
File: ARCHIV 263001 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 4229 Signs: 2148 . Length: 58 pic 2 pts, 245 mm

Information and Computation � IC2630

information and computation 135, 69�112 (1997)

Disjunctive Stable Models: Unfounded Sets,
Fixpoint Semantics, and Computation*

Nicola Leone

Information Systems Department, Technical University of Vienna, A-1040 Vienna, Austria
E-mail: leone�dbai.tuwien.ac.at

Pasquale Rullo

DIMET, Universita� Reggio Calabria, 89100 Reggio Calabria, Italy
E-mail: rullo�si.deis.unical.it

and

Francesco Scarcello

DEIS, Universita� della Calabria, 87030 Rende, Italy
E-mail: frank�si.deis.unical.it

Disjunctive logic programs have become a powerful tool in knowledge
representation and commonsense reasoning. This paper focuses on stable
model semantics, currently the most widely acknowledged semantics for
disjunctive logic programs. After presenting a new notion of unfounded
sets for disjunctive logic programs, we provide two declarative charac-
terizations of stable models in terms of unfounded sets. One shows that
the set of stable models coincides with the family of unfounded-free
models (i.e., a model is stable iff it contains no unfounded atoms). The
other proves that stable models can be defined equivalently by a property
of their false literals, as a model is stable iff the set of its false literals
coincides with its greatest unfounded set. We then generalize the well-
founded WP operator to disjunctive logic programs, give a fixpoint
semantics for disjunctive stable models and present an algorithm for com-
puting the stable models of function-free programs. The algorithm's
soundness and completeness are proved and some complexity issues are
discussed.] 1997 Academic Press

article no. IC972630

69 0890-5401�97 �25.00

Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

* Some of the results reported in this paper appear in [36]. This work has been supported in part
by the Christian Doppler Laboratory for Expert Systems; Istituto per la Sistemistica e l'Informatica,
ISI-CNR; FWF project P11580-MAT ``A Query System for Disjunctive Deductive Databases''; EC�US
Project ``DEUS EX MACHINA''; and a MURST grant (400 share) under the project ``Sistemi formali
e strumenti per basi di dati evolute.''

File: ARCHIV 263002 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3584 Signs: 2717 . Length: 52 pic 10 pts, 222 mm

1. INTRODUCTION

Disjunctive logic programs are logic programs where disjunction is allowed in the
heads of the rules and negation may occur in the bodies of the rules. Such programs
are now widely recognized as a valuable tool for knowledge representation and
commonsense reasoning [3, 30, 33, 37]. Strong interest in enriching logic program-
ming with disjunction is evident in the number of publications (see [37]) and even
workshops (e.g., [33]) dedicated to this enterprise. One of the attractions of dis-
junctive logic programming is its ability to model incomplete knowledge naturally
[3, 37].

Example 1.1 (modified from [3, 47]). Consider the following situation: (1) we
just saw Max with one broken arm but do not remember which; (2) we know that
Max writes with his left hand, so he can write if his left arm is unbroken.

The question is, Can Max write or not? Because of the uncertainty deriving from
our incomplete knowledge about the state of Max's arms, we cannot answer the
question definitely. Rather, two possible answers can be constructed: (a) ``Max's left
arm is broken, and he cannot write,'' and (b) ``Max's right arm is broken, and he
can write.''

In the language of disjunctive logic programs, this situation is represented by
rules

r1 : la�broken 6 ra�broken � r2 : can�write � cla�broken

The semantics of the disjunctive logic program PMax consisting of the rules r1 and
r2 is given by the following two models (as will be shown in Section 2):

M1=[la�broken, cra�broken, ccan�write]

M2=[ra�broken, cla�broken, can�write]

M1 and M2 are the two possible scenarios, and they correspond exactly to our
intended specification.

It is worth noting that the situation can be represented equivalently by a
traditional logic program P$Max where r1 is replaced by the rules la�broken-
� cra�broken and ra�broken � cla�broken. However, the unstratified negation
in P$Max makes P$Max less intuitive than PMax , and it is certainly clear that dis-
junctive logic programming provides the more natural and intuitive representation
of the incomplete knowledge. K

Nonetheless, defining the semantics of a disjunctive logic program is complicated
by the presence of disjunction in the rules' heads because it makes disjunctive logic
programming inherently nonmonotonic (i.e., new information can invalidate pre-
vious conclusions). Much research has been done on the semantics of disjunctive
logic programs, and several alternative semantics have been proposed [10, 21, 30,
44, 50, 51, 52, 56, 58] (see [1, 15, 37] for comprehensive surveys). One widely
accepted semantics is the extension to the disjunctive case of the stable model
semantics of Gelfond and Lifschitz [31]. According to this semantics [30, 50], a

70 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263003 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3761 Signs: 3341 . Length: 52 pic 10 pts, 222 mm

disjunctive logic program may have several alternative models (but possibly none),
each corresponding to a possible view of the reality.

Disjunctive logic programs with stable model semantics are very expressive. In
[18, 19, 32] it is proved that, under stable model semantics, disjunctive (function-
free) logic programs capture the complexity class 7P

2 (i.e., they allow us to express
every property that is decidable in nondeterministic polynomial time with an oracle
in NP). As Eiter et al. [18] showed, the expressiveness of disjunctive logic
programming has practical implications, as real-world situations can be represented
by stable model semantics for disjunctive logic programs, while they cannot be
expressed by (disjunction-free) logic programs. Stable model semantics for dis-
junctive logic programs also allows several nonmonotonic logic languages to be
translated into disjunctive logic programs (under stable model semantics) [22, 30,
59]. This means that computation of stable models��one of the main objectives of
this paper��is at the heart of the computation of several important problems in
artificial intelligence.

The main results of the paper can be summarized as follows:

1. We give an original definition of unfounded sets for disjunctive logic
programs as an extension of the analogous concept defined for (disjunction-free)
logic programs [64]. Unfounded sets for disjunctive logic programs (as for normal
logic programs) single out the atoms that are (definitely) not derivable from a given
program w.r.t. a fixed interpretation, and thus, according to the closed-world
assumption [54], they can be stated to be false. In a disjunctive logic program P

the union of unfounded sets for P may not be an unfounded set for P (and the
existence of a greatest unfounded setwan unfounded set that contains all other
unfounded sets��is not guaranteed). However, for unfounded-free interpretations
(i.e., interpretations not containing any unfounded atom), the union of unfounded
sets is an unfounded set, and thus there exists the greatest unfounded set of P w.r.t.
I, denoted GUSP(I), which is the union of all unfounded sets. We show that the
GUSP operator is monotonic on its domain.

2. We discover several interesting relationships between stable models and
unfounded sets, which lead to a simple yet elegant characterization of disjunctive
stable models in terms of unfounded sets. We show that disjunctive stable models
coincide with the unfounded-free models of P and that a model of P is stable iff
the set of false atoms coincides with the greatest unfounded set. Since the elements
in the greatest unfounded set are the atoms not derivable from the program, dis-
junctive stable models can be regarded as those models that are ``compatible'' with
the closed-world assumption [54].

3. We define a fixpoint semantics for disjunctive stable models in terms of a
suitable operator WP that extends the well-founded operator of Van Gelder et al.
[64]. We show that the set of stable models of P coincides with the set of the
(total) fixpoints of WP .

4. Exploiting the above theoretical results, we design an algorithm for the
computation of the stable model semantics of disjunctive deductive databases (i.e.,
function-free disjunctive logic programs). The key idea is that, since stable models

71DISJUNCTIVE STABLE MODELS

File: ARCHIV 263004 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3683 Signs: 3030 . Length: 52 pic 10 pts, 222 mm

are total interpretations, computing their entire negative portion is superfluous;
rather, it is sufficient to restrict the computation to those negative literals that are
necessary to derive the positive part. To this end, we introduce the notion of
possibly-true literals. These play a crucial role in our computation. The algorithm
is based on a controlled search in the space of the interpretations implemented by
a backtracking technique. The stability of a generated model is tested by checking
whether it is unfounded-free by means of a function that runs in polynomial time
on head-cycle-free (HCF) programs [7, 8]. In the general case, our algorithm for
the computation of stable models runs in polynomial space and single exponential
time. We formally prove both the soundness and the completeness of the proposed
method.

5. Finally, we analyze the complexity of the main computational problems
related to the concepts we have presented.

It is worth noting that most of the results in this paper generalize analogous
results for traditional logic programs.

The paper is organized as follows. In Section 2 we offer basic preliminaries on
disjunctive logic programming. In Section 3 we define the notion of unfounded sets
and describe some important properties of unfounded sets. In Section 4 we inves-
tigate the relationships between stable models and unfounded sets and provide a
declarative characterization of the former in terms of the latter. A fixpoint semantics
of disjunctive stable models is given in Section 5. Section 6 presents the algorithm
for the computation of stable models. Related work is addressed in Section 7.
Finally, in Section 8 we draw conclusions and outline ongoing research.

2. PRELIMINARIES ON DISJUNCTIVE LOGIC PROGRAMMING

In this section, we provide an overview of the stable model semantics for dis-
junctive logic programs. (For further details, see [37].)

The terms of the language are inductively defined. A variable or constant is a
term; a function symbol with terms as arguments is a term. An atom is a(t1 , ..., tn),
where a is a predicate of arity n and t1 , ..., tn are terms. A literal is either a positive
literal p or a negative literal cp, where p is an atom. We use an upper case letter,
say L, to denote either a positive or a negative literal. Two literals are complemen-
tary if they are of the form p and cp, for some atom p. Given a literal L, c.L
denotes its complementary literal. Accordingly, given a set A of literals, c.A
denotes the set [c.L | L # A].

A (disjunctive) rule r is a clause of the form

a1 6 } } } 6 an � b1 , ..., bk , cbk+1 , ..., cbm n�1, m�0

where a1 , ..., an , b1 , ..., bm are atoms. The disjunction a1 6 } } } 6 an is the head of r,
while the conjunction b1 , ..., bk , cbk+1, ..., cbm is the body of r. We denote by
H(r) the set [a1 , ..., an] of the head atoms, and by B(r) the set [b1 , ..., bk ,
cbk+1 , ..., cbm] of the body literals. B+(r) and B&(r) denote, respectively, the set
of positive literals and the set of negative literals occurring in B(r). A (disjunctive)

72 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263005 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 4285 Signs: 3411 . Length: 52 pic 10 pts, 222 mm

program is a (finite or countably infinite) set of rules.1 A c-free (resp., 6-free)
program is called positive (resp., normal or disjunction-free). A term, an atom, a literal,
a rule, or a program is ground if no variables appear in it. A finite ground program is
also called a propositional program. A function-free program (also called a disjunctive
deductive database) is a finite program where no function symbol occurs.

Let P be a program. The Herbrand universe UP of P is the set of ground terms
that use the function symbols and constants that appear in the program.2 The
Herbrand base BP of P is the set of all possible ground atoms that can be con-
structed from the predicates appearing in the rules of P and the terms occurring in
UP . If P is finite and contains no function symbols of positive arity, then both UP

and BP are finite; otherwise, they are countably infinite. Given a rule r occurring
in a program P, a ground instance of r is a rule obtained from r by replacing every
variable X in r by _(X), where _ is a mapping from the variables occurring in r to
the terms in U P . We denote by ground(P) the set of all the ground instances of the
rules occurring in P (note that ground(P) may be infinite).

An interpretation for P is a consistent set of ground literals, that is, an interpreta-
tion is a subset I of BP _ c.BP such that I & c.I=<. A ground literal L is true
(resp., false) w.r.t. I if L # I (resp., L # c.I). If a ground literal is neither true nor
false w.r.t. I, then it is undefined w.r.t. I. We denote by I+ and I&, respectively, the
set of positive literals and the set of negative literals occurring in I. I� denotes the
set of undefined literals w.r.t. I. The interpretation I is total if I� is empty (that is,
I+ _ c.I&=BP); otherwise, I is partial.

Let r be a ground rule in ground(P). The head of r is true w.r.t. I if H(r) & I{<.
The body of r is true w.r.t. I if B(r)�I and is false w.r.t. I if B(r) & c.I{< (i.e.,
some literal in B(r) is false w.r.t. I). The rule r is satisfied (or true) w.r.t. I if its head
is true w.r.t. I or its body is false w.r.t. I.

A model for P is a total interpretation M for P such that every rule r # ground(P)
is true w.r.t. M. A model M for P is minimal if no model N for P exists such that
N+ is a proper subset of M+. The set of all minimal models for P is denoted by
MM(P).

Note that, under these definitions, the word interpretation refers to a possibly
partial interpretation, while a model is always a total interpretation.

The first proposal for assigning a semantics to a disjunctive logic program
appears in [44], which presents a model-theoretic semantics for positive programs.
According to [44], the semantics of a program P is described by the set MM(P)
of the minimal models for P. Observe that every program P admits at least one
minimal model, that is, for every program P, MM(P){< holds.

Example 2.1.3 For the positive program P1=[a 6 b �], the (total) interpre-
tations [a, cb] and [b, ca] are its minimal models (i.e., MM(P)=[[a, cb],
[b, ca]]).

73DISJUNCTIVE STABLE MODELS

1 Clearly, user programs are finite sets of rules; we allow a program to be (countably) infinite, as, for
technical reasons, it is useful that the instantiation of the program is a program as well.

2 If no constants appear in the program, then one is added arbitrarily.
3 For simplicity, we use propositional examples, in which the programs coincide with their ground

instantiations.

File: ARCHIV 263006 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3340 Signs: 2441 . Length: 52 pic 10 pts, 222 mm

For the program P2=[a 6 b � ; b � a; a � b], [a, b] is the only minimal
model.

As far as general programs (i.e., programs where negation may appear in the
bodies) are concerned, a number of semantics have been recently proposed [10, 30,
44, 50�52, 56, 58] (see [1, 15, 37] for comprehensive surveys). One generally
acknowledged proposal is the extension of the stable model semantics [31] to take
into account disjunction [30, 50]. Given a program P and a total interpretation I,
the Gelfond�Lifschitz (GL) transformation of P w.r.t. I, denoted PI, is the set of
positive rules defined as follows:

PI=[a1 6 } } } 6an � b1 , } } } , bk |

a1 6 } } } 6an � b1 , } } } , bk , cbk+1 , } } } , cbm # ground(P)

and cbi # I, for all k<i�m]

We note that, in the definition of the GL transformation reported in [31, 50],
the condition cbi # I above is bi � I, since total interpretations are represented there
by sets of atoms rather than by sets of literals as in our case.

Definition 2.2 [50]. Let I be a total interpretation for a program P. I is a
(disjunctive) stable model for P if I # MM(PI) (i.e., I is a minimal model of the
positive program PI). The set of all stable models for P is denoted by STM(P).

Example 2.3. Let P=[a 6 b � c; b � ca, cc; a 6c � cb]. Consider I=
[b, ca, cc]. Then, PI=[a 6 b � c; b �]. It is easy to verify that I is a minimal
model for PI; thus, I is a stable model for P.

M1=[la�broken, cra�broken, ccan�write] and M2=[ra�broken, cla�broken,
can�write] are the stable models of the program PMax of Example 1.1.

Clearly, if P is positive, then PI coincides with ground(P). It turns out that for
a positive program, minimal and stable models coincide.

3. UNFOUNDED SETS FOR DISJUNCTIVE LOGIC PROGRAMS

In this section, we extend to disjunctive logic programs the notion of unfounded
sets given for disjunction-free logic programs in [64], and then investigate some
properties of unfounded sets. Although in this paper we use unfounded sets mainly
for total interpretations (because they are used to characterize stable models), for
the sake of generality and to preserve a close analogy between our definition of
unfounded sets and the classical one [64], we define the notion of unfounded sets
for general (possibly partial) interpretations.

Definition 3.1. Let I be an interpretation for a program P. A set X�BP of
ground atoms is an unfounded set for P w.r.t. I if, for each a # X, for each rule
r # ground(P) such that a # H(r), at least one of the following conditions holds:

74 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263007 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3648 Signs: 2950 . Length: 52 pic 10 pts, 222 mm

1. B(r) & c.I{<, that is, the body of r is false w.r.t. I

2. B+(r) & X{<, that is, some positive body literal belongs to X

3. (H(r)&X) & I{<, that is, an atom in the head of r, distinct from a and
other elements in X, is true w.r.t. I.

