2.5, the result follows imme-
diately. �

The following theorem shows that the building-up construction is a complete method for con-
structing all �-quasi-cyclic self-dual codes of length m� over Fq subject to certain conditions of m
and q.

Theorem 2.7. Every self-dual code C over R = Fq[Y ]/(Y m − 1) of length 2� + 2 can be obtained by the
building-up construction given in Theorem 2.2 (up to permutation equivalence), provided that char(Fq) = 2
or q ≡ 1 (mod 4), m is a prime p, and q is a primitive element of Fp .

Equivalently, every �-quasi-cyclic self-dual code of length m� over Fq can be obtained as the image under
φ−1 of a code over R which is obtained by the building-up construction subject to the same conditions of m
and q as above.

Proof. Let C be a self-dual code of length 2� over R with a generator matrix of the form in (2). Then
we first show the following properties:

(i) k3 = 0 and k1 + k2 = �,
(ii) k1 � 1,

(iii) k1 � 2 if 2� � 4.

(i) By the Chinese Remainder Theorem, we have

R = Fq[Y ]
(Y p − 1)

∼= Fq[Y ]
(Y − 1)

⊕ Fq[Y ]
Φp(Y )

∼= Fq ⊕ F
p−1
q .

Define Ψ1 : R → Fq and Ψ2 : R → F
p−1
q as natural projections. We extend Ψ1 componentwise:

Ψ1 : M(R,m,n) → M(Fq,m,n),

where M(R,m,n) and M(Fq,m,n) are the m × n matrix spaces over R and Fq , respectively. Similarly
we extend Ψ2. By Theorem 4.2 in [32], C = C1 ⊕ C2, where C1 is a self-dual code over Fq and C2

is a self-dual code over F
p−1
q . By the proof of Theorem 6.1 in [33], Ψ1(G) and Ψ2(G) are generator

matrices for C1 and C2, respectively, so we have rank(Ψ1(G)) = � = rank(Ψ2(G)). If α = Y − 1, then
rank(Φ1(G)) = k1 + k2 and rank(Φ2(G)) = k1 + k2 + k3, which shows that k3 = 0 and k1 + k2 = �. It is
also shown similarly for the other case α = Φp(Y ).

(ii) We claim that there is a unit in the first component of some codeword in C . Suppose there is
no unit in the first component of all codewords in C . Then we assume that all the first components
are in 〈Y −1〉 or 〈Φp(Y )〉. This is because the first components cannot contain both a nonzero element
in 〈Y − 1〉 and a nonzero element 〈Φp(Y )〉, since some R-linear combination of those two elements
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is a unit in R by Lemma 2.4(ii). If all the first components are in 〈Y − 1〉, then (Φp(Y ),0,0, . . . ,0) is
in C⊥ = C which is a contradiction. Similarly, if all the first components are in 〈Φp(Y )〉, then (Y −
1,0,0, . . . ,0) is in C⊥ = C which is a contradiction. Therefore there is a unit in the first component
of some codeword in C . Hence k1 � 1.

(iii) From (i) and (ii) we have k1 � 1 and k3 = 0. We then first observe that the column size of the
last block of G in Eq. (2) is exactly k1 as k1 + k2 = �. To get a contradiction, suppose k1 = 1. Then by
Lemma 2.6, G is of the following form with γ ,βi ∈ R (1 � i � � − 1);

G =

⎡
⎢⎢⎣

1 A12 A13 γ
0 β1
... (Y − 1)Ik2 Φp(Y )Mk2

...

0 β�−1

⎤
⎥⎥⎦ .

Let r2 be the second row of G with r2 = (0, Y − 1,0, . . . ,0, c1Φp(Y ),0, . . . ,0, β1) for some c1 in F∗
q .

Then

0 = 〈r2, r2〉 = (Y − 1)(Y − 1) + c2
1Φp(Y )Φp(Y ) + β1β1.

But, we can see that h(Y ) := (Y − 1)(Y − 1) + c2
1Φp(Y )Φp(Y ) = (2 − Y − Y ) + c2

1Φp(Y )Φp(Y ) is a
unit in R by Lemma 2.4; in fact, h(1) = p2c2

1 ∈ F∗
q and 2 − Y − Y = −(Y p−1 + Y − 2) is not divisible

by Φp(Y ), and so Φp(Y ) � h(Y ). Therefore, β1β1 is a unit in R, and hence β1 is a unit. This is a
contradiction because β1 is 0 or a nonunit by Eq. (2). Therefore k1 � 2.

Now suppose that C is a self-dual code over R of length 2� + 2. Then k1 � 2 by (iii) above. Hence
Eq. (2) gives a generator matrix in (i) of Theorem 2.3. Thus it follows from (i) of Theorem 2.3 that
C is obtained from some self-dual code over R of length 2� by the construction in (i) of Theo-
rem 2.2. �

What follows shows that in the binary cubic self-dual codes we can eliminate the restriction for
the converse of the construction in Theorem 2.2 in other words, it shows that any binary cubic self-
dual codes can be found by the building-up construction in Theorem 2.2.

Corollary 2.8. Let R = F2[Y ]/(Y 3 − 1). Let C be a self-dual code over R of length 2� + 2. Then C is obtained
from some self-dual code over R of length 2� by the construction method in Theorem 2.2 (up to equivalence).

3. Construction of binary quasi-cyclic self-dual codes

In this section we construct binary cubic quasi-cyclic self-dual codes and binary quintic quasi-cyclic
self-dual codes by using Theorem 2.2.

3.1. Binary cubic self-dual codes

A. Bonnecaze et al. [3] have studied binary cubic self-dual codes, and they have given a partial list
of binary cubic self-dual codes of lengths � 72 by combining binary self-dual codes and Hermitian
self-dual codes.

Using Corollary 2.8, we find a complete classification of binary cubic self-dual codes of lengths
up to 24 (up to permutation equivalence). To save space, we post the classification up to n = 30
in [31].

We note that the classification of binary self-dual codes of lengths up to 32 was given by Pless
and Sloane [39] and Conway, Pless and Sloane [10]; hence it is possible to classify all binary cubic
self-dual codes of length 32.

Below is the summary.
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Theorem 3.1. Up to permutation equivalence:

(i) There is a unique binary cubic self-dual code of length 6.
(ii) There are exactly two binary cubic self-dual codes of length 12, one of which is extremal.

(iii) There are exactly three binary cubic self-dual codes of length 18, one of which is extremal.
(iv) There are exactly sixteen binary cubic self-dual codes of length 24, where the extended Golay code and the

odd Golay code of length 24 are obtained.

For even � � 10 we have tried to construct as many codes as possible due to computational com-
plexity. Recall that we have summarized the number of extremal cubic self-dual codes of lengths � 66
in Table 1.

Using the following lemma, we determine possible weight enumerators of a binary �-quasi-cyclic
self-dual code of length p� with p a prime.

Lemma 3.2. (See [34, Chapter 16, Section 6].) Let C be a binary code and H any subgroup of Aut(C). If Ai is
the total number of codewords in C of weight i, and Ai(H) is the number of codewords which are fixed by some
non-identity element of H, then

Ai ≡ Ai(H)
(
mod |H|).

We remark that in [34, Chapter 16, Section 6] Ai(H) is defined as the number of codewords which
are fixed by some element of H . Since the identity of H always fixes any codeword, we need to
consider some non-identity element of H . Thus the codewords of weight i can be divided into two
classes, those fixed by some non-identity element of H , and the rest. Then just follow the proof of
[34, Chapter 16, Section 6].

