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Summary

Despite the widespread clinical use of volatile anes-
thetics, their mechanisms of action remain unknown

[1–6]. An unbiased genetic screen in the nematode
C. elegans for animals with altered volatile anesthetic

sensitivity identified a mutant in a nuclear-encoded
subunit of mitochondrial complex I [7, 8]. This raised

the question of whether mitochondrial dysfunction
might be the primary mechanism by which volatile

anesthetics act, rather than an untoward secondary
effect [9, 10]. We report here analysis of additional

C. elegans mutations in orthologs of human genes
that contribute to the formation of complex I, complex

II, complex III, and coenzyme Q [11–14]. To further

characterize the specific contribution of complex I,
we generated four hypomorphic C. elegans mutants

encoding different complex I subunits [15]. Our main
finding is the identification of a clear correlation be-

tween complex I-dependent oxidative phosphoryla-
tion capacity and volatile anesthetic sensitivity. These

extended data link a physiologic determinant of anes-
thetic action in a tractable animal model to similar

clinical observations in children with mitochondrial
myopathies [16]. This work is the first to specifically

implicate complex I-dependent oxidative phosphory-
lation function as a primary mediator of volatile anes-

thetic effect.

Results

We previously observed that two mutations that de-
creased mitochondrial complex I function also increased
sensitivity to volatile anesthetics. Conversely, a mutation
that decreased complex II function did not alter anes-
thetic sensitivity. These results correlated with limited
clinical findings in children with mitochondrial defects.
This raised the question of whether the dependence of
anesthetic sensitivity on complex I function is of general
significance. We present here our determination of anes-
thetic sensitivity in a variety of C. elegans mitochondrial
mutants generated either by classical means or by RNAi
(Table 1).

*Correspondence: margaret.sedensky@uhhs.com
Both classical gene mutants and RNAi-induced hypo-
morphs inhibited mitochondrial respiration in a specific
manner appropriate to the individual complex involved
as well as to the site of electron entry into the mitochon-
drial respiratory chain (MRC). Inhibition of complex I-
dependent oxidative phosphorylation capacity was ob-
served in the complex I mutant gas-1, in isp-1 (complex
III mutant), and in clk-1 (defect in coenzyme Q synthesis)
(Figure 1). This capacity was measured as state 3 respi-
ration rates in the presence of malate and internally nor-
malized to complex IV-dependent rates measured with
tetramethyl-p-phenylenediamine (TMPD) and ascorbate
as combined electron donors. The effects of RNAi were
studied first in K09A9.5 (the gene locus of the gas-1
allele) to demonstrate that an RNAi knockdown could
mimic the phenotype of the corresponding missense
mutant. Impairment in complex I-dependent oxidative
phosphorylation capacity was seen, although to a lesser
degree than is typical of gas-1. All of the other mutants
with RNAi-induced complex I defects similarly demon-
strated complex I-dependent oxidative phosphorylation
capacity impairment (Figure 1A). However, complex
I-dependent oxidative phosphorylation capacity was
normal in the complex II mutant (mev-1), in agreement
with previous reports from our laboratory [10]. Complex
II-dependent oxidative phosphorylation capacity, mea-
sured as state 3 respiration rates in the presence of
succinate, was significantly impaired in the complex II
(mev-1) mutant and somewhat diminished in the com-
plex III (isp-1) mutant, but appeared increased in all
mutants with primary complex I defects (Figure 1B).
No significant variation in complex IV-dependent oxida-
tive phosphorylation, as measured in the presence of
TMPD and ascorbate, was observed in any of the strains
(Figure 1C).

All mutants that inhibited complex I function were hy-
persensitive to halothane. Complex I classical mutants
had increased sensitivity to halothane as measured by
a lower EC50, the effective concentration required to
produce immobility in fifty percent of animals. However,
their degree of hypersensitivity varied (Figure 2A). Anes-
thetic hypersensitivity was most pronounced for gas-1,
whereas clk-1, seg-1;gas-1, and seg-2;gas-1 displayed
more moderate increases in sensitivity. The complex II
and III classical mutants, mev-1 and isp-1, respectively,
had normal sensitivities to halothane. daf-2 was resis-
tant to halothane. RNAi-induced hypomorphs of specific
complex I subunits were all sensitive to halothane
(Figure 2B).