Conditions 1 and 2 are the same as in the classical definition of unfounded sets
[64]Intuitively, the third condition expresses that an atom a, occurring in the head
of rule r, is not derivable from r if the head of r is already true; in other words,
there exists an atom b in the head of r which is true in I (indeed, inferences follow
a minimality criterion). However, the truth of the atom b in the head is not taken
into account (for the unfoundedness of a) if b itself is unfounded, that is, b # X (see
example below).

Informally, unfounded atoms are not derivable from the rules of P, and thus,
according to the closed-world assumption, they should be considered false.

Example 3.2. Consider the program P=[a 6 b �] and let I=[b] be a (par-
tial) interpretation for it. The set X=[a] is an unfounded set of P w.r.t. I. Indeed,
the number rule of P (with a in the head) satisfies Condition 3 of Definition 3.1, as
(H(r)&X) & I=[b]{<. The unfoundedness of a meets the intuition that, since b
is true, a cannot be derived from the program (and therefore can be assumed false).

Consider the interpretation I=[a, b] (again for the program P=[a 6 b �]). In
this case, both set X=[a] and set Y=[b] are unfounded sets for P w.r.t. I.
Intuitively, this means that the presence either of a or of b is not justified in the
interpretation (we should choose a or b, but we cannot accept both).

For the program P=[a 6b � ; a � b; b � a] and the interpretation I=[a, b],
the only unfounded set is < (i.e., no atom can be assumed false).

Note that Definition 3.1 generalizes the definition given for disjunction-free logic
programs in [64].

Proposition 3.3. Let P be a disjunction-free program and I be an interpretation
for P. X�BP is an unfounded set for P w.r.t. I according to Definition 3.1 iff it is
an unfounded set for P w.r.t. I according to [64].

Proof. Conditions 1 and 2 of Definition 3.1 are exactly the same as in [64]. More-
over, for disjunction-free programs, Condition 3 is never satisfied, as H(r)&X=<.
Indeed, from Definition 3.1, H(r)=[a] and a # X. K

Nevertheless, for disjunctive logic programs, unlike traditional logic programs,
the union of two unfounded sets is not necessarily an unfounded set.

Example 3.4. Consider again theprogram P=[a 6 b�] and let I=[a, b] be
the interpretation. In Example 3.2, we saw that both [a] and [b] are unfounded
sets for P w.r.t. I, but we can easily verify that the union X=[a, b] is not. Indeed,
although a (resp., b) is true in I, b (resp., a) is not unfounded because a (resp., b)
is also in X (hence Condition 3 of Definition 3.1 does not hold). Intuitively, this
represents the fact that we can falsify either a or b, but at least one of them must
remain true (to satisfy the rule a 6 b�).

75DISJUNCTIVE STABLE MODELS

File: ARCHIV 263008 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3954 Signs: 3163 . Length: 52 pic 10 pts, 222 mm

In traditional logic programming, the union of all unfounded sets w.r.t. an inter-
pretation I is also an unfounded set w.r.t. I (called the greatest unfounded set) that
includes all unfounded sets w.r.t. I [64]. Example 3.4 shows that in disjunctive logic
programming, this is not generally true. We thus denote by IP the set of all inter-
pretations of P which possess this property. More precisely, an interpretation I of
P is in IP iff the union of all unfounded sets for P w.r.t. I is an unfounded set for
P w.r.t. I as well. Given I # IP , in analogy with traditional logic programming, we
call the union of all unfounded sets for P w.r.t. I the greatest unfounded set of P

w.r.t. I, and we denote it by GUSP(I).
Because the existence of the greatest unfounded set is not in general guaranteed,

the question of whether an interpretation I is in IP naturally comes up. This is an
interesting problem from the viewpoint of complexity. The best upper bound we
can provide is 2P

2 [O(log n)]��the class of decision problems solvable in polynomial
time by a deterministic Turing machine which can use a logarithmic number of calls
to an NP oracle. This class is ``mildly'' harder than NP or co-NP. Completeness for
2P

2 [O(log n)] would entail NP-hardness; however, it is not clear how to reduce an
NP-complete problem to this problem.

Proposition 3.5.4 Let P be a propositional program and I an interpretation
for P. Deciding whether I # IP (i.e., I admits GUSP(I)) is in 2P

2 [O(log n)].

Proof. Observe first that deciding whether an unfounded set X for P w.r.t. I
with cardinality greater than a given integer k exists can be done in NP. Indeed, we
can proceed as follows: guess X�BP; verify (i) that X is an unfounded set for P

w.r.t. I and (ii) that the cardinality of X is greater than k (both (i) and (ii) are
clearly polynomial).

Now, by binary search on [0... |BP|], determine the number of elements 7 of the
unfounded sets for P w.r.t. I that are of maximum cardinality. This is done by a
logarithmic number of calls to an (NP) oracle deciding whether there exists an
unfounded set for P w.r.t. I with cardinality greater than a given integer k
(k=|BP|�2 on the first call; then, if the oracle answers ``no,'' k=|BP|�4; otherwise,
k is set to 3 |BP|�4, and so on, in accordance with standard binary search). Then,
we call an NP oracle once to decide whether there exist two unfounded sets X and
Y for P w.r.t. I such that (i) |X|=7 and (ii) Y&X{<. A ``no'' answer from the
latter oracle recognizes that I has the greatest unfounded set GUSP(I).

Thus, deciding whether I is in IP lies in 2P
2 [O(log n)]. K

Next, we show that there is a class of interpretations, called unfounded-free inter-
pretations, which always have the greatest unfounded set.

Definition 3.6. Let I be an interpretation for a program P. I is unfounded-free
if I & X=< for each unfounded set X for P w.r.t. I.

Proposition 3.7. Let I be an unfounded-free interpretation for a program P.
Then

76 LEONE, RULLO, AND SCARCELLO

4 We analyze the complexity of the propositional case (i.e., for finite ground programs); however, the
complexity results extend easily to the data complexity [65] of function-free programs with variables.

File: ARCHIV 263009 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3677 Signs: 2673 . Length: 52 pic 10 pts, 222 mm

(a) P has the greatest unfounded set GUSP(I) (i.e., I # IP), and

(b) GUSP(I) is computable in polynomial time if P is a propositional program.

Proof. Point a. We will prove that the union U of a (possibly infinite) family
F of unfounded sets for P w.r.t. I, is an unfounded set for P w.r.t. I as well. The
statement will then follow immediately.

Since I is unfounded-free, Condition 3 of Definition 3.1 reduces to H(r) & I{<
(as (H(r)&X) & I=H(r) & (I&X), which, in turn, is equal to I, since each
unfounded set X is disjoint from I).

Now, let a be an atom in U. a must belong to some unfounded set X # F.
Since X is an unfounded set and X�U, we have that (by Definition 3.1) for each
rule r # ground(P) either (1) B(r) is false w.r.t. I or (2) B+(r) & U{< or
(3) H(r) & I{<. Thus, U is an unfounded set for P w.r.t. I.

Point b. From Point a, I has the greatest unfounded set GUSP(I). We give
a polynomial time construction of the set of ground atoms in BP&GUSP(I) (from
which GUSP(I) is efficiently derivable) �a similar proof scheme was adopted in
[64] to demonstrate the tractability of the well-founded semantics.

We compute BP&GUSP(I) as the least fixpoint of a suitable operator 8I . Define
8I as follows:

8I : BP � BP

Y [[a | _r # P with a # H(r) s.t. B(r) & c.I=< 7 B+(r)�Y

7 H(r) & I=<]

The 8I operator is monotonically increasing in the complete lattice <BP , �>.
Thus, the sequence ,0=I, ,k=I _ 8I (,k&1) is monotonically increasing and con-
verges finitely to a limit ,* (as it is finitely bound by the Herbrand base). Since each
application of 8I is feasible in polynomial time, and since the limit ,* is reached in
a number * of applications of 8I which is polynomial in |BP|, ,* is computable in
polynomial time. We next show that ,*=BP&GUSP(I), and, as a consequence,
we derive that the computation of GUSP(I) is tractable.

,* �BP&GUSP(I). We proceed by induction on the index k of the sequence
[,k]k # N . The basis of the induction (k=0) holds since ,0=I and I is unfounded-
free (thus, ,0=I�BP&GUSP(I)). Assuming now that ,k&1�BP&GUSP(I)
(inductive hypothesis), we show that ,k�BP&GUSP(I) (i.e., ,k does not contain
any unfounded element). We have to show that for every a # ,k there exists a rule
with a in the head, which violates all conditions of Definition 3.1 (for the unfounded
set GUSP(I)). Let a # ,k ; then, a # I _ 8I (,k&1). Now, if a # I, we are done, as I is
unfounded-free. Otherwise, by definition of 8I , we have that

_r # P with a # H(r) s.t. B(r) & c.I=< 7B+(r)�,k&1 7H(r) & I=<

Now, B(r) & c.I=< violates Condition 1 of Definition 3.1. Moreover, B+(r)�,k&1

violates Condition 2 of Definition 3.1, since by inductive hypothesis, ,k&1 does
not contain any element of GUSP(I). Furthermore, H(r) & I=< implies that

77DISJUNCTIVE STABLE MODELS

File: ARCHIV 263010 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3548 Signs: 2782 . Length: 52 pic 10 pts, 222 mm

even Condition 3 of Definition 3.1 cannot be satisfied, as (H(r)&X) & I�H(r) & I.
Hence, ,k�BP&GUSP(I) and ,* �BP&GUSP(I).

,* $BP&GUSP(I). From the maximality of GUSP(I), it is sufficient to
demonstrate that X=BP&,* is an unfounded set for P w.r.t. I. Let a # X. We
prove that every rule with a in the head satisfies (at least) one of the conditions of
Definition 3.1. Since ,*=,*+1 and a � ,* , then a � 8I (,*). Hence, \r # P with
a # H(r): either (i) B(r) & c.I{< or (ii) B+(r)�% ,* or (iii) H(r) & I{<. Now, if
(i) is satisfied, Condition 1 of Definition 3.1 is verified. If B+(r)�% ,* ((ii) holds),
then B+(r) & (BP&,*){<, and Condition 2 of Definition 3.1 is satisfied (as
BP&,*=X). Finally, since I�,* , we have that I=I&X. Hence, H(r) & I=
H(r) & (I&X)=(H(r)&X) & I. Thus, H(r) & I{< implies Condition 3 of Defini-
tion 3.1 holds. (We are done.) K

Thus, an unfounded-free interpretation always admits the greatest unfounded set.
This set is efficiently computable, and the proof of Point b of Proposition 3.7
provides an effective algorithm for its computation. Unfortunately, the next
proposition shows that, unless P=NP, we cannot efficiently test whether I is
unfounded-free.

Proposition 3.8. Let P be a propositional program and I be an interpretation
for P. Deciding whether I is unfounded-free is co-NP-complete.

Proof. Membership in co-NP. The complementary problem of checking whether
I is unfounded-free, that is, deciding whether I is not unfounded-free, can be done
in NP: guess a subset X of BP and check in polynomial time that (i) X is an
unfounded set for P w.r.t. I and (ii) X & I{<. Hence, deciding whether I is
unfounded-free belongs to the class co-NP.

Hardness for co-NP. It is well known that deciding whether a model M is
stable is co-NP-hard [17�19, 43]. In the next section (see Theorem 4.6), however,
we show that this decision problem reduces to verifying whether M is unfounded-
free. Thus, deciding whether an interpretation is unfounded-free is co-NP-hard as
well. K

It is worth noting that the containment of the set of unfounded-free interpreta-
tions in IP is, in general, strict. For instance, for each disjunction-free program,
every interpretation admits the greatest unfounded set [64], yet there are inter-
pretations of disjunction-free programs which are not unfounded-free (e.g., for
P=[a � a] the interpretation I=[a] is not unfounded-free and admits the
greatest unfounded set [a]).

Interestingly, the GUSP operator is monotonic.

Proposition 3.9. Let I and J be interpretations in IP . If I�J, then GUSP(I)�
GUSP(J).

Proof. We first show that if X is an unfounded set for P w.r.t. I, then X is an
unfounded set for P w.r.t. J as well.

From the definition of unfounded sets and the condition I�J, we have that, for
each a # X and for each r # ground(P) such that a # H(r), one of the following

78 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263011 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3517 Signs: 2822 . Length: 52 pic 10 pts, 222 mm

conditions holds: either (1) the body B(r) is false w.r.t. I and, hence, is false w.r.t.
J; or (2) B(r) & X{<; or (3) (H(r)&X) & I{< and, hence, (H(r)&X) & J{<.
Thus, X is an unfounded set for P w.r.t. J.

Now, by definition, GUSP(I) is an unfounded set for P w.r.t. I. Hence, from the
property proven above, GUSP(I) is an unfounded set for P w.r.t. J as well. There-
fore, GUSP(I) is included in GUSP(J), the greatest unfounded set for P w.r.t. J (as
GUSP(J) is the union of all unfounded sets for P w.r.t. J), that is, GUSP(I)�
GUSP(J) holds. K

We conclude this section by providing an equivalent characterization of the
unfounded-free property in the domain of total interpretations.

Proposition 3.10. Let I be a total interpretation for a program P. I is unfounded-
free iff no nonempty set of atoms contained in I is an unfounded set for P w.r.t. I.

Proof. (o) We prove the contrapositive, that is, if I is not unfounded-free,
then there exists a non-empty subset of I which is an unfounded set for P w.r.t. I.
To this end, assume that I is not unfounded-free. Then, from Definition 3.6, there
exists an unfounded set X for P w.r.t. I such that X & I{<. We now show that the
set Y=X & I is an unfounded set for P w.r.t. I. Let a be an element of Y. Since X
is an unfounded set for P w.r.t. I, for each rule r # ground(P) such that a # H(r), by
Definition 3.1 at least one of the following conditions holds: (1) the body of r is
false w.r.t. I (i.e., B(r) & c.I{<); (2) B+(r) & X{<; (3) (H(r)&X) & I{<.
Consider now Condition 2. Since I is total, for each literal L # B+(r) either
L # I + or c.L # I&. Therefore, B+(r) & X{< implies either B+(r) & Y{< or
B+(r) & c.I&{< (i.e., B(r) is false w.r.t. I). Concerning Condition 3, it is obvious
that it is equivalent to (H(r)&Y) & I{<. Therefore, we have that, for each rule
r # ground(P) such that a # H(r), either B(r) is false in I or B(r) & Y{< or
(H(r)&Y) & I{< holds. Thus, we may conclude that Y is an unfounded set for
P w.r.t. I.

(O) If a nonempty subset Y of I is an unfounded set for P w.r.t. I, then I
is clearly not unfounded-free, since Y violates the unfounded-free condition of
Definition 3.6. K

4. STABLE MODELS AND UNFOUNDED SETS

In this section, we provide some characterizations of (stable) models in terms of
unfounded sets. We wish to emphasize that, since for disjunction-free programs the
definitions of stable models and unfounded sets given in this paper coincide with
the classical definitions given in [31, 64], respectively, all results proven here hold
also for disjunction-free programs (under the classical definitions of stable models
and unfounded sets).

The next proposition shows that models are characterized by the property that
all false literals are unfounded.

Proposition 4.1. Let M be a model for a program P. Then M is a model for P

iff c.M& is an unfounded set for P w.r.t. M.

79DISJUNCTIVE STABLE MODELS

File: ARCHIV 263012 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3651 Signs: 2852 . Length: 52 pic 10 pts, 222 mm

Proof. (o) We prove that if M is not a model, then c.M& is not an unfounded
set for P w.r.t. M. Assume that M is not a model. Then a rule r # ground(P) exists
such that B(r)�M and H(r) is not true in M, that is, H(r) & M+=<. Because M
is total, it turns out that H(r)�c.M& holds. It is easy to verify that r does not
satisfy any of the unfoundedness conditions of Definition 3.1 for the set c.M&.
Indeed, the body of r is not false w.r.t. M, nor does it contain any atom in c.M&

(as B(r)�M). Further, (H(r)&c.M&) & M=< holds, as H(r)�c.M&. There-
fore, c.M& is not an unfounded set for P w.r.t. M.