Corollary 3.3. Let C be a binary �-quasi-cyclic self-dual code of length p� with p a prime. If the weight i is not
divisible by p, then Ai is divisible by p. In particular, Ad is a multiple of p if d is not divisible by p.

Proof. We know from [32, Proposition A.1] that if p denotes a prime, a binary code C of length �p is
�-quasi-cyclic if and only if Aut(C) contains a fixed-point free (fpf) permutation of order p. Hence C
contains an fpf permutation σ of order p. Let H = 〈σ 〉 whose order is p. Since σ is an fpf of order p
and any codeword of weight i with p � i cannot be fixed by any non-identity element of H , we have
Ai(H) = 0. Therefore by the above lemma, Ai ≡ 0 (mod p). �
(i) � = 10, [30,15,6] codes.

There are three weight enumerators for self-dual [30,15,6] codes [11]:

W1 = 1 + 19y6 + 393y8 + 1848y10 + 5192y12 + · · · ,
W2 = 1 + 27y6 + 369y8 + 1848y10 + 5256y12 + · · · ,
W3 = 1 + 35y6 + 345y8 + 1848y10 + 5320y12 + · · · .

It is known [10,11] that there are precisely three codes with W1, a unique code with W2, and
precisely nine codes with W3. Only two cubic self-dual [30,15,6] codes are given in [3]. We have
constructed three codes with W1 whose group orders are 576,1152,18 432 respectively. We have
also constructed five codes with W3 whose group orders are 30,192,1440,40 320,645 120. To save
space, we post these codes in [31]. In fact, these are all the cubic self-dual [30,15,6] codes by the
following calculation.

On the other hand, we have noticed that Munemasa has posted all binary self-dual [30,15]
codes in [36]. Let Ci be the ith code in his list. By Magma, Ci has d = 6 if and only if i ∈



622 S. Han et al. / Finite Fields and Their Applications 18 (2012) 613–633
{11,61,98,119,174,184,217,350,379,397,419,487,697}. We have further checked that the three
codes with W1 denoted by C397, C419, C697 are all cubic and only five out of the nine codes with W3,
denoted by C119, C174, C184, C350, C487, are cubic. We have also checked that there is no cubic code
with W2.

Theorem 3.4. Up to permutation equivalence, there are exactly 8 binary cubic self-dual [30,15,6] codes.

(ii) � = 12, [36,18,8] codes.

There are two weight enumerators for self-dual [36,18,8] codes (refer to [11,35]):

W1 = 1 + 225y8 + 2016y10 + · · · ,
W2 = 1 + 289y8 + 1632y10 + · · · .

For cubic codes, p = 3 should divide A8 by Corollary 3.3. Therefore any binary cubic self-dual
[36,18,8] code has weight enumerator W1. Bonnecaze et al. [3] gave one code CSD36 with W1 and
group order 288. We have found 9 inequivalent cubic self-dual [36,18,8] codes with W1 and groups
orders 18,24,36,48,96,240,288,384, and 12 960. We have checked by Magma that our code with
group order 288 is equivalent to CSD36. Hence there are at least 9 extremal cubic self-dual codes of
length 36. These codes are posted in [31].

It is shown [35] that there are exactly 41 binary self-dual [36,18,8] codes and exactly 25 codes
among them have A8 = 225. However we have noticed that many generator matrices in [35] do not
produce self-dual codes. This was confirmed by Gaborit [14] and was corrected in his website [15].
From the corrected list of the binary self-dual [36,18,8] codes [15], we have checked that only 13 of
the 25 self-dual [36,18,8] codes with A8 = 22 are cubic by further investigating the existence of a
fixed point free automorphism of order 3 in each code. Let Ci be the ith code from the list of [15].
Then Ci is cubic if and only if i ∈ {1,3,6,7,8,9,11,12,14,16,21,22,25}.

Independently, Harada and Munemasa [25] have recently classified all binary self-dual [36,16]
codes including the extremal self-dual [36,16,8] codes. They confirmed that there are exactly 41
extremal self-dual [36,16,8] codes and exactly 25 codes among them have A8 = 225. Let Ci be the
ith code from the list of [25]. Then Ci is cubic if and only if i ∈ {1,4,12,13,15,16,19,21,24,26,27,

31,33}.

Theorem 3.5. Up to permutation equivalence, there are exactly 13 binary cubic self-dual [36,18,8] codes.

(iii) � = 14, [42,21,8] codes.

There are two weight enumerators for self-dual [42,21,8] codes [5,27]:

W1 = 1 + 164y8 + 679y10 + · · · ,
W2 = 1 + (84 + 8β)y8 + (1449 − 24β)y10 + · · · (

β ∈ {0,1, . . . ,22,24,26,28,32,42}).
By Corollary 3.3, 3 should divide A8. Therefore any binary cubic self-dual [42,21,8] code has

weight enumerator W2, where 3 divides 84+8β , that is, β is a multiple of 3. Bonnecaze et al. [3] gave
one code with W2 and β = 0. We have found 14 inequivalent cubic self-dual [42,21,8] codes with
β = 0,3,6,9,12 with group orders 3,6,12, and 36. It is shown that if a self-dual code satisfies W2
with β ∈ {24,26,28,32,42}, it is equivalent to one of the eight codes in [5, Table 1]. If it is cubic, then
β should be β = 24 or 42 by the divisibility condition on β . For β = 24, there are three codes denoted
by C24,1, C24,2, C24,3 [5]. We have checked that only C24,2 has a fixed point free automorphism of
order 3; hence it is cubic. For β = 42, there is only one code denoted by C42 [5]. We have checked
that it has a fixed point free automorphism of order 3; hence it is cubic.
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We have found [6, Table 5] where it is shown that there are exactly 1569 binary self-dual
[42,21,8] codes with a fixed point free automorphism of order 3 and weight enumerator W2. This
table confirms the above calculations.

Theorem 3.6. Up to permutation equivalence, there are exactly 1569 binary cubic self-dual [42,21,8] codes.

(iv) � = 16, [48,24,10] codes.

There are two weight enumerators for self-dual [48,24,10] codes [27]:

W1 = 1 + 704y10 + 8976y12 + · · · ,
W2 = 1 + 768y10 + 8592y12 + · · · .

By Corollary 3.3, any binary cubic self-dual [48,24,10] code has weight enumerator W2. Bon-
necaze et al. [3] gave one code with W2 with no group order given. We have found four inequivalent
codes with W2 and group orders 3,6,12, and 24. See Table 2 for details, where the first column
gives the code name, the second and third columns the X vector and the base matrix in Theorem 2.2,
the fourth column the corresponding weight enumerator of the binary code, and the last column the
order of the automorphism group of the binary code.

(v) � = 18, [54,27,10] codes.

There are two weight enumerators for self-dual [48,24,10] codes [27]:

W1 = 1 + (351 − 8β)y10 + (5031 + 24β)y12 + · · · (0 � β � 43),

W2 = 1 + (351 − 8β)y10 + (5543 + 24β)y12 + (43 884 + 32β)y14 + · · · (12 � β � 43).