When only complex I mutants were considered, the
correlation between complex I-dependent oxidative
phosphorylation capacity and anesthetic sensitivity
was strongly positive (r = 0.69, p = 0.056) (Figure 3).
The magnitude of the correlation diminished when the
non-complex I respiratory-chain mutants (clk-1, isp-1,
mev-1) were also taken into consideration (r = 0.58, p =
0.063). Two of these mutants had decreased complex
I-dependent rates (clk-1, isp-1), but no defects within
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Figure 1. Integrated Oxidative Phosphorylation Capacity of C. ele-

gans Mitochondria

State 3 rates of oxidative phosphorylation represent mean ADP-

stimulated, near-maximal oxygen consumption capacity of freshly

isolated mitochondria for each mutant. Error bars represent the

standard deviation of the means. * indicates significantly different

than wild-type (N2) with nonoverlapping standard deviations. IPTG

concentration used to induce each RNAi gene-knockdown mutant

is indicated in parentheses following mutant labels. All single muta-

tions are listed in Table 1. Two suppressors of the gas-1 phenotype

were studied as double mutations, seg-1;gas-1 and seg-2;gas-1.

These suppressors have not yet been cloned [10]. In all figures,

K09A9.5, C09H10.3, T20H4.5, and F22D6.4 are RNAi-induced mu-

tants. N2 is the wild-type strain and gas-1, clk-1, isp-1, mev-1, and

daf-2 are classical genomic mutants.

(A) Complex I-dependent oxidative phosphorylation is decreased in

all complex I, complex III, and coenzyme Q biosynthesis mutants but

increased in the insulin receptor mutant daf-2. State 3 rates are nor-

malized to TMPD plus ascorbate rates for each mutant compared to

N2 (Supplemental Data).

(B) Complex II-dependent oxidative phosphorylation is moderately

increased in all complex I mutants and significantly decreased, as

expected, in the complex II mutant.
complex I itself. These results implicate complex I spe-
cifically as a mediator of anesthetic sensitivity; the
data imply that directly inhibiting complex I function in-
creases anesthetic sensitivity.

Interestingly, an increased maximal capacity of com-
plex I-dependent oxidative phosphorylation was noted
in the nonmitochondrial mutant with a defect in the insu-
lin-like receptor (daf-2) (165 nAO/min/mg protein versus
112 nAO/min/mg protein for N2). In general, high ADP
rates are similar to state 3 rates for a given strain (see
the Supplemental Data available online). In daf-2 mito-
chondria, however, use of a higher concentration of
ADP further stimulated the mitochondria over what is
typical of their state 3 rates. Their degree of increased
complex-I dependent oxidative phosphorylation capac-
ity correlated with their degree of anesthetic resistance
(Figure 3). Inclusion of daf-2 with the complex I mutants
strengthened the magnitude of the overall correlation
between capacity of complex I-dependent respiration
and sensitivity to the volatile anesthetic halothane (r =
0.87, p = 0.002). This implies that in a simple linear
regression model, 76% of the variation in anesthetic
sensitivity can be accounted for solely by the state 3
rate of complex I-dependent oxidative phosphorylation.

To further characterize this correlation, we determined
whether a graded variation in the degree of RNAi in one
and the same gene would incrementally decrease respi-
ratory capacity and increase anesthetic sensitivity. RNAi
was induced to varying extents for the complex I subunit
gene nuo-1 (C09H10.3) by using three different concen-
trations of IPTG. Increasing concentrations of IPTG led
to increasing sensitivity to halothane (Figure 4A) and in-
creasing inhibition of complex I-dependent oxidative
phosphorylation capacity (Figure 4B), although no

Table 1. Mutations in Mitochondrial Subunits of C. elegans

Gene Namea MRC Complex Subunit Mutation Type

N2 Wild-type n/a n/a

gas-1(fc21) I 49 kDa Missense

K09A9.5 I 49 kDa RNAi

C09H10.3 I 51 kDa RNAi

T20H4.5 I 23 kDa RNAi

F22D6.4 I 13 kDa RNAi

clk-1(qm30) Coenzyme Q n/a Deletion

isp-1(qm150) III ISP Missense

mev-1(kn1) II Cytochrome b Missense

daf-2(e1368) n/a Insulin receptor Missense

Single mutations studied were either known defects within the MRC

[11, 13, 14, 22] or RNAi-generated hypomorphs corresponding to

highly conserved orthologs implicated in humans mitochondrial dis-

ease [23]. RNAi protocols were performed with worms grown for two

generations in culture containing bacteria induced to produce

a dsRNA corresponding to a gene encoding a specific complex I

subunit [15, 24]. A nonmitochondrial mutant displaying volatile anes-

thetic resistance, daf-2, was also studied [25]. Integrated oxidative

phosphorylation capacity was measured by polarography in intact,

coupled mitochondria from each mutant. See Supplemental Data

for greater detail.
a Strain names follow Caenorhabditis Genetics Center (CGC) gene

names for genomic mutants and CGC sequence names for RNAi

knockdown mutants.