(O) Assume that c.M& is not an unfounded set for P w.r.t. M. Thus, there
is an atom a # c.M& such that there exists a rule r # ground(P) having a in its head
for which none of the unfoundedness conditions of Definition 3.1 hold. In par-
ticular, B(r) is not false in M, which implies that B(r) is true in M (B(r)�M), as
M is total by hypothesis. Moreover, (H(r)&c.M&) & M=< holds; thus,
H(r) & M=<. Indeed, (H(r)&c.M&) & M=H(r) & (M&c.M&)=H(r) & M.
Therefore, M is not a model, as r is not satisfied in M since its body is true while
its head is false (B(r)�M and H(r) & M=<). K

Next we prove that the class of stable models for P coincides with that of the
unfounded-free models for P. To this end, we need some preliminary results.

Lemma 4.2. Let M be a model for a program P. If M is unfounded-free, then M
is a minimal model for P.

Proof. We show that if M is not minimal, then it is not unfounded-free. If
M is not minimal, then the existence of another model M1 such that X=
M+&M+

1 {< is implied. Since M1 is a model, for each rule r whose head con-
tains some element in X, the following holds: either (i) H(r) & M+

1 {< (the head
is true); or (ii) B+(r) & c.M&

1 {< (some positive literal in the body is false); or
(iii) B&(r) & c.M+

1 {< (some negative literal is false). Hence each rule r, whose
head contains some element in X, satisfies at least one condition of Definition 3.1:
If H(r) & M1

+{<, then Condition 3 is satisfied, as (H(r)&X) & M+
1 {<. If

B+(r) & c.M&
1 {<, then either Condition 1 or Condition 2 is verified, as

c.M&
1 =c.M& _ c.X. Finally, if B&(r) & c.M+

1 {<, then Condition 2 is clearly
satisfied, as M+

1 /M+. Therefore, M is not unfounded-free since X is an unfounded
set for P w.r.t. M. K

The converse of Lemma 4.2 does not hold in general, since some minimal models
may not be unfounded-free (even for normal programs, as pointed out in [41].

Example 4.3. Let P=[a � cb]. It is easy to see that the model M=[b, ca]
is minimal but not unfounded-free.

Nevertheless, for positive logic programs, the converse of Lemma 4.2 does hold.
The minimal model semantics proposed by Minker for positive programs [44] is
thus exactly characterized by the unfounded-free condition.

Proposition 4.4. Let M be a model for a positive program P. M is a minimal
model for P iff it is unfounded-free.

80 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263013 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3815 Signs: 3148 . Length: 52 pic 10 pts, 222 mm

Proof. By Lemma 4.2, it remains to show that every minimal model for P is
unfounded-free.

We proceed by contradiction. Assume M is not unfounded-free, and let X�M+

be a nonempty unfounded set for P w.r.t. M. We show that the total interpretation
M1=(M&X) _ c.X is a model for P (contradicting the minimality of M). To this
end, it clearly suffices to prove that the rules whose heads are true in M but not
in M1 are satisfied in M1 (i.e., have a false body w.r.t. M1). Let r # ground(P) be any
such rule and let a be an atom in the head of r such that a # X (such an a exists
since H(r) & M{< while H(r) & M1=<). Since X is an unfounded set for P w.r.t.
M, for each rule with a in the head, either B(r) is false in M (i.e., since P is positive,
B(r) & c.M&{<) or B+(r) & X{< holds (note that Condition 3 of Defini-
tion 3.1 cannot hold as (H(r)&X) & M=< by assumption). In the former case, by
construction of M1 , B(r) is false w.r.t. M1 as well (since c.M&/c.M1

&). In the
second case, B(r) is clearly false w.r.t. M1 , as B+(r) & X{< implies that
B+(r) & c.M&{<. Hence, in every case, r is satisfied w.r.t. M1 , since its body is
false w.r.t. M1 . Therefore, we can conclude that M1 is a model, thus contradicting
the minimality of M. K

Before giving the characterization of stable models in terms of unfounded sets, we
need a further lemma stating that the unfounded-free property is preserved under
the GL transformation.

Lemma 4.5. Let M be a total interpretation for a program P. M is unfounded-
free for P iff M is unfounded-free for PM.

Proof. Recall that the GL transformation PM of P is obtained from ground(P)
by dropping all rules where some negative body literal is false w.r.t. M and then
eliminating all negative literals from the bodies of the remaining rules.

(O) If X is not an unfounded set for P w.r.t. M, then for each a # X, there
exists a rule r # ground(P) that violates all conditions of Definition 3.1. In par-
ticular, from the violation of Condition 1, the body of r is true; thus, the image r$
of r (under the GL transformation) is in PM. Clearly, r$ violates all conditions of
Definition 3.1 for PM w.r.t. M. Therefore, if X is not an unfounded set for P w.r.t.
M then X is not an unfounded set for PM w.r.t. M as well. Now, if M is unfounded-
free for P, then, from Proposition 3.10, every nonempty subset X of M+ is not an
unfounded set for P w.r.t. M. As a consequence, from the property proven above,
we derive that every nonempty subset X of M+ is not an unfounded set for PM

w.r.t. M, that is, M is unfounded-free for PM.

(o) Let X be an unfounded set for P w.r.t. M. Since every rule in PM with
a in its head is (under the GL transformation) the image r$ of a rule r # ground(P),
X is an unfounded set for PM w.r.t. M if for each a # X, for each rule r # ground(P)
with head a, the image r$ of r satisfies at least one condition of Definition 3.1
for PM.

Now, since X is an unfounded set for P w.r.t. M, for each a # X, for each
rule r # ground(P) either (i) the body of r is false w.r.t. M, that is, (i.1)
B+(r) & c.I&{< or (i.2) B&(r) & c.I+{<; or (ii) B+(r) & X{<; or (iii)
(H(r)&X) & I{<. Case (i.2) implies that r has no image in PM. If Condition (i.1),

81DISJUNCTIVE STABLE MODELS

File: ARCHIV 263014 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3568 Signs: 2628 . Length: 52 pic 10 pts, 222 mm

Condition (ii), or Condition (iii) holds for r, however, then the same condition is
verified for r$, as B+(r)=B+(r$) and H(r)=H(r$).

Therefore, if X is an unfounded set for P w.r.t. M, then X is an unfounded set
for PM w.r.t. M as well. Thus, if M is not unfounded-free for P, then M is not
unfounded-free for PM. As a consequence, M unfounded-free for PM implies M
unfounded-free for P. K

We are now in a position to prove the main result of this section: in the general
case of programs with negation, the unfounded-free condition singles out the stable
models.

Theorem 4.6. Let M be a model for a program P. M is stable iff M is unfounded-
free.

Proof. (O) Let M be a stable model for P. By Definition 2.2, M is a minimal
model of (the positive) program PM. Consequently, from Proposition 4.4, M is an
unfounded-free model for PM. Therefore, from Lemma 4.2, M is an unfounded-free
model for P.

(o) Let M be an unfounded-free model for P. It is easily recognized that M
is a model for PM. Moreover, since M is an unfounded-free model for P, from
Lemma 4.5 M is an unfounded-free model for PM. Therefore, by Lemma 4.2, M is
a minimal model for PM. Thus, M is a stable model according to Definition 2.2. K

Thus, both minimal models for positive programs and stable models for general
programs are exactly the unfounded-free models.

From Theorem 4.6, it immediately follows that a stable model has associated
with it the greatest unfounded set (by virtue of Proposition 3.7). Moreover, the
minimality of stable models is immediately derived.

Corollary 4.7. Every stable model for P is a minimal model for P.

Proof. Immediate from Theorem 4.6 and Lemma 4.2. K

The next theorem supplies another interesting declarative characterization of
stable models.

Theorem 4.8. Let M be a total interpretation for a program P. M is a stable
model for P iff c.M&=GUSP(M).5

Proof. (o) By Proposition 4.1, M is a model. Moreover, since P has the
greatest unfounded set w.r.t. M, every unfounded set w.r.t. M is included in
GUSP(M), that is, every unfounded set w.r.t. M is included in c.M&. Therefore,
M+ does not contain any nonempty unfounded set w.r.t. M, as it is disjoint from
c.M &. Hence, from Proposition 3.10, M is unfounded-free. It follows that, by
virtue of Theorem 4.6, M is a stable model, since it is an unfounded-free model.

(O) Since M is a stable model, it is unfounded-free (by Theorem 4.6). There-
fore, from Theorem 3.7, M has the greatest unfounded set GUSP(M). From Defini-
tion 3.6, every unfounded set is included in BP&M+, which coincides with c.M&,

82 LEONE, RULLO, AND SCARCELLO

5 Observe that this condition implicitly requires that M has the greatest unfounded set, i.e., M # IP .

File: ARCHIV 263015 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3538 Signs: 2634 . Length: 52 pic 10 pts, 222 mm

as M is total. The union GUSP(M) of all unfounded sets for P w.r.t. M is hence
contained in c.M&. Moreover, since M is a model, by Proposition 4.1, the whole
set c.M& is an unfounded set for P w.r.t. M (i.e., c.M&�GUSP(M)). In sum,
P has the greatest unfounded set w.r.t. M, and it coincides with c.M&, that is,
c.M &=GUSP(M). K

Observe that (disjunctive) stable models have been defined classically by a
property of their true literals: a model M is stable if all its positive literals are
derivable from the program (assuming M&) [31, 50]. Theorem 4.8 gives an (equiv-
alent) characterization of stable models which is ``dual'' to the classical one: a total
interpretation M is a stable model if all and only its false literals cannot be derived
from the program (assuming M), that is, all and only its false literals are unfounded.

We next derive that partial interpretations cannot be extended to stable models
if they are not unfounded-free.

Corollary 4.9. Let I be a partial interpretation for a program P. If I is not
unfounded-free, then no stable model for P contains I.

Proof. By Definition 3.6, if I is not unfounded-free, then there exists an
unfounded set X for P w.r.t. I such that X & I+{<. Now, if M is a model con-
taining I (I�M), then it is easy to see that X is an unfounded set for P w.r.t. M as
well. Therefore, M is not unfounded-free (as X & M+{<). Thus, by Theorem 4.6,
M is not a stable model. K

Corollary 4.9 can be helpful when computing the stable models for P: whenever
one realizes that a partial interpretation is not unfounded-free, the interpretation
can be discarded, as it will not lead to any stable model.

5. A FIXPOINT SEMANTICS FOR STABLE MODELS

In this section, we extend the WP operator, defined in [64] for disjunction-free
programs, to the class of disjunctive logic programs. Then we show that the stable
models of a disjunctive logic program coincide exactly with the (total) fixpoints of
WP (i.e., M is stable iff it is a fixpoint of WP). The results in this section generalize
the analogous results shown in [64] for disjunction-free programs (namely,
Theorem 5.4, Corollary 5.6, and Corollary 5.7).

We start by providing an extension to disjunctive logic programs of the
immediate consequence operator TP defined in [64] for three-valued interpreta-
tions of normal logic programs.

Definition 5.1. Let P be a program. Define the TP operator as follows:

TP : 2BP _ c.BP � 2BP

I [[a # BP | _r # ground(P) s.t. a # H(r), H(r)&[a]�c.I,

and B(r)�I].

Intuitively, given an interpretation I, TP derives a set of atoms belonging to every
model containing I (i.e. atoms that are surely needed to extend I to a model). Note

83DISJUNCTIVE STABLE MODELS

File: ARCHIV 263016 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3793 Signs: 2647 . Length: 52 pic 10 pts, 222 mm

that, unlike other extensions of TP to disjunctive logic programs, TP is deter-
ministic, that is, its result is a single set of atoms rather than a family of sets of
atoms.

Definition 5.2. Let P be a program. Define the WP operator as follows:6

WP : IP � 2BP _ c.BP

I [TP(I) _ c.GUSP(I).

The next proposition confirms the intuition that Definition 5.2 extends to dis-
junctive logic programs the WP operator defined in [64] for disjunction-free
programs (whose least fixpoint is the well-founded model).

Proposition 5.3. Let P be a disjunction-free program. Then the WP operator of
Definition 5.2 exactly coincides with WP operator defined in [64].

Proof. First observe that the two definitions of WP assign the same domain to
the operator: because P is a disjunction-free program, its every interpretation
admits the greatest unfounded set. Thus, IP coincides with the set of all (three
valued) interpretations for P.

We must prove that given an interpretation I, the two versions of WP(I) coincide.
In both versions, the positive part of WP(I) is the result of the application of the
immediate consequence operator TP , while the negative part of WP(I) is the
greatest unfounded set for P w.r.t. I. P being a disjunction-free program, TP as
given in Definition 5.1 coincides with TP of [64], since, \r # P, H(r) is a singleton
and, as a consequence, the condition H(r)&[a]�c.I is trivially satisfied. From
Proposition 3.3, it immediately follows that the two versions of the greatest
unfounded set also coincide. The proposition is therefore proven. K

The next theorem relates the stable models of P to the fixpoints of WP . Note
that, because WP is defined on the domain IP , every fixpoint of WP by definition
admits the greatest unfounded set (since each fixpoint of WP must belong to the
domain IP of WP).

Theorem 5.4. Let M be a total interpretation for program P. M is a stable model
for P iff M is a fixpoint of WP .

Proof. (O) Since M is a stable model, by Theorem 4.6 M is unfounded-free.
Thus, M is in the domain IP of WP , by virtue of Proposition 3.7.

Now, according to Definition 5.2, we have to prove that M+=TP(M) and that
M&=c.GUSP(M). The latter condition holds by Theorem 4.8, as M is a stable
model, so only the former condition remains to be proven.

TP(M)$M +: Observe that, by Theorem 4.6, M is unfounded-free, and thus,
from Proposition 3.10, no subset of M is an unfounded set for P w.r.t. M. This is
true for any subset of the form [a]. Hence, for each a # M+, there exists a rule
r # ground(P) with a in its head, which violates all unfoundedness conditions of

84 LEONE, RULLO, AND SCARCELLO

6 Recall that IP is the set of interpretations having the greates unfounded set.

File: ARCHIV 263017 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3666 Signs: 2746 . Length: 52 pic 10 pts, 222 mm

Definition 3.1. In particular, B(r) is not false w.r.t. M, and thus, given that M is
total, B(r)�M. Moreover, (H(r)&[a]) & M=< holds; thus, as M is total,
H(r)&[a]�c.M. Therefore, for each a # M+, a # TP(M), that is, TP(M)$M+

holds (see Definition 5.1).
M+

$TP(M): Let a # TP(M). From Definition 5.1, _r # ground(P) with a in the
head such that: (i) B(r)�M, and (ii) H(r)&[a]�c.M. It follows that a must be
in M+; otherwise M would not be a model.

(o) Let M be a fixpoint of WP . Then, by Definition 5.2, M admits the
greatest unfounded set GUSP(M) (since M # IP), which coincides with c.M& (i.e.,
M&=c.GUSP(M)). Therefore, by Theorem 4.8, M is a stable model for P. K

Observe that our Theorem 5.4 is a generalization of Theorem 5.4 of [64] to the
class of disjunctive logic programs. It is also worth noting that the WP operator is
a skeptical operator and preserves the ``correctness'' of the interpretations, as it does
not make any unjustified choice. In other words, if I is an interpretation contained
in a stable model M, then WP(I) may add to I some literals of M but it never
``contradicts'' M (i.e., no inconsistency with M is introduced by WP(I)).

Proposition 5.5. Let I be an interpretation for a program P, and let M be a
stable model of P. If I�M, then

(a) I belongs to the domain IP of WP , and

(b) WP(I)�M.

Proof. Point (a). Since M is a stable model, by Theorem 4.6 it is unfounded-
free. Therefore, I is unfounded-free. Indeed, from Definition 3.1, every unfounded
set X w.r.t. I is also an unfounded set w.r.t. M. Therefore, for each unfounded set
X w.r.t. I, we have that X & I�X & M=<. Thus, from Proposition 3.7, I belongs
to the domain IP of WP , which proves Point (a).