Any binary cubic self-dual [54,27,10] code has W1 or W2 as its weight enumerator; in both cases,
3 divides β with the same reasoning as above. Bonnecaze et al. [3] gave two codes, one with W1 and
β = 0 and the other with W2 and β = 12 (and group order 3). We have found four inequivalent
codes with W1 and β = 0,3,6,9 (all group orders 3) and three inequivalent codes with W2 and
β = 12,15,18 (all group orders 3). See Table 2 for more details.

(vi) � = 20.

We have not found any self-dual [60,30,12] codes even though there are at least three cubic
self-dual [60,30,12] codes [3] with W2 and β = 10 in the notation of [27].

(vii) � = 22, [66,33,12] codes.

There are three possible weight enumerators for self-dual [66,33,12] codes [27]:

W1 = 1 + 1690y12 + 7990y14 + · · · ,
W2 = 1 + (858 + 8β)y12 + (18 678 − 24β)y14 + · · · (0 � β � 778),

and

W3 = 1 + (858 + 8β)y12 + (18 166 − 24β)y14 + · · · (14 � β � 756).
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Table 2
Binary extremal Type I cubic self-dual codes of length n = 48,54,66.

Codes Cn,i X vector Using gen. Weight |Aut|
matrix enumerator

C48,1
(
Y , Y + 1, Y 2 + 1, Y 2,0,1,0, G14 W2 3

Y 2,0, Y 2 + Y ,0, Y 2 + Y , Y 2,0
)

C48,2
(
Y 2 + Y ,0, Y 2 + Y + 1,1, Y ,1, Y + 1, G14 W2 24

Y 2 + 1, Y 2 + 1,1, Y 2 + Y + 1,1, Y 2, Y 2
)

C48,3
(
Y 2, Y 2 + Y + 1, Y 2,0, Y ,0, Y 2 + Y + 1, G14 W2 12

Y 2 + Y ,0, Y + 1, Y , Y 2 + 1, Y , Y 2 + 1
)

C48,4
(
0,0, Y 2 + Y , Y 2 + Y + 1, Y + 1, Y , G14 W2 6

1, Y 2 + Y , Y 2 + 1, Y 2, Y + 1, Y 2, Y ,1
)

C54,1
(
Y 2 + Y + 1, Y 2 + 1, Y 2 + 1, Y 2 + 1, Y 2 + 1, Y 2 + Y , Y 2 + Y + 1, G16 W2, β = 18 3

Y 2 + Y + 1, Y 2 + Y , Y 2,0, Y + 1,1,0, Y 2 + Y + 1, Y 2 + Y + 1
)

C54,2
(
Y + 1, Y + 1, Y + 1,1, Y + 1,1, Y 2 + Y + 1, Y , Y 2, G16 W1, β = 9 3

Y 2 + Y , Y 2,1, Y + 1, Y 2,1, Y + 1
)

C54,3
(
Y , Y 2, Y + 1,0,1, Y 2, Y , Y 2 + 1,1, Y 2 + Y ,1, Y , G16 W2, β = 15 3

Y 2 + Y + 1,1, Y 2 + Y + 1, Y 2 + 1
)

C54,4
(
Y 2 + Y , Y 2 + Y + 1, Y 2 + Y ,1, Y 2 + 1, Y + 1,0, Y 2 + Y , G16 W1, β = 3 3

Y 2,1,1,0, Y 2 + 1, Y ,1, Y 2 + 1
)

C54,5
(
1, Y , Y , Y , Y + 1, Y 2, Y ,0, Y + 1, Y 2 + Y , Y 2, G16 W1, β = 0 3

Y 2 + Y + 1, Y 2, Y 2 + Y ,0, Y + 1
)

C54,6
(
Y 2,0, Y 2, Y 2 + Y + 1, Y 2 + Y ,0,0, G16 W2, β = 12 3

Y 2 + 1,0, Y 2 + Y , Y ,0, Y 2, Y 2 + Y , Y + 1,0
)

C54,7
(
Y 2 + Y + 1, Y 2 + Y , Y 2 + Y , Y + 1, Y , Y 2, Y 2 + Y , Y 2 + Y + 1, G16 W1, β = 6 3

Y 2 + Y + 1, Y 2 + 1, Y 2 + Y , Y 2, Y 2 + 1, Y 2 + Y + 1, Y + 1,0
)

C66,1
(
Y 2 + 1,1, Y + 1,1,0,0, Y 2 + Y + 1,0,1, Y 2, G20 W2, β = 46 3

1, Y , Y + 1,1,1, Y 2 + Y ,0, Y + 1,0,0
)

C66,2
(
Y 2 + Y + 1, Y 2 + Y + 1,0,1, Y , Y 2, Y 2,1, Y 2 + Y + 1, Y 2 + Y + 1, G20 W2, β = 17 3

Y 2 + 1, Y 2, Y 2 + 1,0, Y 2 + Y + 1, Y 2 + Y + 1, Y 2 + 1,0, Y , Y + 1
)

C66,3
(
0,0, Y 2 + Y ,1, Y 2 + Y , Y 2 + Y + 1, Y + 1,1, Y + 1, Y , Y 2 + Y + 1, G20 W2, β = 23 3

Y , Y 2 + 1, Y + 1, Y 2, Y + 1, Y + 1, Y 2 + Y + 1, Y , Y + 1
)

C66,4
(
Y 2, Y 2 + 1, Y 2, Y 2, Y + 1,0,1,0,1, Y 2 + 1, Y 2 + 1, G20 W2, β = 26 3

1, Y 2 + Y , Y + 1,1, Y , Y + 1, Y 2 + 1,0, Y 2
)

C66,5
(
Y , Y , Y 2, Y 2 + 1, Y + 1, Y ,0, Y + 1, Y 2 + Y + 1,0, Y 2 + 1, G20 W2, β = 43 3

Y 2 + Y + 1,1, Y , Y 2 + Y + 1, Y 2 + Y ,0, Y 2 + 1, Y 2 + Y ,0
)

By Corollary 3.3, any binary cubic self-dual [66,33,12] code should have weight enumerator W2
with β in the given range as above since A14 should be divisible by 3. Bonnecaze et al. [3] gave
two codes with W2 and β = 21,30. Using G20 with various values of X in Table 2, we have con-
structed five inequivalent codes with W2 and β = 17,23,26,43,46. All have automorphism group of
order 3.
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The following generator matrices G14, G16, and G20 are used in Table 2 for constructing binary
extremal cubic self-dual codes of n = 48,54,66

G14 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1,0, Y 2 + Y , Y + 1,1, Y , Y 2 + Y + 1, Y , Y ,0, Y 2 + Y , Y 2,1,0

Y , Y ,1,0, Y 2, Y 2 + Y + 1, Y 2 + Y , Y 2 + Y + 1, Y 2 + Y + 1, Y 2 + 1, Y 2, Y + 1, Y , Y

Y 2 + 1, Y 2 + 1,0,0,1,0,0, Y 2 + Y , Y , Y 2, Y 2 + 1, Y , Y 2 + Y + 1, Y 2 + Y + 1

1,1, Y 2 + 1, Y 2 + 1, Y 2 + 1, Y 2 + 1,1,0, Y 2, Y 2 + Y , Y 2, Y 2 + Y + 1, Y 2 + 1, Y 2 + Y

1,1,1,1,0,0, Y 2 + Y + 1, Y 2 + Y + 1,1,0, Y + 1, Y 2 + 1, Y 2 + Y , Y 2 + Y + 1

Y 2 + Y + 1, Y 2 + Y + 1, Y , Y ,1,1, Y + 1, Y + 1,1,1,1,0, Y + 1, Y 2 + Y + 1

Y 2, Y 2,1,1, Y 2 + Y + 1, Y 2 + Y + 1, Y 2, Y 2, Y 2, Y 2, Y , Y ,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