(C) Mutants show no significant differences in state 3 oxidative

phosphorylation respiration rates when electrons are donated di-

rectly to cytochrome C.
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difference in oxidative phosphorylation capacity or
anesthetic sensitivity was seen between the 5 mM and
10 mM IPTG RNAi mutants.

Previous studies demonstrated that the increased
sensitivity to halothane of the complex I mutant gas-
1(fc21) can be reverted by expressing the wild-type
gas-1 gene under control of its own promoter (Pgas-1)
from an extrachromosomal array. Pgas-1 is active in
the nervous system and muscle [7]. Here, expression
of the wild-type gas-1 gene was placed under the con-
trol of either a neuronal-specific promoter (ric-19) or
a muscle-specific promoter (myo-3). Both new con-
structs, introduced into the gas-1(fc21) mutant back-
ground, also partially restored halothane EC50s toward
normal (gas-1(fc21), 1.0% 6 0.05%; Pric-19::gas-1(+),
1.5% 6 0.2%*; Pmyo-3::gas-1(+), 1.8% 6 0.2%*; Pgas-
1::gas-1(+), 2.1% 6 0.1%*; and N2, 3.2% 6 0.02%*.
EC50s + standard deviation; * indicates different than
value for gas-1, p < 0.05 with a Bonferroni correction).
None of the stable lines carrying these constructs were

Figure 2. Anesthetic Sensitivity of C. elegans

The mean halothane concentrations necessary to immobilize 50% of

worms, EC50, is plotted for wild-type (N2) compared to the following:

(A) worm strains with mutated nuclear genes expressing defective

components of the MRC, and (B) worm strains where the expression

of wild-type nuclear genes coding for complex I proteins has been

inhibited by RNAi. Anesthetic sensitivity was measured in adults

worms taken from the same cultures used for isolation of mitochon-

dria in Figure 1 (Supplemental Data). Error bars represent standard

deviations. * indicates difference from N2, p < 0.05. All means

were compared by using ANOVA.
integrated into the genome; generally, the muscle-spe-
cific promoter showed stronger overall expression.
Thus, the increased anesthetic sensitivity seen in gas-1
mutants results from changes in both muscle and neu-
ronal tissues. The relative contribution of these tissues
to anesthetic sensitivity in the RNAi-induced mutant
strains is not known.

Conclusions

A clear correlation exists between mitochondrial com-
plex I oxidative phosphorylation capacity and volatile
anesthetic sensitivity in C. elegans. In particular, the ex-
tent of complex I oxidative phosphorylation dysfunction
is directly proportional to the degree of volatile anes-
thetic sensitivity (Figure 3). Some impairment of com-
plex I-dependent oxidative phosphorylation function is
seen in coenzyme Q biosynthesis and complex III struc-
tural-subunit mutants. This is not unexpected, given that
these downstream components are assayed when test-
ing integrated oxidative phosphorylation capacity with
substrates that donate electrons through complex I.
However, secondary complex I dysfunction (due to mu-
tations affecting downstream respiratory-chain compo-
nents, i.e., clk-1 and isp-1) does not correlate with in-
creased volatile anesthetic sensitivity as strongly as
does primary complex I dysfunction (due to mutations
affecting complex I itself). Furthermore, despite having
impaired complex II-dependent oxidative phosphoryla-
tion capacity, the complex II mutant mev-1 has normal
complex I-dependent oxidative phosphorylation capac-
ity and normal anesthetic behavior. This demonstrates
that only those defects that directly impair complex I
strongly increase anesthetic sensitivity.

Complex I-dependent oxidative phosphorylation ca-
pacity is thus implicated as a mediator of volatile anes-
thetic effect. Additional support for this role comes
from the observation that an insulin receptor defect,
daf-2, displays both increased complex I-dependent ox-
idative phosphorylation capacity and volatile anesthetic
resistance. Because complex I is the rate-limiting com-
ponent of the MRC [17], the discrepancy between high
ADP and state 3 rates observed in daf-2 likely reflects
a change in complex I proper, rather than in downstream
components of the MRC. This justifies the inclusion of
daf-2 in the analysis of complex I mutants.