Point (b). M is a stable model, so, by Theorem 4.8, M&=c.GUSP(M) and, by
Proposition 3.9, GUSP(I)�GUSP(M) (as I�M). Hence, WP(I)&=c.GUSP(I)�
c.GUSP(M)=M&.

To complete the proof of Point (b), only WP(I)+�M+ remains to be demon-
strated. Let a # WP(I)+. Since WP(I)+=TP(I), by Definition 5.1 _r # ground(P)
such that a # H(r), H(r)&[a]�c.I, and B(r)�I. Consequently, as I�M, _r #
ground(P) such that a # H(r), H(r)&[a]�c.M, and B(r)�M. Hence, a must
belong to M+; otherwise M would not be a model. Thus, \a # WP(I)+, a # M+,
that is, WP(I)+�M+. K

The elegant fixpoint characterization of stable models given by Theorem 5.4 does
not provide suggestions for constructively building the stable models. Because the
computation of the stable models of function-free programs is an important issue
that will be dealt with in the next section, we will investigate how the WP operator
can be employed to construct the stable models of function-free programs.

To start we prove that, as in normal logic programming, the (possibly partial)
least fixpoint W|

P(<) of WP is contained in every stable model.

85DISJUNCTIVE STABLE MODELS

File: ARCHIV 263018 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3995 Signs: 2922 . Length: 52 pic 10 pts, 222 mm

Proposition 5.6. Given a function-free program P, let [Wn]n # N be the sequence
whose nth term is the n-fold application of the WP operator on the empty set (i.e.,
W0=<, Wn=WP(Wn&1)). Then

(a) [Wn]n # N converges to a limit W|
P(<), and

(b) for each stable model M for P, M$W|
P(<).

Proof. Observe that we have to prove that the sequence [Wn]n # N is well
defined (i.e., for each n in N, Wn is an interpretation in IP).

In the case where P admits some stable model, the statement follows
immediately from Proposition 5.5. Indeed, from Proposition 5.5 by applying simple
induction, it is easy to see that [Wn]n # N is well defined and that, for each stable
model M for P, M$Wn for every element Wn of the sequence. The convergence of
the sequence is a consequence of the monotonicity of WP (GUSP is monotonic by
Proposition 3.9, and TP is clearly monotonic) and of the finiteness of BP (which is
an upper bound for [Wn]n # N).

Consider now the case where the program P has no stable model. Point (b) is
trivially true. To prove Point (a), we demonstrate that, for each n # N, the fol-
lowing two conditions hold: (i) Wn is an interpretation (i.e., it is consistent), and
(ii) Wn is unfounded-free.

As expected, we proceed by induction on the index n of the sequence. The basis
of the induction is trivial. Assuming now that both conditions hold for each
k�n&1 (inductive hypothesis), we demonstrate that they hold for Wn .

(i) Consistency of Wn . By contradiction, assume that Wn is not consistent
(i.e., Wn & c.Wn{<). Let q be an atom in Wn & c.Wn . By the definition
of Wn , q # TP(Wn&1) & GUSP(Wn&1) (recall that Wn=WP(Wn&1)=TP(Wn&1) _

c.GUSP(Wn&1)). On the one hand, since q # GUSP(Wn&1), for each rule
r # ground(P) with q in its head, at least one of the following conditions
holds: (1) B(r) & c.Wn&1 {<, (2) B(r) & GUSP(Wn&1){<, or (3)
(H(r)&GUSP(Wn&1)) & Wn&1 {< (see Definition 3.1). On the other hand,
since q # TP(Wn&1), we have that _r$ # ground(P) such that B(r$)�Wn&1 and
(H(r$)&[q])�c.Wn&1 (see Definition 5.1). Now, for rule r$ we find that none of
the conditions hold. Condition (1) does not hold for r$, as otherwise
Wn&1 & c.Wn&1{< (contradicting the consistency of Wn&1 assumed in the
inductive hypothesis). Condition (2) does not hold for r$, as otherwise
Wn&1 & GUSP(Wn&1){< (contradicting the unfounded-free property of the induc-
tive hypothesis). Condition (3) does not hold for r$, as (H(r$)&GUSP(Wn&1))�
(H(r$)&[q])�c.Wn&1 (thus, (H(r$)&GUSP(Wn&1)) & Wn&1 {< would con-
tradict the consistency of Wn&1 assumed in the inductive hypothesis). Therefore,
q � GUSP(Wn&1) (i.e., a contradiction arises). Hence, Wn is consistent (point (i) is
proven).

(ii) Wn is unfounded-free. By contradiction, assume that there exists an
unfounded set X for P w.r.t. Wn such that X & Wn {<. Then, by Definition 3.1, for
each rule r # ground(P) with an atom from X in the head, at least one of the follow-
ing holds: (1) B(r) & c.Wn {<, (2) B(r) & X{<, or (3) (H(r)&X) & Wn{<.

86 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263019 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3582 Signs: 2721 . Length: 52 pic 10 pts, 222 mm

Now, let m be the least index such that X & Wm {< (note that X & Wm&1=<).
Given q # X & Wm , every rule with q in its head must verify at least one of the three
conditions above (as q belongs to the unfounded set X w.r.t. Wn).

In contrast, since Wm=WP(Wm&1), then _r$ # ground(P) such that B(r$)�
Wm&1 and (H(r$)&[q])�c.Wm&1 (see Definition 5.1). For rule r$ we observe
that Wm&1 �Wn and that none of the conditions hold. Condition (1) does not hold
for r$, as otherwise Wn & c.Wn{< (contradicting the consistency of Wn proven in
point (i) above). Condition (2) does not hold for r$, as B(r$) is included in Wm&1

which does not intersect X (we assumed that Wm is the first element of [Wn]n # N

intersecting X). Condition (3) does not hold for r$, as (H(r$)&X)�(H(r$)&[q])�
c.Wm&1 �c.Wn (thus, (H(r$)&X) & Wn {< would contradict the consistency of
Wn proven in point (i) above). Therefore, X is not an unfounded set w.r.t. Wn (i.e.,
a contradiction arises), since rule r$ with an element from X in its head does not
satisfy any condition of Definition 3.1. Hence, Wn is unfounded-free (point (ii) is
proven).

Once we know that [Wn]n # N is well defined, as in the case where P admits
some stable model, we easily recognize that [Wn]n # N (finitely) converges to a limit
W|

P(<). K

It is worth noting that the iterated applications of the WP operator starting from
the empty set yield unfounded-free interpretations. Nevertheless, in general, WP(I)
may not be unfounded-free even if I is unfounded-free. For instance, consider
program P=[b � ca; a � b] and interpretation I=[b, ca]. It is easy to see that
I is unfounded-free, while WP(I)=[a, b] is not.

In disjunction-free logic programming, whenever W|
P(<) is total, it is the unique

stable model (see Corollary 5.6 of [64]). The next corollary generalizes this result
to disjunctive logic programs.

Corollary 5.7. Let P be a function-free program. If W|
P(<) is a total inter-

pretation, then it is the unique stable model for P.

Proof. If W|
P(<) is a total interpretation, then, by Theorem 5.4, it is a stable

model. Furthermore, from Proposition 5.6, for each stable model M, M$W|
P(<).

Hence, since W|
P(<) is total, for each stable model M, M=W|

P(<), that is,
W|

P(<) is the unique stable model for P.

As we intuitively expected, for disjunction-free programs, W|
P(<) is the tradi-

tional well-founded model.

Corollary 5.8. Let P be a function-free program. If P is disjunction-free, then
W|

P(<) is the well-founded model for P as defined in [64].

Proof. Immediate from Propositions 5.6 and 5.3. K

To enhance understanding of W|
P(<), we conclude by showing that W|

P(<)
coincides with the well-founded model of a disjunction-free program P$ obtained by
``shifting'' some head atoms to the bodies of the rules.

87DISJUNCTIVE STABLE MODELS

File: ARCHIV 263020 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3313 Signs: 2341 . Length: 52 pic 10 pts, 222 mm

Given a (disjunctive) program P, we denote by sh(P) the disjunction-free
program obtained from P by substituting every rule of the form a1 6 } } } 6 ak �
b1 , ..., bm , cc1 , ..., ccn by the k rules

ai � b1 , ..., bm , cc1 , ..., ccn , ca1 , ..., cai&1 , cai+1 , ..., cak (1�i�k).

Lemma 5.9. Let I be an unfounded-free interpretation for a function-free program P.
Then X is an unfounded set for P w.r.t. I iff X is an unfounded set for sh(P) w.r.t. I.

Proof. (O) Let a # X and consider a rule r # ground(P) with a # H(r). Notice
that there is only one rule r$ with head a in ground(sh(P)) corresponding to r in
ground(P). Since X is an unfounded set for P w.r.t. I, at least one condition
of Definition 3.1 is verified. If B(r) & c.I{<, then B(r$) & c.I{<, since
B(r)�B(r$). If B+(r) & X{<, then B+(r$) & X{<, since B+(r)=B+(r$). Finally,
consider the case (H(r)&X) & I{<. Since I is unfounded-free, the previous
condition is equivalent to (H(r)&[a]) & I{<. As c.(H(r)&[a])�B(r$), then
B(r$) & c.I{< because at least c.(H(r)&[a]) & c.I{<.

This proves the result for any a # X and arbitrary rule r and therefore for every
rule with head a in ground(sh(P)).

(o) The proof proceeds along the same lines as in (O) above. The first case
for sh(P) reduces to either the first or the third case for P. The second case always
reduces to the second case. K

Lemma 5.10. Let I be an interpretation for a function-free program P. Then,
TP(I)=Tsh(P)(I).

Proof. By Definition 5.1, a # TP(I) iff there is a rule r in ground(P) such
that a # H(r), H(r)&[a]�c.I and B(r)�I. This is equivalent to having a
rule r$ in ground(sh(P)) with head a such that B(r$)�I since B(r$)=
B(r) _ c.(H(r$)&[a])�I. K

Theorem 5.11. Let P be a function-free program. Then, W|
P(<) coincides with

the well-founded model of sh(P).

Proof. From Lemmas 5.9 and 5.10, it follows that WP (I)=Wsh(P)(I) for every
unfounded-free interpretation I. From the proof of Proposition 5.6, the iterated
application of WP starting from the empty set yields unfounded-free interpretations.
Thus, W|

P(<)=Wsh(P)
|(<). K

As an important consequence, we obtain that the computation of W|
P(<) is

tractable for disjunctive logic programs.

Proposition 5.12. Given a propositional program P, W|
P(<) is computable in

polynomial time.

Proof. From Theorem 5.11, W|
P(<) coincides with the well-founded model of

the (polynomially computable) program P$. The result thus follows from [64]. K

88 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263021 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3820 Signs: 3120 . Length: 52 pic 10 pts, 222 mm

It is worth noting that in W|
P(<), no positive conclusion is drawn from dis-

junctive rules, since WP is a deterministic operator and makes no choice in the
presence of a disjunct. Thus, as is not true for normal logic programs, where
W|

P(<) is a (partial) model and can be thought of as the intended meaning of P

[64], for disjunctive logic programs W|
P(<) is not in general a model and cannot

be seen as a meaningful semantics for the program. For instance, consider the sim-
ple program P=[a 6 b]. W|

P(<) is <, so it is not a model, and it cannot be seen
as the semantics of P since too many atoms are left undefined. Nevertheless, there
are simple cases where W|

P(<) provides a reasonable meaning for the program.
For instance, consider the program [b � cc; a 6 b �]. We have WP(<)=[cc],
WP([cc])=[b, cc], and WP([b, cc])=[cc, b, ca]=W|

P(<). W|
P(<) is

total and is thus the unique stable model of the program capturing the intended
meaning of P. In this case, W|

P(<) works well because the disjunctive rule of P

is satisfied since some head atom is derivable from disjunction-free rules. Indeed,
a6 b � is satisfied by the atom b derived from b � cc; the GUSP operator hence
is able to infer the falsity of a.

Thus, from the semantic viewpoint, only the total fixpoints of WP are meaningful,
as they coincide with the stable models of P. Nevertheless, since W|

P(<) is con-
tained in every stable model (see Proposition 5.6) and is efficiently computable (see
Proposition 5.12), the computation of W|

P(<) can be a good starting point for
algorithms computing the stable models.

6. COMPUTATION OF STABLE MODELS

In this section, we study the computation of stable models. Exploiting the results
presented in the previous sections, we design an algorithm that computes the
stable models of any disjunctive deductive database (i.e., function-free disjunctive
program). We limit ourselves to the function-free case because for general dis-
junctive programs (where the presence of function symbols makes the Herbrand
Base infinite), the problem is known to be infeasible in general. There may exist
continuum many stable models, and the problem of deciding whether a recursively
enumerable interpretation is a stable model is 62

0-hard [42, 62].

Remark. All the programs considered in this section are function-free. For sim-
plicity, we refer to them simply as programs instead of function-free programs. K

To start, consider the naive algorithm for the computation of stable models
shown in Fig. 1. This algorithm, based on a trivial guess-and-check strategy, reveals
the presence of two main sources of complexity in the computation of the stable
models which interact, in a sense, orthogonally: (1) the exponential number of
interpretations that are ``candidates'' to be stable models, and (2) the check of the
unfounded-free condition (or, equivalently, the stability condition), which has been
shown to be a co-NP-hard decision problem (see Proposition 3.8).

The next two subsections focus on these sources of complexity. For clarity of
exposition, we start in Section 6.1 with the check of the unfounded-free property;

89DISJUNCTIVE STABLE MODELS

File: 643J 263022 . By:XX . Date:08:07:07 . Time:05:23 LOP8M. V8.0. Page 01:01
Codes: 3058 Signs: 2465 . Length: 52 pic 10 pts, 222 mm

FIG. 1. Naive guess-and-check algorithm for the computation of stable models.

then, Section 6.2 provides a method that allows us to reduce the number of
candidate interpretations to be considered in practice.

Combining the results in the two subsections yields an effective algorithm for the
computation of the stable models.

6.1. Checking the Unfounded-Free Property

Checking the unfounded-free property is difficult in general. Indeed, by virtue of
Theorem 4.6, this task is equivalent to verifying the stability condition, which is
known to be a co-NP-hard decision problem [43, 18, 19, 17] (see Proposition 3.8).
Recent studies [7, 8], however, have proven that minimal model checking��the
hardest part of stable model checking��can be performed efficiently for a relevant
class of programs, called head-cycle-free (HCF) programs. We next provide an
algorithm for checking the unfounded-free property which runs in polynomial time
for HCF programs and for general programs limits the inefficient part of the com-
putation to only the components of the program that are not HCF. Our algorithm
pays attention to head-cycle-free programs for the following main reasons:

v A fundamental efficiency requirement for algorithms solving untractable
problems is that they be polynomial on the main classes of instances of the problem
which are known to be tractable. To our knowledge, the set of HCF programs is
the most relevant class of programs for which stable model checking is known to
be tractable (note that all disjunction-free programs are contained in this set).
Good algorithms for the computation of disjunctive stable models should therefore
handle HCF programs efficiently.

v It has recently been proven that under brave (resp., cautious) reasoning,
HCF programs (with stable model semantics) express all properties in NP (resp.,
co-NP) [20]. More important, several problems in NP can be expressed in a very
simple and natural way by HCF programs [20, 7, 8]��a number of rules with
HCF disjunction may ``guess'' the solution which is then ``checked'' by disjunction-
free rules. For instance, all problems suggested as benchmarks for nonmonotonic
reasoning systems in [12] are naturally expressed by HCF programs.

With every program P, we associate a directed graph DGP =(N, E), called the
dependency graph of P, in which (i) each predicate of P is a node in N and
(ii) there is an arc in E directed from a node a to a node b iff there is a rule r in

90 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263023 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3471 Signs: 2136 . Length: 52 pic 10 pts, 222 mm

P such that b and a are the predicates of a positive literal appearing in H(r) and
B(r), respectively.

The graph DGP singles out the dependencies of the head predicates of a rule r
from the positive predicates in its body.7

Example 6.1. Consider the program P1 consisting of the following rules:8

a6 b � c � a c � b

The dependency graph DGP1
of P1 is depicted in Fig. 2a. (Note that, since the

sample programs are propositional, the nodes of the sample graphs in Fig. 2 are
atoms, as atoms coincide with predicates in this case.)