G16 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1,0, Y 2 + Y ,0, Y 2, Y 2, Y 2 + Y + 1, Y + 1,1, Y , Y 2, Y 2,1, Y 2, Y + 1,0

Y + 1, Y + 1,1,0, Y 2, Y ,1, Y 2, Y 2 + 1,1, Y , Y 2, Y 2 + Y + 1, Y , Y + 1, Y + 1

Y , Y , Y + 1, Y + 1,1,0, Y 2, Y 2 + Y + 1, Y 2 + Y , Y 2 + Y + 1, Y 2 + Y + 1, Y 2 + 1, Y 2, Y + 1, Y , Y

Y 2 + Y , Y 2 + Y , Y 2 + Y , Y 2 + Y ,0,0,1,0,0, Y 2 + Y , Y , Y 2, Y 2 + 1, Y , Y 2 + Y + 1, Y 2 + Y + 1

0,0,1,1, Y 2 + 1, Y 2 + 1, Y 2 + 1, Y 2 + 1,1,0, Y 2, Y 2 + Y , Y 2, Y 2 + Y + 1, Y 2 + 1, Y 2 + Y

1,1, Y 2 + Y , Y 2 + Y ,1,1,0,0, Y 2 + Y + 1, Y 2 + Y + 1,1,0, Y + 1, Y 2 + 1, Y 2 + Y , Y 2 + Y + 1

Y + 1, Y + 1, Y 2 + Y + 1, Y 2 + Y + 1, Y , Y ,1,1, Y + 1, Y + 1,1,1,1,0, Y + 1, Y 2 + Y + 1

Y 2 + Y + 1, Y 2 + Y + 1, Y , Y ,1,1, Y 2 + Y + 1, Y 2 + Y + 1, Y 2, Y 2, Y 2, Y 2, Y , Y ,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

G20 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1,0,0, Y 2 + 1, Y 2 + Y + 1, Y , Y 2, Y 2,1, Y 2 + Y ,0,1, Y + 1,1, Y 2, Y , Y + 1, Y 2 + 1,1,1

Y , Y ,1,0, Y + 1, Y + 1, Y + 1,1, Y + 1,1, Y 2 + Y + 1, Y , Y 2, Y 2 + Y , Y 2,1, Y + 1, Y 2,1, Y + 1

Y 2 + Y + 1, Y 2 + Y + 1, Y 2 + 1, Y 2 + 1,1,0, Y 2 + Y ,0, Y 2, Y 2, Y 2 + Y + 1, Y + 1,1, Y , Y 2, Y 2,1, Y 2, Y + 1,0

0,0,0,0, Y + 1, Y + 1,1,0, Y 2, Y ,1, Y 2, Y 2 + 1,1, Y , Y 2, Y 2 + Y + 1, Y , Y + 1, Y + 1

Y + 1, Y + 1, Y 2 + Y , Y 2 + Y , Y , Y , Y + 1, Y + 1,1,0, Y 2, Y 2 + Y + 1, Y 2 + Y , Y 2 + Y + 1, Y 2 + Y + 1, Y 2 + 1, Y 2, Y + 1, Y , Y

0,0, Y , Y , Y 2 + Y , Y 2 + Y , Y 2 + Y , Y 2 + Y ,0,0,1,0,0, Y 2 + Y , Y , Y 2, Y 2 + 1, Y , Y 2 + Y + 1, Y 2 + Y + 1

Y 2 + Y + 1, Y 2 + Y + 1,0,0,0,0,1,1, Y 2 + 1, Y 2 + 1, Y 2 + 1, Y 2 + 1,1,0, Y 2, Y 2 + Y , Y 2, Y 2 + Y + 1, Y 2 + 1, Y 2 + Y

Y + 1, Y + 1,1,1,1,1, Y 2 + Y , Y 2 + Y ,1,1,0,0, Y 2 + Y + 1, Y 2 + Y + 1,1,0, Y + 1, Y 2 + 1, Y 2 + Y , Y 2 + Y + 1

Y 2 + Y + 1, Y 2 + Y + 1, Y 2 + 1, Y 2 + 1, Y + 1, Y + 1, Y 2 + Y + 1, Y 2 + Y + 1, Y , Y ,1,1, Y + 1, Y + 1,1,1,1,0, Y + 1, Y 2 + Y + 1

Y 2 + Y + 1, Y 2 + Y + 1,1,1, Y 2 + Y + 1, Y 2 + Y + 1, Y , Y ,1,1, Y 2 + Y + 1, Y 2 + Y + 1, Y 2, Y 2, Y 2, Y 2, Y , Y ,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3.2. Binary quintic self-dual codes

In this subsection, we give the classification of binary quintic self-dual codes of even lengths up
to 30 (up to permutation equivalence) by using Theorem 2.7 since 2 is a primitive element of F5. Us-
ing the known classification of binary self-dual codes of lengths up to 30, one can also classify binary
quintic self-dual codes of these lengths. To save space, we post the classification result in [31]. We
know from [10, Table F] that there are exactly 13 optimal binary self-dual [30,15,6] codes with three
distinct weight enumerators W1, W2, W3 from Section 3.1. Exactly nine of them have the weight enu-
merator W3 = 1 + 35y6 + 345y8 + 1848y10 + 5320y12 +· · · . By Corollary 3.3, W3 is the only possible
weight enumerator for a binary extremal quintic self-dual code. We have checked that only four codes
are binary quintic optimal self-dual codes of length 30.

Theorem 3.7. Up to permutation equivalence:

(i) There is a unique quintic self-dual code of length 10.
(ii) There are exactly three quintic self-dual codes of length 20, two of which are extremal.

(iii) There are exactly eleven quintic self-dual codes of length 30, four of which are optimal.

Making successive random choices of x from G6,2 by using the building-up construction in Theo-
rem 2.2 with c = 1, we obtain G12 = [L | R], where L and R are given below
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L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 Y 4 + Y 2 + Y Y 4 + Y 3 + Y 2 + 1 Y 4 + Y 3 + Y 2 Y 3 + Y

Y 4 + Y 2 + Y Y 4 + Y 2 + Y 1 0 Y 4 + Y 2 Y 3 + Y + 1

Y 4 + Y 3 + Y 2 + Y + 1 Y 4 + Y 3 + Y 2 + Y + 1 Y 4 + Y 3 + Y + 1 Y 4 + Y 3 + Y + 1 1 0

Y 4 + Y 2 Y 4 + Y 2 1 1 Y 4 Y 4

Y 4 + Y 2 + 1 Y 4 + Y 2 + 1 Y 3 + 1 Y 3 + 1 Y 4 + Y 3 + Y 2 + Y Y 4 + Y 3 + Y 2 + Y

Y 4 + Y 2 + Y Y 4 + Y 2 + Y Y 3 + Y 2 + 1 Y 3 + Y 2 + 1 Y 4 + Y 2 + 1 Y 4 + Y 2 + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Y 4 + Y 3 + Y Y 4 + Y 2 + Y Y 4 + 1 Y 3 + Y 2 + Y Y 4 + Y 2 + Y Y