This new insight into volatile anesthetic mechanism
is significant for multiple reasons. Foremost, complex I
oxidative phosphorylation capacity is a previously un-
recognized determinant of anesthetic sensitivity. As
such, it represents a novel mechanism by which anes-
thetics may mediate their effects. Previous work has
shown that the mitochondrion is a preferred and satura-
ble site for halothane localization [18]. More recently,
analysis of rat-brain membrane proteins has shown se-
lective binding of halothane to individual protein sub-
units of the MRC, including complex I [19]. Indeed, in
both worms and mammals, complex I-dependent respi-
ration is the most sensitive to inhibition by volatile anes-
thetics [9, 20]. Because complex I rates of electron
transfer are rate determining for the MRC [17], inhibition
of complex I may have a relatively immediate effect on
oxidative phosphorylation and, in turn, on synaptic
transmission within energetically demanding tissues
such as the nervous system.
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Figure 3. Halothane Sensitivity Is a Function

of Complex I-Dependent Respiration

Complex I-dependent respiration rates of

isolated mitochondria actively phosphorylat-

ing exogenous ADP (state 3 respiration) are

plotted against the sensitivity to the anes-

thetic halothane (EC50) of the live worms.

Wild-type C. elegans (N2) is denoted with an

‘‘X.’’ Mutants for genes encoding complex I

proteins are denoted with a circle. A nonmito-

chondrial mutant is denoted with a triangle

(daf-2 is an insulin receptor mutant). Correla-

tion value shown represents only complex I

and insulin receptor mutants (p = 0.002);

when other respiratory chain mutants are in-

cluded, r decreases to 0.75 (p = 0.005).
Additionally, this new understanding holds promising
implications for the care of patients with mitochondrial
disease. There is a long-standing clinical belief that vol-
atile anesthetic exposure results in high morbidity in an
unpredictable subset of patients with putative mito-
chondrial disease [21]. Our recent clinical experience
sheds light on these case reports by reinforcing the ob-
servations seen in C. elegans. We observed that children
with mitochondrial diseases impairing complex I oxida-
tive phosphorylation capacity appear to be uniquely
sensitive to the volatile anesthetic sevoflurane [16].
Thus, the dependence of volatile anesthetic sensitivity
on complex I function crosses phylogenetic boundaries
from nematodes to humans.

We have previously shown that gas-1 does not have
an increased sensitivity to either aldicarb (a presynaptic
Figure 4. Graded RNAi Inhibition of Expres-

sion of a Complex I Subunit Leads to Graded

Anesthetic Sensitivity

Expression of the wild-type allele of

C09H10.3, encoding the 51 kDa subunit of

complex I, was variably knocked down by

RNAi.

(A) Increasing the concentration of the induc-

tor (IPTG) for RNAi led to increasing sensitiv-

ity of live worms to the anesthetic halothane.

(B) Both complex I-dependent oxidative

phosphorylation and anesthetic sensitivity

were altered in a dose-related fashion.
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paralytic) or levamisol (a postsynaptic paralytic). In fact,
gas-1 is resistant to aldicarb, indicating a clear neuronal
function of this gene [14]. Results from our present study
indicate that the increased sensitivity of gas-1 animals
to halothane is dependent on both muscle and neuronal
expression. However, complex I activity correlates with
a purely neuronal response to anesthesia in at least
some human patients with mitochondrial dysfunction
[16]. High-energy-requiring tissues, which are most de-
pendent on mitochondrial function, are those most likely
to be affected by complex I dysfunction. Although it is of
some interest as to what tissue might be causative for
anesthetic-induced immobility in nematodes (probably
reflecting the most energy-demanding tissue), the re-
sponse causing loss of consciousness in humans clearly
resides in the nervous system.

Recognition that anesthetic hypersensitivity is depen-
dent on complex I function may alert clinicians to the
possibility of lowering anesthetic dosages for patients
with impaired complex I-dependent oxidative phos-
phorylation capacity. At the same time, the study of
genetically based, non-complex I MRC disorders in a
model organism suggests that individuals with these
disorders may be at lower risk for anesthetic hypersen-
sitivity and adverse anesthesia-related effects. Our data
demonstrate the utility of C. elegans as a translational
model organism in which to study the genetic basis of
mitochondrial dysfunction and anesthetic sensitivity.
Such an approach permits detailed characterization of
a genotype-phenotype correlation confounded in hu-
mans by vastly greater complexity.

Supplemental Data

Supplemental Data include Experimental Procedures and one table

and are available with this article online at: http://www.current-

biology.com/cgi/content/full/16/16/1641/DC1/.
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