Consider now program P2 , obtained by adding to P1 the rules

d 6 e � a d � e e � d, cb

The dependency graph DGP2
is shown in Fig. 2b.

The dependency graphs allow us to single out HCF programs [7, 8].
A program P is HCF iff there is no clause r in P such that two predicates

occurring in the head of r are in the same cycle of DGP .

Example 6.2. The dependency graphs given in Fig. 2 reveal that program P1 of
Example 6.1 is HCF and that program P2 is not HCF, as rule d 6 e � a contains
in its head two predicates belonging to the same cycle of DGP2

.

Our method for testing the unfounded-free property on HCF programs is based
on a transformation RP, I that, given a set X of ground atoms, derives the atoms
in X which satisfy at least one of the unfoundedness conditions of Definition 3.1.

Definition 6.3. Let P be a program. Define the RP, I operator as follows:

RP, I : 2BP � 2BP

X [[a # X | \r # ground(P) with a # H(r),

B(r) & (c.I _ X){< or (H(r)&[a]) & I{<]

It is easy to see that RP, I is a monotonic operator. Moreover, given a set X of
ground atoms, it is obvious that the sequence R0=X, Rn=RP, I (Rn&1) decreases
monotonically and converges finitely to a limit that we denote by R|

P, I (X).
Intuitively, RP, I (X) discards from X only elements for which there exists some

rule violating all unfoundedness conditions for P w.r.t. I. Thus, R|
P, I (X) contains

the union of all unfounded sets for P w.r.t. I included in X. As a consequence, if

91DISJUNCTIVE STABLE MODELS

7 Note that negative literals cause no arc in DGP .
8 We point out again that we use propositional examples for simplicity, but the algorithm is defined

for the general case of (function-free) programs with variables.

File: 643J 263024 . By:XX . Date:08:07:07 . Time:05:23 LOP8M. V8.0. Page 01:01
Codes: 3009 Signs: 1701 . Length: 52 pic 10 pts, 222 mm

FIG. 2. Graphs (a) DGP1
, (b) DGP2

, and (c) DG@ P2
.

R|
P, I (I+) is the empty set for a total interpretation I, then I is unfounded-free. This

intuition is formalized by the following lemma and proposition.

Lemma 6.4. Let P be a program, I be a total interpretation for P, and J�BP.
Every unfounded set for P w.r.t. I which is contained in J is also contained in R|

P, I (J).

Proof. Let X�J be an unfounded set for P w.r.t. I. For each a # X and for
each rule r such that a # H(r), at least one of the following conditions holds:
(i) B(r) & (c.I _ X){< or (ii) (H(r)&X) & I{<. Hence, as [a]�X,
(H(r)&[a]) & I{< as well. Then, from the definition of RP, I , RP, I (X)=X holds
and, since RP, I is monotonic and X�J, R|

P, I (J) must contain X. K

Proposition 6.5. Let P be a program and I be a total interpretation for P. If
R|

P, I (I+)=<, then I is unfounded-free.

Proof. Follows immediately from Lemma 6.4. K.

Therefore, R|
P, I (I+)=< is sufficient to guarantee that I is unfounded-free.

Example 6.6. Consider again the (HCF) program P1 of Example 6.1. P1 con-
sists of the rules

r1 : a 6 b� r2 : c � a r3 : c � b

Given the total interpretation I1=[a, c, cb], we have

R0=I+
1 =[a, c]

R1=RP1, I1
(R0)=[c]

R2=RP1, I1
(R1)=<=R|

P1, I1
(I+

1)

Indeed, a is not in RP1 , I1
(R0) because for rule r1 both B(r1) & (c.I1 _ R0)=< (as

B(r1) is empty) and (H(r1)&[a]) & I1=< (as H(r1)&[a]=[b]) hold. Atom c is
in RP1 , I1

(R0), because both rules with c in their heads (namely, r2 and rule r3)
verify the conditions required by the RP1 , I1

operator. In particular, B(r2) & R0=
[a]{< and B(r3) & c.I1=[b]{<. At the next step, c is not in RP1 , I1

(R1), as
B(r2) & (c.I1 _ R1){< does not hold.

I1 thus verifies the hypothesis of Proposition 6.5 and it is indeed easy to see that
I1 is unfounded-free.

92 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263025 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3235 Signs: 2077 . Length: 52 pic 10 pts, 222 mm

For another example consider, on the same program P1 , total interpretation
I2=[a, b, c], which is not unfounded-free, as [a] and [b] are unfounded sets for
P1 w.r.t. I2 . We have that

R0=I+
2 =[a, b, c]

R1=RP1 , I2
(R0)=[a, b, c]=R|

P1 , I2
(I |

2).

In this case, R|
P1 , I2

(I+
2){< and we cannot apply Proposition 6.5, as it states a

sufficient condition for the unfounded-free property. However, we will see
(Theorem 6.9) that, since P1 is HCF, condition R|

P1 , I2
(I+

2){< allows us to derive
that I2 is not unfounded-free. K

Condition R|
P, I (I +)=< is thus sufficient for ensuring that I is unfounded-free

(actually, for HCF programs it is also necessary). Unfortunately, this condition is
not necessary in the general case.

Example 6.7. Consider the (non-HCF) program P consisting of the following
rules:

a 6 b� a � b b � a

Given the total interpretation I=[a, b], we have that R|
P, I (I+)=[a, b]{<,

while I is unfounded-free.

Thus, condition R|
P, I (I +)=< is not in general necessary for an interpretation

to be unfounded-free. Nevertheless, we next prove that for HCF programs this con-
dition is necessary (observe that the program P of Example 6.7, for which condi-
tion R|

P, I (I+)=< is not necessary for I to be unfounded-free, is not HCF).
The proof of the theorem refers to the notion of a collapsed dependency graph,

which is the graph DG@
P obtained from DGP by collapsing each (maximal) strongly

connected component into a single node. Thus, every node of DG@
P is a set Q of

predicates. Moreover, given a set Q of predicates and a set J of atoms, we denote
by J�Q the subset of J whose predicates are from Q.

Example 6.8. The collapsed dependency graph DG@
P2

of DGP2
is depicted in

Figure 2c.

Theorem 6.9. Let P be an HCF program and I a total interpretation for it. Then
I is unfounded-free iff R|

P, I (I+)=<.

Proof. From Proposition 6.5, only O remains to be proven.
Suppose that X=R|

P, I (I+) is not empty. Take a node Q of DG@
P such that: (a)

some atom in X has a predicate in Q, and (b) there exists no other node Q$ of DG@
P

containing a predicate of some atom in X such that Q is (transitively) reachable

93DISJUNCTIVE STABLE MODELS

File: ARCHIV 263026 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3893 Signs: 3111 . Length: 52 pic 10 pts, 222 mm

from Q$ (i.e., with a directed path from Q$ to Q in DG@
P).9 Consider now set X�Q.

We prove that X�Q is an unfounded set for P w.r.t. I. Let r be a rule in ground(P)
with an atom from X�Q in its head. Since RP, I (X)=X, r satisfies at least one
of the following conditions: (i) B(r) & c.I{< or (ii) B+(r) & X{< or (iii)
(H(r)&[a]) & I{<. Because of our choice of the node Q, no atom in the body
of r belongs to X&X�Q and condition (ii) yields B+(r) & X�Q{<. Furthermore,
condition (iii) entails (H(r)&X�Q) & I{<, because if H(r) contained another ele-
ment from X�Q, distinct from a, then P would not be HCF, as the predicates of the
elements in X�Q belong to the same cycle of the dependency graph. Thus, X�Q is
an unfounded set for P w.r.t. I. K

Corollary 6.10. Let P be a propositional HCF program and let M be a model
for P. Recognizing whether M is a stable model is polynomial.

Proof. It is easy to see that R|
P, I (I +) is efficiently computable. Thus, the state-

ment follows from Theorems 4.6 and 6.9. K

It is worth noting that, by virtue of Proposition 4.4, condition R|
P, I|(I+)=<

can also be employed to check that a model of a positive HCF program is minimal.
Thus, Theorem 6.9 suggests a way of doing this check which is a simpler alternative
to the algorithm proposed in [8].

From the above results, if the program is HCF we can efficiently check the
unfounded-free property by testing whether R|

P, I (I +)=<. Unfortunately, as
illustrated by Example 6.7, we cannot use this test for recognizing the unfounded-
free property in the general case, and we would have to resort to an inefficient algo-
rithm that blindly controls every element in the power set of I+ to see whether it
is an unfounded set.

The complexity result of Proposition 3.8 indicates that we have no chance of
finding an efficient algorithm for checking the unfounded-free property in the
general case (unless P=NP). Nevertheless, we will introduce some optimizations
that, also in non-HCF programs, strongly improve the efficiency of the naive algo-
rithm for the test of the unfounded-free property.

The first optimization is a direct consequence of Lemma 6.4. Indeed, because of
that result, we can limit our search of unfounded subsets of I+ to the power set of
R|

P, I (I+) (which may be substantially smaller than the power set of I +).
The second important optimization is supported by Proposition 6.11, which

shows that the test of the unfounded-free property can be performed one compo-
nent at a time. In this way, (a) the number of sets to be checked to verify the
property is drastically pruned, and (b) the efficient technique suggested by
Theorem 6.9 can be employed on the HCF components of P, limiting the inefficient
part of the computation to only the components that are not HCF.

Given a set Q of predicates, we denote by subp(Q) the subprogram of Q, which
is the set of the rules in ground(P) with a head predicate from Q. (Note that the
same rule may occur in the subprograms of two different (collapsed) nodes Q1 and
Q2 of DG@

P .)

94 LEONE, RULLO, AND SCARCELLO

9 Note that the existence of such a node is guaranteed, because the collapsed graph has no cycle.

File: ARCHIV 263027 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3847 Signs: 3031 . Length: 52 pic 10 pts, 222 mm

Proposition 6.11. Let P be a program, and I a total interpretation for P. I is
not unfounded-free iff there exists a node Q of DG@

P such that I+

Q contains a nonempty
unfounded set for subp(Q) w.r.t. I.

Proof. (O) Let X be a nonempty unfounded set for P w.r.t. I, which is con-
tained in I+. As in the proof of Theorem 6.9, take a node Q of DG@

P such that: (a)
some atom in X has a predicate in Q, and (b) there exists no other node Q$ of DG@

P

containing a predicate of some atom in X such that Q is (transitively) reachable
from Q$ (i.e., with a directed path from Q$ to Q in DG@

P). Note that the existence
of such a node is guaranteed, because the collapsed graph has no cycle. Consider
now set X�Q. We demonstrate that X�Q is an unfounded set for subp(Q) w.r.t. I. Let
r be a rule in subp(Q) with an atom from X�Q in the head. Since X�Q is a subset
of X, subp(Q)�ground(P), and X is an unfounded set for P w.r.t. I, r satisfies at
least one of the following conditions: (1) B(r) & c.I{<, (2) B+(r) & X{<, (3)
(H(r)&X) & I{<. Now, Condition 1 is the same for set X�Q as well. If Condition
2 is satisfied, then B+(r) & X�Q{<, as Q is the lowest node of DG@

P with
predicates appearing in X (Condition b above). Finally, if Condition 3 holds, then
(H(r)&X�Q) & I{<, since X�Q�X. Therefore, X�Q is a nonempty unfounded set
for subp(Q) w.r.t. I contained in I+�Q.

(o) Let Q be a node of DG@
P such that I+�Q contains a nonempty unfounded

set X for subp(Q) w.r.t. I. X is an unfounded set for P w.r.t. I as well, since all rules
in ground(P) which have an atom from X in the head occur also in subp(Q) (by the
definition of subp(Q)) and, therefore, also satisfy the unfoundedness conditions
for P. K

The results of Theorem 6.9 and Propositions 6.5 and 6.11 are all employed by the
algorithm for the efficient test of the unfounded-free property which appears in
Fig. 3.

Informally, the algorithm processes one subprogram subp(Q) at a time,
as suggested by Proposition 6.11 (external for statement). The fixpoint X=
R|

subp(Q), I (I +�Q) of Rsubp(Q), I is first computed (in the repeat-until loop). If it is
empty, then, by virtue of Proposition 6.5, I+�Q contains no unfounded set; thus,
the computation of subp(Q) terminates, and the next subprogram is processed.
Otherwise (X{<), we check whether subp(Q) is HCF, and, if so, the algorithm
terminates, returning False, as for HCF programs R|

subp(Q), I (I +�Q){< is sufficient
to guarantee that the interpretation is not unfounded-free (from Theorem 6.9).
Finally, in the case that both R|

subp(Q), I (I +�Q){< and subp(Q) is not HCF, all
subsets of R|

subp(Q), I (I +�Q) are controlled (internal for statement) so that we can
discover whether one of them is an unfounded set.

Note that the algorithm performs a nonpolynomial computation only if the
program has a component that is not HCF and for which, further,
Rsubp(Q), I

|(I+�Q){<.

Theorem 6.12. Given a program P and a total interpretation I for P, Function
unfounded-free of Fig. 3 terminates in a finite amount of time, returning the correct
answer.

95DISJUNCTIVE STABLE MODELS

File: 643J 263028 . By:XX . Date:08:07:07 . Time:05:23 LOP8M. V8.0. Page 01:01
Codes: 2005 Signs: 1503 . Length: 52 pic 10 pts, 222 mm

FIG. 3. Check of the unfounded-free property.

Proof. The two for statements are performed on a finite number of elements and
thus terminate in a finite amount of time. Moreover, the repeat-until statement also
terminates finitely, since it computes a monotonically decreasing sequence (lower
bounded by the empty set). The function thus ends in a finite amount of time.

The correctness of the function is a consequence of the results of Proposition 6.5,
Theorem 6.9, and Proposition 6.11, since the function implements the results of
these statements. K

We close this subsection with some remarks on the efficiency of Function
unfounded-free.

The function solves the decisional problem of checking whether an interpretation
is unfounded-free. According to Proposition 3.8, this problem is co-NP-hard. Thus,
unless P=NP, exponential time is needed. Actually, the algorithm runs in single
exponential time, as, in the worst case, all subsets of I+ have to be analyzed to see
whether any of them is an unfounded set.

Nevertheless, there is a meaningful class of programs on which the function ter-
minates in polynomial time. In particular, HCF programs belong to this class,
which clearly contains all normal logic programs as well (as an 6-free program is
HCF). Moreover, the algorithm also runs polynomially on the non-HCF programs
for which R|

subp(Q), I (I+�Q)=< on every non-HCF component. We point out that
on programs not in this polynomial class, the inefficient part of the computation is

96 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263029 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3500 Signs: 2727 . Length: 52 pic 10 pts, 222 mm

limited to the subprograms that are not HCF. Thus, HCF components are solved
in polynomial time, and, furthermore, the test for unfoundedness is done on power
sets that in general are of a substantially smaller size than the power set of I +.

Concerning space bounds, it is easy to see that the function runs in polynomial
space. Indeed, even if (in the worst case) the last for statement is executed on the
power set of I+, the elements of the power set do not need to be stored, as they
can be generated when needed (following a straightforward enumeration policy).

6.2. An Algorithm for Computing Stable Models

We have already seen that W|
P(<) is contained in every stable model of P (see

Proposition 5.6) and that it is computable in polynomial time (see Proposi-
tion 5.12). Thus, in order to compute stable models, we start from the evaluation
of W|

P(<). However, once we have computed W|
P(<), two questions come up.

How do we check whether W|
P(<) is a stable model (recall that, by Corollary 5.7,

if W|
P(<) is a stable model, it is the unique stable model)? If W|

P(<) is not a
stable model, how do we (efficiently) move beyond W|

P(<) toward the stable
models of P?

To this end, we next define the notion of a possibly true literal, which, as it will
be clear later in this section, plays a crucial role in our computational model and
will allow us to answer both of our questions. A similar notion has previously been
used in [35] for the efficient computation of the well-founded model of Datalog
programs and in [11] for the evaluation of the stable model semantics of ordered
logic programs.