Y 2 + Y Y 4 + Y 3 + Y 2 + Y Y 4 + Y 3 + Y 2 + Y Y 2 + Y Y 4 + Y 3 Y 4 + Y 2

Y 4 + Y 3 + Y 2 Y 3 + Y Y Y 2 Y 3 + Y Y 4 + Y

1 0 0 0 Y + 1 Y 3 + Y + 1

Y 4 + Y 2 + 1 Y 4 + Y 2 + 1 1 0 0 1

Y 2 Y 2 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

We verify that the corresponding binary quintic self-dual code of G12 has parameters [60,30,12].
The deletion of the first two columns and the first row of G12 is denoted by G10, and similarly we
obtain G8 from G10. Their corresponding binary quintic self-dual codes have parameters [40,20,8]
(Type II) and [50,25,10]. We summarize their corresponding weight enumerators of G8, G10, G12
respectively as follows

1 + 285y8 + 21 280y12 + 239 970y16 + 525 504y20 + · · · ,
1 + 516y10 + 7720y12 + 55 880y14 + 291 990y16 + 1 077 265y18 + 2 810 424y20 + 5 287 640y22

+ 7 245 780y24 + · · · ,
1 + 3195y12 + 29 760y14 + 284 625y16 + 1 728 000y18 + 7 769 400y20 + 26 392 320y22

+ 67 226 760y24 + 130 060 800y26 + 193 151 475y28 + 220 449 152y30 + · · · .
The first one is the unique extremal weight enumerator, the second weight enumerator corre-

sponds to W2 with β = 2 in [27], and the third weight enumerator corresponds to W2 with β = 10
in [27]. The orders of the automorphism groups are 10, 5, and 20 respectively.

4. Construction of quasi-cyclic self-dual codes over various finite fields

In this section we find quasi-cyclic self-dual codes over F2, F3, F4 and F5 which are optimal or
have best known self-dual codes by applying the building-up construction in Theorem 2.2.

4.1. Cubic self-dual codes over F4 and F5

In [21], we have given cubic self-dual codes over F4 and F5 that are optimal or have best known
parameters. In particular, we have the following.

Theorem 4.1. There are at least two monomially inequivalent [24,12,9] self-dual codes over F5 , one of which
is cubic and denoted by CSD5

24 .

Applying Construction A [12], we can construct the odd Leech lattice O 24 using the idea in [24].
In [24, Proposition 4] it is shown that for a self-dual [24,12,d � 8] code C over F5, the corresponding
lattice A5(C) by Construction A is the odd Leech lattice O 24 if there is no codeword x ∈ C with
n0(x) = 14, n1(x) = 10, and n2(x) = 0, where ni(x) denotes the number of coordinates of x with ±i
for i = 0,1,2. We have calculated the complete weight enumerator of CSD5

24 by Magma and checked
that there is no such x in CSD5

24. Thus A5(CSD5
24) = O 24. Since it is known [12] that one of the two

even unimodular neighbors of O 24 is the Leech lattice Λ24, we have another way to construct Λ24
using our new code CSD5

24, rather than Q24 used in [38].
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4.2. Quintic self-dual codes over F3 and F4

In this section, we find more quintic self-dual codes over F3 and F4 which are optimal or best
known self-dual codes by using the building-up construction in Theorem 2.2.

• Case: q = 3.

Using (ii) of Theorem 2.2 with α = 1 and β = 1, we obtain the following I8 = [L | R]:

L =

⎡
⎢⎢⎣

1 0 0 0

0 1 0 0

Y 4 + 2Y 2 + Y 2Y 4 + 2Y 3 + Y 2Y 3 + 2Y 2 + 2Y 2Y 4 + Y 3 + 2Y 2

Y 4 + 2Y 3 + Y 2 + 2Y + 1 2Y 2 + Y Y 4 + 2Y 3 + 1 Y 4 + 2Y 3 + 2Y 2 + Y + 1

⎤
⎥⎥⎦ ,

R =

⎡
⎢⎢⎣

Y 2 + 1 2Y 4 + Y 2 + Y + 2 2Y 3 Y 4 + 2Y 3 + 2Y + 1
2Y 4 + Y 2 + Y + 2 2Y 4 + Y 3 + Y 2 + 2Y + 1 Y 4 + 2Y 3 + 2Y 2 + 1 Y 4 + 2Y 3 + Y + 1

Y 4 + Y 2 + 2 2Y 4 + Y 3 + 2Y 2 + 2Y + 1 Y 4 + 2Y 3 + 2Y 2 + Y Y 3 + 2Y + 1
2Y 4 + 2Y 3 + 2 2Y 4 + Y 3 + 2Y 2 + 2 Y 2Y 3 + 2Y 2 + Y + 2

⎤
⎥⎥⎦ .

We also obtain a 2 by 4 matrix I4 by deleting the first four columns and the first two rows
of I8. The corresponding ternary quasi-cyclic self-dual codes are all extremal self-dual codes. More
specifically, I4 induces a [20,10,6] code and I8 induces a [40,20,12] code, and the orders of the
automorphism groups are 28 · 3 · 5,10, respectively. There are exactly six extremal [20,10,6] self-dual
codes, and our code with the generator matrix I4 corresponds to 19th code in Table III [40].

We denote the code with the generator matrix I8 by QSD3
40. There are at least 118 [40,20,12]

ternary extremal self-dual codes. More precisely, the 15 codes with automorphisms of prime order
r > 5 were found in [26]. It was reported in [22] that there are five more [40,20,12] ternary extremal
self-dual codes. But we have checked that the codes C40,w1 and C40,w3 in [22, Table 6] have minimum
weight 9. Hence three codes were found in [22], and we have verified that these three codes are not
equivalent to QSD3

40. There are 100 codes in [23] whose automorphism group orders are greater than
|Aut(QSD3

40)| = 10. In what follows, we give the generator matrix [L | R] of QSD3
40:

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 2 0 1 0 0 0 0 0 1 0 2 0 0 0 0
0 1 0 0 2 1 1 1 0 0 0 0 1 2 0 1 0 0 0 0
0 0 0 0 2 1 0 1 1 1 2 0 0 2 1 2 2 0 2 2
1 0 1 1 2 2 0 2 2 1 0 1 0 0 1 1 1 2 0 2
0 0 0 0 0 2 0 1 1 0 0 0 1 2 0 1 0 0 0 0
0 0 0 0 2 2 1 1 0 1 0 0 2 1 1 1 0 0 0 0
1 2 0 2 1 2 1 0 0 0 0 0 2 1 0 1 1 1 2 0
1 0 1 1 2 2 0 0 1 0 1 1 2 2 0 2 2 1 0 1
0 0 0 0 0 0 2 2 0 0 0 0 0 2 0 1 1 0 0 0
0 0 0 0 0 1 2 2 0 0 0 0 2 2 1 1 0 1 0 0
0 2 2 1 0 1 2 1 1 2 0 2 1 2 1 0 0 0 0 0
2 0 2 2 2 1 0 2 1 0 1 1 2 2 0 0 1 0 1 1
0 0 0 0 1 1 0 0 0 0 0 0 0 0 2 2 0 0 0 0
0 0 0 0 1 1 2 0 0 0 0 0 0 1 2 2 0 0 0 0
2 0 2 2 1 2 2 0 0 2 2 1 0 1 2 1 1 2 0 2
1 2 0 2 0 2 0 2 2 0 2 2 2 1 0 2 1 0 1 1
0 0 0 0 0 1 0 2 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 2 0 1 0 0 0 0 1 1 2 0 0 0 0 0
1 1 2 0 0 2 1 2 2 0 2 2 1 2 2 0 0 2 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

2 1 0 1 0 0 1 1 1 2 0 2 0 2 0 2 2 0 2 2
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R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 2 0 1
1 1 2 0 0 0 0 0 0 1 2 2 0 0 0 0 2 2 1 1
1 2 2 0 0 2 2 1 0 1 2 1 1 2 0 2 1 2 1 0
0 2 0 2 2 0 2 2 2 1 0 2 1 0 1 1 2 2 0 0
0 1 0 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2 2
1 2 0 1 0 0 0 0 1 1 2 0 0 0 0 0 0 1 2 2
0 2 1 2 2 0 2 2 1 2 2 0 0 2 2 1 0 1 2 1
0 0 1 1 1 2 0 2 0 2 0 2 2 0 2 2 2 1 0 2
1 2 0 1 0 0 0 0 0 1 0 2 0 0 0 0 1 1 0 0
2 1 1 1 0 0 0 0 1 2 0 1 0 0 0 0 1 1 2 0
2 1 0 1 1 1 2 0 0 2 1 2 2 0 2 2 1 2 2 0
2 2 0 2 2 1 0 1 0 0 1 1 1 2 0 2 0 2 0 2
0 2 0 1 1 0 0 0 1 2 0 1 0 0 0 0 0 1 0 2
2 2 1 1 0 1 0 0 2 1 1 1 0 0 0 0 1 2 0 1
1 2 1 0 0 0 0 0 2 1 0 1 1 1 2 0 0 2 1 2
2 2 0 0 1 0 1 1 2 2 0 2 2 1 0 1 0 0 1 1
0 0 2 2 0 0 0 0 0 2 0 1 1 0 0 0 1 2 0 1
0 1 2 2 0 0 0 0 2 2 1 1 0 1 0 0 2 1 1 1
0 1 2 1 1 2 0 2 1 2 1 0 0 0 0 0 2 1 0 1
2 1 0 2 1 0 1 1 2 2 0 0 1 0 1 1 2 2 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As a summary, we have the following theorem.

Theorem 4.2. There are at least 119 monomially inequivalent self-dual [40,20,12] codes over F3 .

• Case: q = 4.

Applying a similar process as before up to code length � = 6 with c = 1, we find the following
J6 = [L | R]:

L =
⎡
⎣ 1 0 Y 4 + Y 3 + Y 2 + Y + 1

ωY 4 + ω2Y 3 + Y 2 + Y ωY 4 + ω2Y 3 + Y 2 + Y 1
ω2Y 4 + ω2Y 3 + ωY 2 + ωY + ω ω2Y 4 + ω2Y 3 + ωY 2 + ωY + ω ω2Y 2 + Y

⎤
⎦ ,

R =
[ Y 4 + Y 3 + ωY 2 + Y Y 4 + ωY 3 + ω2Y 2 + ω2Y + 1 ω2Y 4 + Y 3 + Y 2 + ω

0 Y 4 + Y 3 + Y 2 + Y + ω ω2Y 4 + Y 3 + ω2Y 2 + ωY
ω2Y 2 + Y Y 4 + Y 3 + Y 2 + Y + ω Y 4 + ωY 3 + ω2Y 2 + ω

]
,

where ω is a generator of F∗
4. The corresponding quaternary quasi-cyclic Euclidean self-dual codes

are all optimal or have the best known parameters. See [20] for the generator matrices of these qua-
ternary codes. By successively deleting the first two columns and the first row of J6, we obtain J4
and J2. More precisely, J2 induces a [10,5,4] code (optimal), J4 induces a [20,10,8] code (optimal),
and J6 induces a [30,15,10] code (best known). The quaternary code corresponding to J4 is equiva-
lent to XQ19 [42]. We denote the quaternary code corresponding to the generator matrix J6 by QSD4

30
whose generator matrix G(QSE4

30) is given below. We have computed that QSD4
30 has minimum dis-

tance 10, A10 = 1893, and the automorphism group of order 30. As far as we know, only one self-dual
[30,15,10] code over F4 was known before, and that code is the one denoted by ( f2;11;25) [17]. (It
was reported to us that the code denoted by ( f2;11;15) [17] is an error since it has minimum dis-
tance 6.) The code ( f2;11;25) has minimum distance 10, A10 = 1854, and the automorphism group
of order 90. Therefore the two codes QSD4

30 and ( f2;11;25) are not equivalent. We note that the
minimum Lee weight dL of these codes in the sense of [2] and [18] is 10 and that only one self-dual
[30,15,9] code over F4 with dL = 10 is given in [2, Table VIII].
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As a summary, we have the following theorem.

Theorem 4.3. There are at least two monomially inequivalent self-dual [30,15,10] codes over F4 .

G
(
QSD4

30

) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 w 0 0 1 1 w2 0 0 0 1 w w2 1 0 0 1 1 w 1 0 0 1 1 1 w2

0 0 1 0 w 0 1 1 0 0 1 w 1 1 0 0 1 w2 w2 w2 0 0 1 1 w w 0 0 1 w2

w w 0 0 w w w w 1 1 1 0 w w w2 w2 1 w2 w2 w2 0 0 1 w w2 w2 0 0 1 1

0 0 1 1 1 w2 1 0 1 0 1 w 0 0 1 1 w2 0 0 0 1 w w2 1 0 0 1 1 w 1

w w 0 0 1 w2 0 0 1 0 w 0 1 1 0 0 1 w 1 1 0 0 1 w2 w2 w2 0 0 1 1

w2 w2 0 0 1 1 w w 0 0 w w w w 1 1 1 0 w w w2 w2 1 w2 w2 w2 0 0 1 w

0 0 1 1 w 1 0 0 1 1 1 w2 1 0 1 0 1 w 0 0 1 1 w2 0 0 0 1 w w2 1

w2 w2 0 0 1 1 w w 0 0 1 w2 0 0 1 0 w 0 1 1 0 0 1 w 1 1 0 0 1 w2

w2 w2 0 0 1 w w2 w2 0 0 1 1 w w 0 0 w w w w 1 1 1 0 w w w2 w2 1 w2

0 0 1 w w2 1 0 0 1 1 w 1 0 0 1 1 1 w2 1 0 1 0 1 w 0 0 1 1 w2 0

1 1 0 0 1 w2 w2 w2 0 0 1 1 w w 0 0 1 w2 0 0 1 0 w 0 1 1 0 0 1 w

w w w2 w2 1 w2 w2 w2 0 0 1 w w2 w2 0 0 1 1 w w 0 0 w w w w 1 1 1 0

0 0 1 1 w2 0 0 0 1 w w2 1 0 0 1 1 w 1 0 0 1 1 1 w2 1 0 1 0 1 w

1 1 0 0 1 w 1 1 0 0 1 w2 w2 w2 0 0 1 1 w w 0 0 1 w2 0 0 1 0 w 0

w w 1 1 1 0 w w w2 w2 1 w2 w2 w2 0 0 1 w w2 w2 0 0 1 1 w w 0 0 w w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

4.3. Septic self-dual codes over F2 , F4 , and F5

In this section, we find septic self-dual codes over Fq which are optimal or have the best known
self-dual codes by using the building-up construction in Theorem 2.2.