Definition 6.13. Let I be an interpretation for a program P. A possibly-true
conjunction of P w.r.t. I is a set of literals of the form [a, cb1 , ..., cbn], n�0, such
that there exists a rule r # ground(P) for which all of the following conditions hold.

1. a # H(r), and B&(r)=[cb1 , ..., cbn] (i.e., a is an atom in the head, and
cb1 , ..., cbn is the negative part of the body);

2. H(r) & I=< (i.e., the head is not true w.r.t. I);

3. B+(r)�I (i.e., every positive literal of the body is true w.r.t. I); and

4. B&(r) & c.I=< (i.e., no negative literal of the body is false w.r.t. I).

We call each literal in a possibly true conjunction of P w.r.t. I a possibly-true literal
of P w.r.t. I. The set of all possibly true conjunctions of P w.r.t. I is denoted by
PTP(I). K

Example 6.14. Consider a program P consisting of the rule a 6 b � c, cd, and
let I=[c] be an interpretation for P. There are two possibly true conjunctions of
P w.r.t. I, namely, [a, cd] and [b, cd].

The next lemma states the relationship between possibly-true literals and models.

Lemma 6.15. Let I be an interpretation for program P. I _ c.(BP&I) is a model
for P iff PTP(I)=<.

97DISJUNCTIVE STABLE MODELS

File: ARCHIV 263030 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3952 Signs: 2974 . Length: 52 pic 10 pts, 222 mm

Proof. (o) By Definition 6.13, PTP(I)=< implies that, for each r #
ground(P), either (1) B+(r)�% I or (2) B&(r) & c.I{< (i.e., some negative literal
in the body of r is false w.r.t. I) or (3) H(r) & I{<. Note that all of these condi-
tions depend only on the positive part I+ of I. Now, consider the total interpreta-
tion M=I _ c.(BP&I). Since I +=M+, we have that, for each r # ground(P), the
three conditions above still hold if we replace I with M. Thus, for each
r # ground(P), either the body of r is false w.r.t. M or its head is true w.r.t. M.
Hence, M is a model for P.

(O) Let N=I _ c.(BP&I). Thus, by the definition of the model, for each
r # ground(P), either B(r) is not true w.r.t. N, that is, B(r)�% N (in particular, B(r)
is false, as N is a total interpretation) or H(r) is true w.r.t. N, that is, H(r) & N{<.
Since I�N, B(r)�% N implies B(r)�% I. Further, since head literals are positive and
N+=I +, we have that H(r) & N{< iff H(r) & I{<. Thus, each rule
r # ground(P) is such that either its body is not true w.r.t. I or its head is true w.r.t.
I. Consider now a rule r # ground(P) whose head is not true w.r.t. I, and thus
B(r)�% I holds. Since the head of r is also not true w.r.t. N, B(r)�% N is verified.
Assume now that B+(r)�I and B&(r)�% I; hence, B&(r)�% N holds. Now, since N
is a total interpretation, B&(r)�% N iff B&(r) & c.N{<, that is, there exists a
(negative) literal in B&(r), say ca, such that a # N+. And since N+=I +, it turns
out that B&(r) & c.I{< holds. We can therefore conclude that, for each rule
r # ground(P), either B+(r)�% I or B&(r) & c.I{< or H(r) & I{<. Hence,
PTP(I)=< follows immediately from Definition 6.13. K

We are now ready for the following proposition.

Proposition 6.16. W|
P(<) is a stable model for a program P iff

PTP(W|
P(<)) is empty.

Proof. (o) We show that c.(BP&W|
P(<))�W|

P(,), that is, W|
P(,) is a

total interpretation for P. Thus, by Theorem 5.4, W|
P(<) is a stable model for P.

By Definition 6.13, PTP(W|
P(<))=< implies that for each rule r # ground(P),

at least one of the following conditions holds: (1) B+(r)�% W|
P(<) or (2)

B&(r) & c.W|
P(<){< or (3) H(r) & W|

P(<){<. Condition 1 implies that B(r)
contains some positive literal that is either false w.r.t. W|

P(<) or in (BP&W|
P(,)).

Condition 2, in turn, states that some negative literal in the body of r is false w.r.t.
W|

P(<). Finally, Condition 3 says that the head of r contains some (positive)
literal in W|

P(<). Now, let a be an atom in (BP&W|
P(,)). Thus, for each rule

r # ground(P) with a # H(r), either B(r) is false w.r.t. W|
P(<) or B(r) contains some

positive literal in (BP&W|
P(,)) or, finally, there exists a head literal, say b, belong-

ing to W|
P(<). And since a was taken to be an arbitrary element of (BP&W|

P(,)),
we may conclude that (BP&W|

P(,)) is an unfounded set of P w.r.t. W|
P(<) (see

Definition 3.1). Hence, (BP&W|
P(,))�GUSP(W|

P(<)). Now, since W|
P(<) is a

fixpoint of WP by hypothesis, we have that W|
P(<)&=GUSP(W|

P(<)), from
which c.(BP&W|

P(,))�W|
P(<) follows.

98 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263031 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3410 Signs: 2509 . Length: 52 pic 10 pts, 222 mm

(O) Since stable models are total interpretations, W|
P(<) coincides with

W|
P(<) _ c.(BP&W|

P(,)). Thus, PTP(W|
P(<))=< follows immediately from

Lemma 6.15. K

Corollary 6.17. Let P be a program. If PTP(W|
P(<))=<, then W|

P(<) is
the unique stable model of P.

Proof. Follows from Proposition 6.16 and Corollary 5.7. K

Thus, if PTP(W|
P(<))=<, we are done, as W|

P(<) is the unique stable model
of P. Otherwise, we have to move forward, as W|

P(<)�M for each stable model
M of P. To see how, we provide the following proposition, which is fundamental
for our computational strategy.

Proposition 6.18. Let I be an interpretation for a program P and M a stable
model for P. If I/M and I+/M+, then there exists a possibly-true conjunction
X # PTP(I) such that I/I _ X�M.

Proof. Since I/M by hypothesis, and since every possibly-true conjunction
X=[a, cb1 , ..., cbn] is not contained in I (as a is not in I, from Condition 2 of
Definition 6.13), it is sufficient to prove that there exists a possibly-true conjunction
X # PTP(I) such that X�M.

Let Z=M+&I +. Since M is a stable model and thus, by Theorem 4.6,
unfounded-free, Z is not an unfounded set of P w.r.t. M. Thus, by Definition 3.1,
there exists a (positive) literal a # Z for which there is a rule r # ground(P) with
a # H(r), such that (1) B(r) is not false w.r.t. M, (2) B+(r) & Z=<, and
(3) (H(r)&Z) & M=<. Now, we have the following:

�� Since M is a total interpretation, B(r) not false w.r.t. M (Condition 1
above) implies that B(r) is true w.r.t. M, that is, B(r)�M.

�� From B(r)�M and B+(r) & Z=< (Condition 2 above), it can easily be
recognized that B+(r)�I follows.

�� B(r)�M and the hypothesis I/M imply that B(r) is not false in I. In par-
ticular, no negative literal in the body of r is false w.r.t. I, that is, B&(r) & c.I=<.

�� Finally, (H(r)&Z) & M=< (condition 3 above) iff H(r) & (M&Z)=<
(by set theory). Since H(r) consists of only positive literals, it turns out that
H(r) & (M+&Z)=<, from which H(r) & I=< immediately follows.

In other words, Conditions 2 through 4 of Definition 6.13, namely, B+(r)�I,
B&(r) & c.I=<, and H(r) & I=<, are all satisfied. Therefore, we may conclude
that X=[a, cb1 , ..., cbn], where cb1 , ..., cbn are the negative literals in B(r), is
a possibly true conjunction of P w.r.t. I. Since a # M, [cb1 , ..., cbn]�B(r), and
B(r)�M, it turns out that X�M, and hence we have proved the proposition. K

Corollary 6.19. If W|
P(<) is not a stable model, then, for each stable model

M of P, there exists a possibly true conjunction X # PTP(W|
P(<)) such that

W|
P(<)/W|

P(<) _ X�M.

99DISJUNCTIVE STABLE MODELS

File: ARCHIV 263032 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3800 Signs: 2818 . Length: 52 pic 10 pts, 222 mm

Proof. Since W|
P(<) is not a stable model, by virtue of Proposition 5.6 for each

stable model M of P, it holds that W|
P(<)/M. The statement thus follows from

Proposition 6.18. K

The above corollary suggests a simple way of moving in the direction of stable
models starting from W|

P(<). Indeed, for each stable model M, there exists a
possibly-true conjunction X # PTP(W|

P(<)) such that X�M. Now, let M be a
fixed stable model. Obviously, W|

P(<) _ X is also contained in M. Thus, by
iteratively applying the inflationary TP operator T� P (see below), starting from
W|

P(<) _ X, a fixpoint, say I� of T� P , contained in M is finitely reached (note that
TP is monotonic and BP is finite). Indeed, for a generic interpretation J, J�M
implies TP(J)�M as an immediate corollary of Proposition 5.5. Now, if
PTP(I�)=< then I� _ c.(BP&I�) is a model by Lemma 6.15 and, since it is con-
tained in M, I� _ c.(BP&I�)=M follows by minimality of stable models. Otherwise,
a possibly-true conjunction X$ # PTP(I�) contained in M is chosen and added to I� ,
and the computation restarts from I� _ X$�M by using T� P . The process is
reiterated until a fixpoint of T� P , say J, such that PTP(J)=<, is found. Again, by
Lemma 6.15, J _ c.(BP&J) is a model and, in particular, J _ c.(BP&J)=M.

We note that this computation is nondeterministic, as we have assumed the
ability to guess each time a ``right'' possibly-true conjunction contained in the stable
model M, thus generating a sequence of interpretations contained in M. Unfor-
tunately, this model of computation is unrealistic; an exhaustive search, in which all
possibly-true conjunctions are tried, is actually required. As a consequence, in a real
computation, whenever an interpretation J such that J=T� P(J) and PTP(J)=<
is reached, a check on whether J _ c.(BP&J) is unfounded-free is needed to
recognize whether it is a stable model (recall that by Lemma 6.15 it is a model); this
check somehow verifies that ``right'' possibly-true conjunctions have been chosen.

We begin formalizing these observations by defining the notion of a computation
of P.

Definition 6.20. Let P be a program. A sequence of sets of ground literals
[Vn]n # N is a computation of P if the following hold:

v V0=W|
P(<)

v If T� P(Vn){Vn then Vn+1=T� P(Vn), otherwise

�� If PTP(Vn){< then Vn+1=X _ Vn , for some X # PTP(Vn)

�� else Vn+1=Vn ;

where T� P(Vn)=TP(Vn) _ Vn.

Clearly, there are finitely many computations of P (2 |BP| is an upper bound,
where |BP| is the (finite) size of the Herbrand base of P). We denote by FP the
family of all the computations of P. Let [Vn]n # N be an element of FP. It is easily
recognized that [Vn]n # N is a monotonically increasing sequence. Since the base of
P is finite, [Vn]n # N is upper bounded, so that there exists a natural k such that
Vj=Vk , for each j�k. We denote the limit Vk of [Vn]n # N by V |.

100 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263033 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3898 Signs: 2862 . Length: 52 pic 10 pts, 222 mm

Informally, the family FP can be represented by a rooted tree, where the root
represents W|

P(<) and each path P from the root to a leaf represents a computa-
tion [Vn]n # N of P, the leaf being the limit V|. Each intermediate node of P
represents a term Vn # [Vn]n # N. We call such a tree the choice tree of P, denoted
CTP, and we call each node of P representing a term Vn # [Vn]n # N such that
Vn=T� P(Vn) a choice node of CTP. Apart from the leaves, the choice nodes are the
points where the possibly-true conjunctions have to be chosen. Clearly, the root of
CTP is a choice node. Note that each choice node representing a term Vn has as
many children as the size of the set PTP(Vn). Any other node of CTP, except the
leaves, has exactly one child.

Next we show the relationships between stable models of P and the leaves of the
choice tree of P (i.e., the limits V| of the computations of P). We provide a one-to-
one correspondence between the set of stable models of P and a subset of the leaves
of the choice tree. Thus, the choice tree of P both reduces the number of interpreta-
tions that are ``candidates'' to be stable models, and provides us with a constructive
way of computing the stable models.

In more detail, we show that the stable models exactly coincide with the inter-
pretations V| _ c.(BP&V|) that are unfounded-free (where, again, V | denotes
the limit of a computation). To this end, we first give the following result.

Lemma 6.21. Let [Vn]n # N be a computation of P and Vn an element of
[Vn]n # N. Vn=V| iff PTP(Vn)=<.

Proof. By Definition 6.20, we have that Vn+1=Vn iff Vn=TP(Vn) _ Vn and
PTP(Vn)=<. Thus, Vn+1=Vn implies PTP(Vn)=<, which proves the (O) part
of the lemma. Concerning the (o) part, it suffices to show that PTP(Vn)=<
implies Vn=TP(Vn) _ Vn . Let a be an atom occurring in TP(Vn). By definition,
a # TP(Vn) iff there exists a ground rule r # ground(P) such that a # H(r),
H(r)&[a]�c.Vn (i.e., all other head literals are false) and B(r)�Vn . Now, if
a � Vn , it immediately follows from Definition 6.13 that X=[a, cb1 , ..., cbn],
where cb1 , ..., cbn are the negative literals in the body of r, is a possibly-true con-
junction of P w.r.t. Vn . That is, a # TP(Vn) and a � Vn imply the existence of X.
Hence, PTP(Vn)=< implies that any atom a # TP(Vn) belongs to Vn , that is,
TP(Vn)�Vn . From this, Vn=TP(Vn) _ Vn follows.

Theorem 6.22. Let [Vn]n # N be a computation of P. If V| _ c.(BP&V|) is
an unfounded-free interpretation then it is a stable model of P.

Proof. By Lemma 6.21, we have that PTP(V|)=< and thus, by Lemma 6.15,
V| _ c.(BP&V|) is a model for P. Since it is unfounded-free, by Theorem 4.6,
V| _ c.(BP&V|) is a stable model for P. K

Next we prove the converse of Theorem 6.22, which will prove the completeness
of our computational strategy.

Theorem 6.23. Let M be a stable model for a program P. M=V| _

c.(BP&V|), for some computation [Vn]n # N of P.

101DISJUNCTIVE STABLE MODELS

File: ARCHIV 263034 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 4115 Signs: 2735 . Length: 52 pic 10 pts, 222 mm

Proof. We give a constructive proof of the existence of a computation [Vn]n # N

whose elements are contained in M. Let [Vn]n # N be the sequence of interpreta-
tions such that V0=W|

P(<) and Vn+1 is as follows (see Definition 6.20):

1. If T� P(Vn){Vn , then Vn+1=T� P(Vn); otherwise,

2. If PTP(Vn){<, then Vn+1=X _ Vn , where X # PTP(Vn) & M,

3. Else Vn+1=Vn .

We next show that, for each n # N, Vn is well defined and Vn�M. We proceed
by induction.

(Base of the induction) V0 is clearly well defined, and its inclusion in M stems
from Proposition 5.6, as V0=W|

P(<).

Assuming that Vn�M (inductive hypothesis), it follows that Vn+1 is well defined.
Indeed, be ill defined Vn+1 could only through Point 2 above, and Proposition 6.18
ensures the existence of X belonging to PTP(Vn) & M.10 Moreover, it is easy to see
that Vn+1�M. Indeed,

v If Vn+1=TP(Vn) _ Vn , then Vn+1�M, since Vn �M by the inductive
hypothesis, and TP(Vn)�M holds as an immediate corollary of Proposition 5.5.

v If Vn+1=X _ Vn , where X # PTP(Vn) & M, it is then immediate that
Vn+1�M, as both X and Vn are subsets of M.

v If Vn+1=Vn , then Vn+1�M for the inductive hypothesis.

Now, it is easy to see that [Vn]n # N is a computation. Let V| be the limit of
[Vn]n # N (clearly V|�M). By Lemma 6.21, PTP(V|)=<, and hence by
Lemma 6.15, V| _ c(BP&V|) is a model. From the minimality of M (see
Corollary 4.7), V| _ c.(BP&V |)=M follows. K

Figure 4 shows an algorithm for the computation of all stable models of a dis-
junctive Datalog program P. First, the least fixpoint W|

P(<) is computed by the
repeat-until statement of the main program. Then, according to Corollary 6.17, the
condition PTP(W|

P(<))=< is tested to verify whether W|
P(<) is the unique

stable model of P. If so, W|
P(<) is given as the output of the algorithm. Otherwise,

the procedure Compute�Stable is invoked to generate the family FP of the com-
putations of P. This procedure, which has been written in recursive form for clarity,
is based on a backtracking technique, and its structure is that of a preorder visit
of the choice tree CTP of P. Initially, Compute�Stable is run with actual parameter
Vn=W|

P(<), which corresponds to a visit to the root of CTP. In general, the
procedure is invoked with the actual parameter corresponding to a choice node of
CTP (recall that the root of CTP is a choice node). Then, for each possibly-true
conjunction X # PTP(Vn) (possibly none), X is added to Vn and the set of ground
literals V$n+1 , corresponding to the next choice node of CTP, is computed by the
repeat-until statement. The procedure then recursively invokes itself with actual
parameter V $n+1. Whenever the condition PTP(Vn)=< is verified, the function of

102 LEONE, RULLO, AND SCARCELLO

10 Actually, more than one X of this form may exist, but the choice is immaterial.

File: ARCHIV 263035 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3343 Signs: 1925 . Length: 52 pic 10 pts, 222 mm

Fig. 3 is invoked to check whether Vn _ c.(BP&Vn) is unfounded free. Note that
a possible inconsistency in V $n+1 is detected by the algorithm (see the second until
condition and the subsequent if statement), hence pruning the choice tree of P by
discarding computations whose elements are not interpretations. It is easy to see
that the latter optimization is correct: if V $n+1 is inconsistent, then V $n+m is inconsis-
tent as well, for any m�1 (since the computation is monotonic).

Example 6.24. Consider the program P consisting of the following rules:

d� e � d,c f a 6 c � cb

b � ca b � c g � a.

Clearly, P has two stable models, namely, [a, cb, cc, d, e, c f, g] and [ca, b,
cc, d, e, c f, cg].

The algorithm of Fig. 4 starts by computing V0=W|
P(<)=[d, e, c f]. Now,

the possibly-true conjunctions of P w.r.t. W|
P(<) are X1=[a, cb], X2=[c, cb]

and X3=[b, ca]. One of them, say X1 , is chosen, and the sequence

V1=W|
P(<) _ X1=[a, cb, d, e, c f]

V2=TP(V1) _ V1=[a, cb, d, e, c f, g]

V3=TP(V2) _ V2=V2

computed. Since PTP(V3)=< and V3 _ c.(BP&V3) is an interpretation (i.e.,
it is consistent) and unfounded-free (as no subset of its positive part V+

3 is an
unfounded set), the algorithm outputs the stable model V3 _ c.(BP&V3)=
[a, cb, cc, d, e, c f, g].

Next, another possibly-true conjunction, say X2=[c, cb], is chosen and the
sequence

V1=W|
P(<) _ X2=[cb, c, d, e, c f]

V2=TP(V1) _ V1=[cb, b, c, d, e, c f]

computed. Since V2 is not an interpretation (as both b and cb are in V2), this com-
putation is stopped here (no output).

Finally, the possibly true conjunction X3=[b, ca] is chosen and the sequence

V1=W|
P(<) _ X3=[ca, b, d, e, c f]

V2=TP(V1) _ V1=V1

computed. Since PTP(V2)=< and, further, V2 _ c.(BP&V2) is an unfounded-free
interpretation, the algorithm outputs the stable model V2 _ c.(BP&V2)=[ca, b,
cc, d, e, c f, cg].

It is worth noting that all operators utilized in the algorithm of Fig. 4 can be
implemented easily (and efficiently). Indeed, the implementations of T� P and PTP

103DISJUNCTIVE STABLE MODELS

File: 643J 263036 . By:XX . Date:08:07:07 . Time:05:23 LOP8M. V8.0. Page 01:01
Codes: 1537 Signs: 990 . Length: 52 pic 10 pts, 222 mm

FIG. 4. Algorithm for the computation of stable models.

are immediate. Moreover, since WP is applied only on unfounded-free interpreta-
tions, its negative part c.GUSP(I) can be computed efficiently as it coincides with
BP&,* (see the proof of Point b of Proposition 3.7), where ,* is the limit of a
monotonic computation. Furthermore, observe that all the operators are definable
in relational algebra and that most operations performed in the algorithm are set-
oriented (the only exception is the for statement that picks up the possibly true con-
junctions); the method is thus amenable for deductive databases.

Theorem 6.25. Given a program P, the algorithm of Fig. 4 terminates in a finite
amount of time and returns the stable models of P.

Proof. The repeat-until statement of the main section in Fig. 4 computes
the least fixpoint W|

P(<). Since WP is monotonic and BP is finite, this com-
putation halts after a finite number of steps. Likewise, the repeat-until of the

104 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263037 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3819 Signs: 3163 . Length: 52 pic 10 pts, 222 mm

procedure Compute�Stable computes a sequence inductively defined as I0=Vn _ X,
In+1=T� P(In). Since T� P is monotonic (recall that T� P(I)=TP(I) _ I) and BP finite,
this loop also halts finitely. Therefore, the algorithm of Fig. 4 terminates in a finite
amount of time.

Concerning correctness, we will just observe that the algorithm essentially
generates the family FP of the computations of P (except those that contain terms
that are not interpretations of P, for optimization reasons). Thus, Theorems 6.22
and 6.23 guarantee both the soundness and the completeness of the algorithm. K

Remarks.
v We emphasize that our algorithm does not entail computation of all the

negative literals of stable models. The models are ``total'' interpretations, and thus
it is sufficient to compute explicitly only those negative literals that are necessary
to derive the positive part of the model. In our approach, such literals are supplied
by possibly true conjunctions.

v We could have accomplished the task of computing stable models using WP

instead of T� P to move beyond W|
P(<) (recall that stable models are fixpoints

of WP). However, using WP presents a drawback, as WP is defined on an interpreta-
tion for which the GUSP exists and testing such a property is a computationally
demanding task (see Section 3).

v As particular cases, the algorithm also computes the minimal models of
positive disjunctive logic programs, the perfect models of stratified (disjunctive)
logic programs, and the stable models of normal logic programs.

Another point worth discussing is complexity. Essentially, the algorithm
generates all computations of P (except those whose elements are not interpreta-
tions of P), that is, it performs a controlled search in the choice tree of P. The limit
of a computation (i.e., a leaf of the choice tree) is computed in polynomial time, as
the number of elements preceding the limit (i.e., the length of a path of the tree) is
linear in |BP|, and the computation of each element requires evaluation of T� P and
PTP , which are computable in polynomial time. The check of whether a leaf of the
choice tree is unfounded-free is performed by a call to Function unfounded-free.
This function executes in at most single exponential time and polynomial space (see
Section 6.1). Therefore, each computation is carried out in single exponential time
and polynomial space.

Since the number of computations (i.e., the number of leaves of the choice tree)
is single exponential, the whole execution of the algorithm is done in single
exponential time in the worst case. Moreover, as the algorithm deals with one com-
putation at a time, it runs in polynomial space.

For some restricted classes of programs, including disjunction-free programs that
are locally stratified [49], weakly stratified [48], or modularly stratified [55], the
problem of finding the set of stable models is known to be solvable in polynomial
time. Our algorithm runs in polynomial time for each program P such that
W|

P(<) is a total interpretation. Indeed, W|
P(<) is computed in polynomial time

and, when W|
P(<) is total, the algorithm successfully terminates, returning the

105DISJUNCTIVE STABLE MODELS

File: ARCHIV 263038 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3711 Signs: 3249 . Length: 52 pic 10 pts, 222 mm

unique stable model of the program, as PTP(W|
P(<))=<. Since for disjunction-

free programs W|
P(<) is the well-founded model, the algorithm terminates in poly-

nomial time on every normal logic program having a total well-founded model. It
follows that the algorithm also evaluates in polynomial time locally stratified,
weakly stratified, and modularly stratified normal logic programs.

7. RELATED WORK

The notion of unfounded sets presented in this paper generalizes from normal
to disjunctive programs the corresponding notion defined by Van Gelder, Ross
and Schlipf in [64] (as proven in Proposition 3.3). In [21], to characterize the
3-valued stable models of Przymusinski [50] in terms of unfounded sets, Eiter
et al. provide a definition of unfounded sets for disjunctive logic programs. In that
definition, Condition 3 of Definition 3.1 is replaced by the weaker requirement
H(r)�% (c.I _ X), because (H(r)&X) & I+{< turns out to be too strong to cap-
ture unfoundedness appropriately with respect to the 3-valued stable model seman-
tics of [50]. Other notions of unfounded sets are somehow implicit in various
attempts to generalize the well-founded semantics from normal to disjunctive logic
programs (see, e.g., [2, 37, 51, 52, 56]). However, comparing these (implicit)
notions of unfounded sets to our notion is quite difficult because in these other
notions unfounded sets do not result in flat sets of atoms as does Definition 3.1
(and the standard definition of unfounded sets for normal programs [64]).

To our knowledge, this paper is the first to present a precise characterization of
disjunctive stable models in terms of unfounded sets. Our basic result, stating that
disjunctive stable models precisely coincide with the unfounded-free models
(Theorem 4.6), generalizes to the disjunctive case the analogous result given for
normal logic programs in [57]. The second characterization, stating that a model
is stable iff the set of its false atoms coincides with its greatest unfounded set
(Theorem 4.8), is related to the assumption-based framework of Bondarenko, Toni,
and Kowalski [9]. In their framework, our greatest unfounded set can be seen as
a notion of ``acceptability'' for a given set of assumptions.

The fixpoint semantics presented in Section 5 has much in common with the
fixpoint results of [64]. Indeed, as shown in Proposition 5.3, on the domain of
normal logic programs, our WP operator coincides with the well-founded operator
of Van Gelder et al. Therefore, the results in Section 5 generalize the analogous
results presented by Van Gelder et al. for traditional programs. In particular, our
Theorem 5.4, Corollary 5.7, and Proposition 5.6 generalize, respectively, Theorem
5.4, Corollary 5.6, and Corollary 5.7 of [64].

Inoue and Sakama [34] and Fitting [27] have also developed fixpoint charac-
terizations of stable models. Inoue and Sakama's work considers disjunction and
negation but does not combine the two constructs, as our does. Fitting's charac-
terization, an extension of his previous work on well-founded semantics [27],
presents the results in the general setting of bilattices rather than confining things
to the framework of conventional logic programming. Fitting's characterization has

106 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263039 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3806 Signs: 3493 . Length: 52 pic 10 pts, 222 mm

not been extended to the disjunctive case, and an investigation of whether our work
could be used to do so would be interesting.

A fixpoint semantics for disjunctive logic programs appears in [24, 26]. How-
ever, because this work characterizes the perfect model semantics of Przymusinski
[49], it therefore corresponds to ours only on the class of stratified disjunctive logic
programs.

On the complexity side, our results complement the deep complexity analysis
done by Eiter et al. [17, 18, 19], where the complexity of the main computational
problems arising in the context of disjunctive logic programming is determined.

On the work on the computational aspects of disjunctive logic programs, the
algorithms based on a bottom-up computational model [10, 25, 26, 45, 60, 62]
seem closest to our work. The algorithm presented in [26] exploits the fixpoint
characterizations of [24] to evaluate stratified programs. It uses the model-tree data
structure to represent information and to compute query answers. Informally, a
model-tree encodes a finite family of interpretations, where each branch of the tree
represents an interpretation. Every operation required for the fixpoint computation
can easily be performed on the model trees. A similar approach, called state genera-
tion, is described in [45] for the computation of positive logic programs. This
method is based on hyperresolution and utilizes an operator applied to disjunctive
Herbrand states (i.e., disjunctive facts) whose least fixpoint is the set of logical con-
sequences (minimal model state) of the program. The relationships between these
two methods (namely, [26] and [45]) is analyzed in [60], where the authors also
point out that generating models for stable semantics can be achieved through the
iterative version of the fixpoint operator from [26] by using the evidential transfor-
mation [23] and the 3-S transformation [61]. Another algorithm for computing
stable models which uses a bottom-up strategy is presented by Brass and Dix in
[10]. Their algorithm first computes the ``residual program''��a program where no
positive literals appear in the rules' bodies��which is equivalent to the original
program under stable model semantics. Stable models are then computed on (a
simple extension of) Clark's completion of the residual program. A different
approach, which is based on integer programming methods, is proposed in
[6]. A disjunctive logic program is translated into an integer programming
problem where constraints correspond to the program's clauses. Well-known
techniques borrowed from the linear programming domain are then employed.
The stable models of the disjunctive logic program are immediately obtained
from the solutions of the linear programming problem. Also Dix and
Mu� ller have tried implementation of semantics of disjunctive logic programs based
on abstract properties [16], but their procedure applies only to stratified logic
programs.

A drawback of all the algorithms cited above [10, 16, 25, 26, 45, 60] is that they
require exponential space in the worst case. Thus, when compared to these
methods, our algorithm has the important advantage of requiring only polynomial
space. (Note that polynomial space complexity is a fundamental requirement for
nonmonotonic systems and deductive database systems [46].)

A bottom-up procedure running in polynomial space has been designed by
Stu� ber [62]. In analogy to the Davis�Putnam procedure [14], this procedure

107DISJUNCTIVE STABLE MODELS

File: ARCHIV 263040 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 3751 Signs: 3427 . Length: 52 pic 10 pts, 222 mm

computes disjunctive stable models using case analysis and simplification. A
peculiarity of this method is that it avoids the repetition of the generated (stable)
models. Compared to Stu� ber's method, our algorithm has two main advantages:
our method is better suited than Stu� ber's method for deductive databases (as [62]
requires the instantiation of the program, which is not feasible in the context of
deductive databases working with large amount of data); and Stu� ber's algorithm
may require exponential time for checking whether a model is stable even if the
program is HCF, while our procedure for checking stability is always polynomial
on these programs.

A further group of work on the computation of disjunctive logic programs con-
cerns the implementation of extensions of Prolog to cope with disjunctive rules. In
[53], Reed et al. provide a characterization of disjunctive logic programs which
agrees with the declarative semantics of Minker [44] (on positive programs) and
provides a fixpoint semantics for Inheritance near-Horn Prolog (InH-Prolog)
[38]��a proof procedure extending Prolog with case-analysis. Another strategy,
applicable to range-restricted positive programs, is incorporated in the prover
SATCHMO developed by Manthey and Bry [40]. SATCHMO is a refutation
system that uses Prolog to process the Horn clauses, while acts as a forward-
chaining prover, simulating hyperresolution, on the non-Horn rules. [39] proposes
an extension of SATCHMO, called SATCHMORE (standing for SATCHMO with
RElevancy), where the set of clauses to be used for forward chaining is significantly
reduced by marking relevant literals.

In contrast to our algorithm, the above methods [38�40, 53] are (completely or
partially) based on a top-down computational model. Thus, our algorithm has the
well-known advantages and drawbacks of bottom-up evaluation strategies, while
these methods have the advantages and drawbacks of top-down strategies.
However, it is worth noting that our method is more powerful than both
SATCHMO and InH-Prolog in that it can be employed to perform the more
general forms of reasoning on disjunctive logic programs. For instance, both brave
and cautious reasoning, whose complexity (under minimal or stable model seman-
tics) is, respectively, 7P

2 and 6P
2 , can be performed by using our algorithm.

SATCHMO and InH-Prolog cannot perform these forms of reasoning because they
are based on ``flat'' backtracking procedures which cannot solve decisional
problems located at the second level of the polynomial hierarchy [17�19]. These
systems can perform cautious reasoning only for (disjunction of) positive literals
(whose complexity is co-NP).