• Case: q = 2.

We do a similar process as before up to the length � = 8 with c = 1, so we get K8 = [L | R] as
follows

L =
⎡
⎢⎢⎣

1 0 Y 4 + Y 3 + Y 2 Y 6 + Y 5 + Y 4 + Y 2 + Y + 1
Y 6 + Y 5 + Y 3 + Y 2 + 1 Y 6 + Y 5 + Y 3 + Y 2 + 1 1 0

Y 5 + Y + 1 Y 5 + Y + 1 Y 6 + Y 4 + Y 3 + Y 2 Y 6 + Y 4 + Y 3 + Y 2

Y 5 + Y 4 + Y 3 + Y + 1 Y 5 + Y 4 + Y 3 + Y + 1 Y 6 Y 6

⎤
⎥⎥⎦ ,

R =

⎡
⎢⎢⎣

Y 4 + Y Y 6 + Y 4 + Y 3 Y 6 + Y 3 + Y + 1 Y 6 + Y 5 + Y 4 + Y 3 + 1
Y 3 + 1 Y 4 + Y 3 + Y 2 + 1 Y 5 + Y 2 + Y Y 6 + Y 5 + Y 4 + 1

1 0 Y 6 + Y 4 + Y + 1 Y
Y 6 + Y 5 + Y 4 + Y 3 + Y 2 Y 6 + Y 5 + Y 4 + Y 3 + Y 2 Y 3 + Y 2 + 1 Y 3 + Y + 1

⎤
⎥⎥⎦ .

The corresponding binary quasi-cyclic self-dual codes are all optimal self-dual codes. By successively
deleting the first two columns and the first row of K8, we obtain K6, K4, and K2. More specifically,
K2 induces a [14,7,4] code, K4 induces a [28,14,6] code, K6 induces a [42,21,8] code, and K8
induces a Type II [56,28,12] code. The weight enumerator of the [42,21,8] code corresponds to W2
with β = 0 in [27].

• Case: q = 4.
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Doing a similar process as before up to the length � = 6 with c = 1, we find the following M6 =
[L | R]:

L =
⎡
⎣ 1 0 ωY 6 + ω2Y 5 + Y 3 + Y + ω

ω2Y 5 + 1 ω2Y 5 + 1 1
Y 6 + ω2Y 4 + ω2Y 2 + ω2Y + ω2 Y 6 + ω2Y 4 + ω2Y 2 + ω2Y + ω2 ω2Y 5 + Y 3 + Y 2 + Y + ω2

⎤
⎦ ,

R =
⎡
⎢⎣ω2Y 6 + Y 5 + ω2Y 4 + Y 2 + ωY + ω2 ω2Y 6 + ωY 5 + ωY 2 + ω2Y Y 6 + ωY 5 + Y 4 + ω2Y 3 + ω2Y + 1

0 ωY 6 + Y 5 + ω2Y 3 + ω2Y 2 Y 5 + ωY 4 + ωY 3 + ω2Y 2

ω2Y 5 + Y 3 + Y 2 + Y + ω2 Y 6 + ωY 5 + ωY 4 + Y 3 + ω2Y 2 + Y + ω2 ω2Y 6 + Y 5 + ω2Y 3 + ω2Y 2 + ω2

⎤
⎥⎦ .

The corresponding quaternary quasi-cyclic self-dual codes are all optimal or have the best known
parameters. By successively deleting the first two columns and the first row of M6, we obtain M4
and M2. More specifically, M2 induces an optimal self-dual [14,7,6] code over F4, M4 induces a
self-dual code over F4 with the best known parameters [28,14,9], and M6 induces a self-dual code
over F4 with the best known parameters [42,21,12]. We denote these codes by SSD4

14, SSD4
28, SSD4

42,
respectively. We verified that SSD4

14 is equivalent to QDC14 [16] which is the only known self-dual
[14,7,6] code over F4.

Only two self-dual [28,14,9] codes over F4 were known, and one is XQ27 [42] and the other
is DII,28 [2]. The number A9 of minimum weight codewords of XQ27 (DII,28, respectively) is 3276
(1092, respectively). On the other hand, our code SSD4

28 has A9 = 630. This shows that SSD4
28 is a new

code. Furthermore, we have checked that SSD4
28 is a Type II code over F4 with minimum Lee weight

dL = 12. We recall that a Euclidean self-dual code over F4 is called Type II if its binary image under
the Gray map φ is Type II (see [18]), where the Gray map φ from G F (4)n to G F (2)2n is defined as
φ(ωx + ωy) = (x,y) for x,y ∈ G F (2)n and (x,y) is the binary vector of length 2n. We have calculated
that |Aut(φ(SSD4

28))| = 7, |Aut(φ(DII,28))| = 28, and |Aut(φ(XQ27))| = 23 · 34 · 7 · 13.
We have also checked that both DII,28 and XQ27 are Type II codes over F4 with dL = 12. We

therefore find that there are at least three Lee-extremal Type II [28,14,dL = 12] codes over F4.
We are aware of two papers [4] and [9], in which six Euclidean self-dual [28,14,9] codes over F4

are known to exist. However their generator matrices and the number of minimum weight codewords
are not given explicitly. Hence we omit the equivalence check of their codes with SSD4

28.
For length 42, there has been only one self-dual [42,21,12] code over F4, denoted by

( f2;11;17) [17]. This code has A12 = 945, but our code SSD4
42 has A12 = 323 and dL = 12. Hence

they are inequivalent, and this implies that SSD4
42 is a new code.

In what follows, we give the generator matrix [L | R] of SSD4
28:

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 ω2 ω2 0 0
ω2 ω2 ω2 ω2 1 1 1 0 1 1 ω2 ω2 1 1
0 0 ω 0 1 0 0 0 0 0 0 0 0 0
0 0 1 ω2 ω2 ω2 ω2 ω2 1 1 1 0 1 1
0 0 1 1 0 0 ω 0 1 0 0 0 0 0
ω2 ω2 ω 1 0 0 1 ω2 ω2 ω2 ω2 ω2 1 1
0 0 0 ω 0 0 1 1 0 0 ω 0 1 0
0 0 ω 0 ω2 ω2 ω 1 0 0 1 ω2 ω2 ω2

0 0 ω2 ω 0 0 0 ω 0 0 1 1 0 0
1 1 1 ω2 0 0 ω 0 ω2 ω2 ω 1 0 0
0 0 ω2 ω2 0 0 ω2 ω 0 0 0 ω 0 0
1 1 ω2 ω2 1 1 1 ω2 0 0 ω 0 ω2 ω2

0 0 0 0 0 0 ω2 ω2 0 0 ω2 ω 0 0
2 2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

1 1 1 0 1 1 ω ω 1 1 1 ω 0 0
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R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω2 ω 0 0 0 ω 0 0 1 1 0 0 ω 0
1 ω2 0 0 ω 0 ω2 ω2 ω 1 0 0 1 ω2

ω2 ω2 0 0 ω2 ω 0 0 0 ω 0 0 1 1
ω2 ω2 1 1 1 ω2 0 0 ω 0 ω2 ω2 ω 1
0 0 0 0 ω2 ω2 0 0 ω2 ω 0 0 0 ω
1 0 1 1 ω2 ω2 1 1 1 ω2 0 0 ω 0
0 0 0 0 0 0 0 0 ω2 ω2 0 0 ω2 ω
ω2 ω2 1 1 1 0 1 1 ω2 ω2 1 1 1 ω2

ω 0 1 0 0 0 0 0 0 0 0 0 ω2 ω2

1 ω2 ω2 ω2 ω2 ω2 1 1 1 0 1 1 ω2 ω2

1 1 0 0 ω 0 1 0 0 0 0 0 0 0
ω 1 0 0 1 ω2 ω2 ω2 ω2 ω2 1 1 1 0
0 ω 0 0 1 1 0 0 ω 0 1 0 0 0
ω 0 ω2 ω2 ω 1 0 0 1 ω2 ω2 ω2 ω2 ω2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We also give the generator matrix [L | R] of SSD4
42 in the following:

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ω ω2 0 1 0 0 1 ω ω2 ω2 0 0 0 1 ω 0 0 0 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ω2 ω2 0 0 0
ω2 ω2 ω2 ω2 ω2 ω2 ω2 ω2 1 1 1 0 ω2 ω2 1 1 ω2 ω2 0 0 1
0 0 ω ω2 ω2 1 1 0 ω ω2 0 1 0 0 1 ω ω2 ω2 0 0 0
0 0 0 0 ω 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 ω2 ω2 ω2 ω2 ω2 ω2 ω2 ω2 ω2 1 1 1 0 ω2 ω2 1
0 0 ω2 1 ω ω 0 0 ω ω2 ω2 1 1 0 ω ω2 0 1 0 0 1
ω2 ω2 0 0 1 1 0 0 0 0 ω 0 1 1 1 0 0 0 0 0 0
0 0 ω2 ω2 ω 1 1 1 0 0 1 ω2 ω2 ω2 ω2 ω2 ω2 ω2 ω2 ω2 1
0 0 0 ω2 0 1 0 0 ω2 1 ω ω 0 0 ω ω2 ω2 1 1 0 ω
0 0 0 0 0 ω ω2 ω2 0 0 1 1 0 0 0 0 ω 0 1 1 1
ω2 ω2 0 0 ω 0 0 0 ω2 ω2 ω 1 1 1 0 0 1 ω2 ω2 ω2 ω2

0 0 1 0 0 ω2 0 0 0 ω2 0 1 0 0 ω2 1 ω ω 0 0 ω
0 0 0 0 ω2 ω 0 0 0 0 0 ω ω2 ω2 0 0 1 1 0 0 0
0 0 1 1 1 ω2 ω2 ω2 0 0 ω 0 0 0 ω2 ω2 ω 1 1 1 0
0 0 0 1 ω 0 0 0 1 0 0 ω2 0 0 0 ω2 0 1 0 0 ω2

0 0 0 0 ω2 ω2 0 0 0 0 ω2 ω 0 0 0 0 0 ω ω2 ω2 0
ω2 ω2 1 1 ω2 ω2 0 0 1 1 1 ω2 ω2 ω2 0 0 ω 0 0 0 ω2

0 0 1 ω ω2 ω2 0 0 0 1 ω 0 0 0 1 0 0 ω2 0 0 0
0 0 0 0 0 0 0 0 0 0 ω2 ω2 0 0 0 0 ω2 ω 0 0 0
ω2 ω2 1 1 1 0 ω2 ω2 1 1 ω2 ω2 0 0 1 1 1 ω2 ω2 ω2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ω2 0 0 0 ω2 0 1 0 0 ω2 1 ω ω 0 0 ω ω2 ω2 1
0 ω2 ω 0 0 0 0 0 ω ω2 ω2 0 0 1 1 0 0 0 0 ω 0
1 1 ω2 ω2 ω2 0 0 ω 0 0 0 ω2 ω2 ω 1 1 1 0 0 1 ω2

1 ω 0 0 0 1 0 0 ω2 0 0 0 ω2 0 1 0 0 ω2 1 ω ω
0 ω2 ω2 0 0 0 0 ω2 ω 0 0 0 0 0 ω ω2 ω2 0 0 1 1
1 ω2 ω2 0 0 1 1 1 ω2 ω2 ω2 0 0 ω 0 0 0 ω2 ω2 ω 1
ω ω2 ω2 0 0 0 1 ω 0 0 0 1 0 0 ω2 0 0 0 ω2 0 1
0 0 0 0 0 0 0 ω2 ω2 0 0 0 0 ω2 ω 0 0 0 0 0 ω
1 1 0 ω2 ω2 1 1 ω2 ω2 0 0 1 1 1 ω2 ω2 ω2 0 0 ω 0
ω2 0 1 0 0 1 ω ω2 ω2 0 0 0 1 ω 0 0 0 1 0 0 ω2

0 0 0 0 0 0 0 0 0 0 0 0 0 ω2 ω2 0 0 0 0 ω2 ω
ω2 ω2 ω2 ω2 ω2 1 1 1 0 ω2 ω2 1 1 ω2 ω2 0 0 1 1 1 ω2

ω2 ω2 1 1 0 ω ω2 0 1 0 0 1 ω ω2 ω2 0 0 0 1 ω 0
0 ω 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ω2 ω2

0 1 ω2 ω2 ω2 ω2 ω2 ω2 ω2 ω2 ω2 1 1 1 0 ω2 ω2 1 1 ω2 ω2

1 ω ω 0 0 ω ω2 ω2 1 1 0 ω ω2 0 1 0 0 1 ω ω2 ω2

0 1 1 0 0 0 0 ω 0 1 1 1 0 0 0 0 0 0 0 0 0
ω2 ω 1 1 1 0 0 1 ω2 ω2 ω2 ω2 ω2 ω2 ω2 ω2 ω2 1 1 1 0
ω2 0 1 0 0 ω2 1 ω ω 0 0 ω ω2 ω2 1 1 0 ω ω2 0 1
0 0 ω ω2 ω2 0 0 1 1 0 0 0 0 ω 0 1 1 1 0 0 0
0 ω 0 0 0 ω2 ω2 ω 1 1 1 0 0 1 ω2 ω2 ω2 ω2 ω2 ω2 ω2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The above results are summarized as follows.
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Theorem 4.4. There are at least three monomially inequivalent Euclidean self-dual [28,14,9] codes over F4 ,
all of which are Lee-extremal Type II. There are at least two monomially inequivalent Euclidean self-dual
[42,21,12] codes over F4 .

• Case: q = 5.

Doing a similar process as before up to the length � = 4 with c = 2, we obtain the following
N4 = [L | R]:

L =
[

1 0
2Y 5 + 4Y 4 + Y 3 + Y + 1 4Y 5 + 3Y 4 + 2Y 3 + 2Y + 2

]
,

R =
[

3Y 5 + 2Y 4 + Y 3 + 3Y 2 + 4Y 4Y 6 + 3Y 4 + 3Y 3 + Y 2 + 3Y + 1
Y 4 + 3Y 3 + Y 2 + 4Y + 3 Y 6 + 2Y 5 + 4Y 4 + 4Y 3 + 3Y 2 + 2Y + 3

]
.

The corresponding quaternary quasi-cyclic self-dual codes are all optimal or have best known pa-
rameters. By deleting the first two columns and the first row of N4, we obtain N2. More specifically,
N2 induces an optimal self-dual [14,7,6] code over F5, and N4 induces a self-dual code over F5 with
the best known parameters [28,14,10] code, denoted by SSD5

28. We checked that SSD5
28 is monomially

equivalent to Q 28,4 in [19].
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