Since our algorithm can be employed for the computation of the stable model
semantics of normal logic programs (as a particular case), work on this problem is
related to our method. Among the available results in this area are the branch-and-
bound method of Subrahmanian et al. [63], the Sacca� -Zaniolo backtracking
technique [57], the linear programming methods of Bell et al. [4�6], the strategy
proposed by Cuadrado and Pimentel [13], the technique by Niemela� and Simons
[46], and the algorithm by Fuentes [29].

Finally, the method employed by our algorithm to check the stability condition
adds new insights to the work of Ben-Eliyahu and Dechter [7] and Ben-Eliyahu
and Palopoli [8] on HCF disjunctive logic programs.

108 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263041 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 4349 Signs: 2798 . Length: 52 pic 10 pts, 222 mm

8. CONCLUSION

We have proposed a new notion of unfounded sets for disjunctive logic programs
which allows us to provide both declarative and fixpoint characterizations of dis-
junctive stable models. Our characterizations point out some basic properties of
stable models and shed light on their intrinsic nature.

The fixpoint semantics provides the ground for the design of an algorithm for the
computation of the stable model semantics. Indeed, by exploiting the above
theoretical results, we have written an algorithm for the computation of the stable
models of disjunctive deductive databases.

Currently, we are exploring the implementation of the proposed algorithm. It is
indeed very important to evaluate the advantages of our method against other
techniques by a meaningful and thorough experimentation. We are pursing this
work at the Technical University of Vienna within FWF Project P11580-MAT: ``A
Query System for Disjunctive Deductive Databases,'' where a disjunctive deductive
database system based on the techniques presented here is actually implemented
and tested. The testing of the system will follow the methodology for experimenting
with nonmonotonic reasoning systems developed by Cholewin� ski et al. [12].

Another question that we are investigating actively is whether, besides elegantly
characterizing the stable model semantics, our new definition of unfounded sets per-
mits definition of a suitable extension of the well-founded semantics to disjunctive
logic programs.

ACKNOWLEDGMENTS

The authors are grateful to Francesco Buccafurri for several useful discussions on the notion of
unfounded sets and on computational issues. The paper benefited greatly from the comments of the
referees for Information and Computation; they suggested that the results be extended to programs with
function symbols. Theorem 5.11 was suggested by a referee for ILPS '95 (see [36]).

Received December 8, 1995; final manuscript received February 5, 1997

REFERENCES

1. Apt, K. R., and Bol, R. N. (1994), Logic programming and negation: A survey, J. of Logic Program-
ming 19�20, 9�71.

2. Baral, C. (1991), Generalized negation as failure and semantics of normal disjunctive logic
programs, in ``Proceedings, International Conference on Logic Programming and Automated
Reasoning (LPAR '92), St. Petersburg,'' (A. Voronkov, Ed.), Lecture Notes in Computer Science,
Vol. 624, pp. 309�319, Springer-Verlag, Berlin�New York.

3. Baral, C., and Gelfond, M. (1994), Logic programming and knowledge representation, J. Logic
Programming 19�20, 73�148.

4. Bell, C., Nerode, A., Ng, R., and Subrahmanian, V. S. (1992), Implementing deductive databases by
linear programming, in ``Proceedings 1992 ACM SIGMOD�SIGACT�SIGART Symp. on Principles
of Database Systems, San Diego,'' pp. 283�291.

109DISJUNCTIVE STABLE MODELS

File: ARCHIV 263042 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 8719 Signs: 3938 . Length: 52 pic 10 pts, 222 mm

5. Bell, C., Nerode, A., Ng, R., and Subrahmanian, V. S. (1993), Implementing Stable Semantics by
Linear Programming, in ``Proceedings of the Second International Workshop on Logic Programm-
ing and Nonmonotonic Reasoning (LPNMR-93), Lisbon,'' pp. 23�42, MIT Press, Cambridge, MA.

6. Bell, C., Nerode, A., Ng, R., and Subrahmanian, V. S. (1994), Mixed integer programming methods
for computing non-monotonic deductive databases, J. Assoc. Comput. Mach. 41(6), 1178�1215.

7. Ben-Eliyahu, R., and Dechter, R. (1994), Propositional semantics for disjunctive logic programs,
Ann. of Math. Artif. Intellig. 12, 53�87.

8. Ben-Eliyahu, R., and Palopoli, L. (1994), Reasoning with minimal models: Efficient algorithms and
applications, in ``Proceedings, Fourth International Conference on Principles of Knowledge
Representation and Reasoning (KR-94),'' pp. 39�50.

9. Bondarenko, A., Kowalski, R., and Toni, F. (1993), An assumption-based framework for non-monotonic
reasoning, in ``Proceedings of the Second International Workshop on Logic Programming and Non-
monotonic Reasoning (LPNMR-93), Lisbon,'' pp. 171�189, MIT Press, Cambridge, MA.

10. Brass, S., and Dix, J. (1995), Disjunctive semantics based upon partial and bottom-up evaluation, in
``Proceedings of the 12th International Conference on Logic Programming, Tokyo,'' pp. 199�213, MIT
Press, Cambridge, MA.

11. Buccafurri, F., Leone, N., and Rullo, P. (1996), Stable models and their computation for logic
programming with inheritance and true negation, J. of Logic Programming 27(1), 5�43.

12. Cholewin� ski, P., Marek, V. W., Mikitiuk A., and Truszczyn� ski, M. (1995), Experimenting with non-
monotonic reasoning, in ``Proceedings of the 12th International Conference on Logic Programming,''
pp. 267�281, MIT Press, Cambridge, MA.

13. Cuadrado, J., and Pimentel, S. (1989), A truth maintenance system based on stable models, in
``Proceedings, 1989 North American Conference on Logic Programming,'' pp. 274�290.

14. Davis, M., and Putnam, H. (1960), A computing procedure for quantification theory, J. Assoc.
Comput. Mach. 7(3), 201�215.

15. Dix, J. (1992), Semantics of Logic Programs: Their intuitions and formal properties. An overview,
in ``Logic, Action and Information. Proceedings of the Konstanz Colloquium in Logic and Informa-
tion (LogIn'92),'' pp. 241-329, DeGruyter, Berlin.

16. Dix, J., and Mu� ller, M. (1993), Implementing semantics of disjunctive logic programs using fringes
and abstract properties, in ``Proceedings of the Second International Workshop on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR-93), Lisbon,'' pp. 43�59, MIT Press, Cambridge,
MA.

17. Eiter, T., and Gottlob, G. (1995), On the computational cost of disjunctive logic programming:
Propositional case, Ann. Math. Artif. Intell. 15, 289�323.

18. Eiter, T., Gottlob, G., and Mannila, H. (1994), Adding disjunction to datalog, in ``Proceedings,
ACM PODS-94,'' pp. 267�278.

19. Eiter, T., Gottlob, G., and Mannila, H. (1997), Disjunctive datalog, ACM Trans. on Database
Systems, in press.

20. Eiter, T., Leone, N., and Sacca� , D. (1996), The expressive power of partial models for disjunctive
deductive databases, in ``Proceedings of International Workshop on Logic in Databases�LID'96,
San Miniato, Pisa,'' pp. 261�280.

21. Eiter, T., Leone, N., and Sacca� , D. (1997), On the partial semantics for disjunctive deductive
databases, Ann. Math. Artif. Intell., in press.

22. Elkan, C. (1990), A rational reconstruction of nonmonotonic truth maintenance systems, Artif.
Intell. 43, 219�234.

23. Ferna� ndez, J. A., Lobo, J., Minker, J., and Subrahmanian, V. S. (1993), Disjunctive LP + integrity
constraints = stable model semantics, Ann. of Math. and Artif. Intell. 8(3-4), 449�474.

24. Ferna� ndez, J. A., and Minker, J. (1991), Bottom-up evaluation of hierarchical disjunctive deductive
databases, in ``Proceedings, Eighth International Conference on Logic Programming,'' pp. 660�675,
MIT Press, Cambridge, MA.

110 LEONE, RULLO, AND SCARCELLO

File: ARCHIV 263043 . By:BV . Date:12:07:07 . Time:07:10 LOP8M. V8.0. Page 01:01
Codes: 8836 Signs: 3836 . Length: 52 pic 10 pts, 222 mm

25. Ferna� ndez, J. A., and Minker, J. (1992), Semantics of disjunctive deductive databases, in
``Proceedings, 4th International Conference on Database Theory (ICDT-92),'' Berlin, pp. 21�50.

26. Ferna� ndez, J. A., and Minker, J. (1995), Bottom-up computation of perfect models for disjunctive
theories, J. Logic Programming 25(1), 33�51.

27. Fitting, M. (1993), The family of stable models, J. Logic Programming 17(2�364), 197�225.

28. Fitting, M. (1991), Well-founded semantics generalized, in ``Logic Programming, Proceedings of the
1991 International Symposium'' (V. Saraswat and K. Ueda, Eds.), pp. 71�84, MIT Press,
Cambridge, MA.

29. Fuentes, L. O. (1991), Applying uncertainty formalisms to well-defined problems, manuscript.

30. Gelfond, M., and Lifschitz, V. (1991), Classical negation in logic programs and disjunctive
databases, New Generation Comput. 9, 365�385.

31. Gelfond, M., and Lifschitz, V. (1988), The stable model semantics for logic programming, in ``Proceedings
of Fifth Logic Programming Symposium,'' pp. 1070�1080, MIT Press, Cambridge, MA.

32. Gottlob, G. (1994), Complexity and expressive power of disjunctive logic programming, in
``Proceedings of the International Logic Programming Symposium (ILPS-'94), Ithaca, NY''
(M. Bruynooghe, Ed.), pp. 23�42, MIT Press, Cambridge, MA.

33. IFIP-GI Workshop (1994), Disjunctive logic programming and disjunctive databases presented at
13th IFIP World Computer Congress.

34. Inoue, K., and Sakama, C. (1996), A fixpoint characterization of abductive logic programs, J. Logic
Programming 27(2), 107�136.

35. Leone, N., and Rullo, P. (1992), Safe computation of the well-founded semantics of DATALOG
queries, Inform. Systems 17(1), 17�31.

36. Leone, N., Rullo, P., and Scarcello, F. (1995), Declarative and fixpoint characterizations of dis-
junctive stable models, in ``Proceedings of International Logic Programming Symposium��ILPS'95,
Portland, O,'' pp. 399-413, MIT Press, Cambridge, MA.

37. Lobo, J., Minker, J., and Rajasekar, A. (1992), ``Foundations of Disjunctive Logic Programming,''
MIT Press, Cambridge, MA.

38. Loveland, D. W., and Reed, D. W. (1989), ``A Near-Horn Prolog for Compilation,'' Technical
Report CS-1989-14, Duke University. [Reprinted in ``Computational Logic: Essays in Honor of
Alan Robinson.'']

39. Loveland, D. W., Reed, D. W., and Wilson, D. S. (1995), SATCHMORE: SATCHMO with
RElevancy, J. Automated Reasoning 14, 325�351.

40. Manthey, R., and Bry, F. (1988), SATCHMO: A theorem prover implemented in Prolog, in
``Proceedings of the Ninth International Conference on Automated Deduction.''

41. Marek, W., and Subrahmanian, V. S. (1989), The relationship between logic program semantics and
non-monotonic reasoning, in ``Proceedings of the 6th International Conference on Logic Program-
ming��ICLP'89,'' pp. 600�617, MIT Press, Cambridge, MA.

42. Marek, W., and Subrahmanian, V. S. (1992), The relationship between stable, supported, default
and autoepistemic semantics for general logic programs, Theoret. Comput. Sci. 103, 365�386.

43. Marek, W., and Truszczyn� ski, M. (1991), Autoepistemic logic, J. Assoc. Comput. Mach. 38(3),
588�619.

44. Minker, J. (1982), On indefinite data bases and the closed world assumption, in ``Proceedings of the
6th Conference on Automated Deduction (CADE-82),'' pp. 292�308.

45. Minker, J., and Rajasekar, A. (1990), A fixpoint semantics for disjunctive logic programs, J. Logic
Programming 9(1), 45�74.

46. Niemela� , I., and Simons, P. (1996), Efficient implementation of the well-founded and stable model
semantics, in ``Proceedings of JICSLP '96,'' MIT Press, Cambridge, MA.

47. Poole, D. (1989), What the lottery paradox tells us about default reasoning, in ``Proceedings of
the First International Conference on Principles of Knowledge Representation and Reasoning''
(R. Brachman, H. Levesque, and R. Reiter, Eds.), pp. 333�340.

111DISJUNCTIVE STABLE MODELS

File: ARCHIV 263044 . By:BV . Date:12:07:07 . Time:07:12 LOP8M. V8.0. Page 01:01
Codes: 7140 Signs: 3170 . Length: 52 pic 10 pts, 222 mm

48. Przymusinska, H., and Przymusinski, T. (1988), Weakly perfect model semantics for logic programs,
in ``Proceedings Fifth International Conference and Symposium on Logic Programming,''
pp. 1106�1120.

49. Przymusinski, T. (1988), On the declarative semantics of deductive databases and logic program-
ming, in ``Foundations of Deductive Databases and Logic Programming'' (J. Minker, Ed.), Chap. 5,
pp. 193�216, Morgan Kaufman, Washington, D.C.

50. Przymusinski, T. (1991), Stable semantics for disjunctive programs, New Generation Comput. 9,
401�424.

51. Przymusinski, T. (1994), Static semantics for normal and disjunctive logic programs, Ann. Math.
Artif. Intell. 15.

52. Przymusinski, T. (1990), Stationary semantics for disjunctive logic programs and deductive
databases, in ``Proceedings of North American Conference on Logic Programming,'' pp. 40�62.

53. Reed, D. W., Loveland, D. W., and Smith, B. T. (1991), An alternative characterization of dis-
junctive logic programs, in ``Proceedings of the International Logic Programming Symposium
(ILPS-'91),'' pp. 55�68.

54. Reiter, R. (1978), On closed-world data bases, in ``Logic and Data Bases,'' (H. Gallaire and
J. Minker, Eds.), pp. 55�76, Plenum, New York.

55. Ross, K. A. (1990), Modular stratification and magic sets for datalog programs with negation, in
``Proceedings ACM Symposium on Principles of Database Systems,'' pp. 161�171.

56. Ross, K. A. (1990), The well founded semantics for disjunctive logic programs, in ``Deductive and
Object-Oriented Databases'' (W. Kim, J.-M. Nicolas, and S. Nishio, Eds.), pp. 385�402, Elsevier,
Amsterdam.

57. Sacca� , D., and Zaniolo, C. (1990), Stable models and nondeterminism in logic programs with nega-
tion, in ``Proceedings ACM Symposium on Principles of Database Systems,'' pp. 205�217.

58. Sakama, C. (1989), Possible model semantics for disjunctive databases, in ``Proceedings of the First
International Conference on Deductive and Object Oriented Databases,'' pp. 1055�1060.

59. Sakama, C., and Inoue, K. (1995), Embedding circumscriptive theories in general disjunctive
programs, in ``Proceedings LPNMR '95,'' pp. 344�357.

60. Seipel, D., Minker, J., and Ruiz, C. (1997), Model generation and state generation for disjunctive
logic programs, J. of Logic Programming, in press.

61. Ruiz, C., and Minker, J. (1995), Computing stable and partial stable models of extended disjunctive
logic programs, in ``Proceedings of Nonmonotonic Extensions of Logic Programming,'' Lecture
Notes in Computer Science, Vol. 927, pp. 205�229, Springer-Verlag, Berlin-New York.

62. Stuber, J. (1994), Computing stable models by program transformation, in ``Proceedings, 11th Inter-
national Conference on Logic Programming,'' pp. 58�73, MIT Press, Cambridge, MA.

63. Subrahmanian, V. S., Nau, D., and Vago, C. (1995), WFS + branch and bound = stable models,
IEEE Trans. Knowledge Data Engrg. 7, (3), 362�377.

64. Van Gelder, A., Ross, K. A., and Schlipf, J. S. (1991), The well-founded semantics for general logic
programs, J. Assoc. Comput. Mach. 38(3), 620�650.

65. Vardi, M. (1982), Complexity of relational query languages, in ``Proceedings, 14th ACM STOC,''
pp. 137�146.

112 LEONE, RULLO, AND SCARCELLO

