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A family of supervised, nonparametric decision rules, based On tolerance 
regions, is described which includes the k-Nearest Neighbor decision rules when 
there are two classes. There are two practical reasons for doing so: first, a family 
of decision rules similar to the k-Nearest Neighbor rules can be specified 
which applies to a broader collection of pattern recognition problems. This 
is because in the general class of rules constraints are weakened between the 
number of training samples required in each training sample set and the 
respective a priori class probabilities; and, a discrete loss function weighting 
the importance of the finite number of ways to make a decision error can be 
introduced. 

Second, within the family of decision rules based on tolerance regions, 
there are decision rules which have a property aUowing for preprocessing of 
the training set data resulting in significant data reduction. 

Theoretical performance for a special case is presented. 

I. INTRODUCTION 

T h e  general p roblem of supervised discr iminat ion is considered for the 
following special case: A vector observat ion x is d rawn from one of M classes 

denoted o~1, co 2 ,..., ~o M . I f  drawn from class eoi, t hen  x has a probabi l i ty  
density funct ion f(xlo,, i) .  P i ,  the probabi l i ty  that  x is d rawn f rom class oJi, 
is assumed known,  f ( x ]  COl) is assumed fixed, cont inuous ,  and  u n k n o w n .  
F r o m  class coi, ni independen t  t ra in ing samples are assumed available: 
these samples are classified (i.e., the t ra in ing  or learning is called supervised).  
After  receiving a sample of u n k n o w n  class (which is no t  a m e m b e r  of a t ra in ing  
group) called a candidate sample, the p rob lem is to assign it to one of the 
M classes with m i n i m u m  risk. 

I t  is wel l -known that  if the loss matr ix  with elements  Lij and  unde r ly ing  
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statistics f ( x  I o)i) are known, 1 the Bayes (minimum risk).decision rule 
chooses the class c% active if 

2 Lkif(x ] wi) P~ = min Ljif(x l coi) Pi (1) 
I ~ j ~ M  

4=1 "= 

The  objective of this section is to describe a general i,class of estimators of  
a p.d.f, based on the supervised samples and the use! of these p.d.f. 's in a 

i 

decision rule. 
A generalization of the method of-estimation proposed by Loftsgaarden 

and Quesenberry [1] will be used to estimate f(xlwi).  Their  estimate of a 
p.d.f, at a point x is as foIlows: i 

Using n classified samples available from a single! class p.d.f., find 
• i 

the distance r between ' ~  and the v(n)-th nearest neighbor of x. 
"Nearness"  is measured b y  any convenient metric. Then  

f (xioJ,) _ v(n)-- t 1 
n q~(x) ' ' (2} 

where ~(x) is the volume of the set of all points whose distance to x is less 
than r. I f  

lim v(n) = ~ and lim v(n)/n = 0, (3). 

then they prove that f(xl~oi) approaches f(x]o~i) with probability 1. Cover  
and Hart  [2] suggested that the above estimator might be used in a decision 
rule t o  obtain a simple modification of the k-Nearest Neighbor (k-NN) 
decision rule. T h  e k - N N  rule, investigated by Fix and Hodges [3] for k -+  ~ 
and investigated by Cover and Har t  [2] for fixed k, is a nonparametric 
procedure which assigns the candidate x c the class which is most frequently 
represented in the k nearest neighbors to x ~. In  Fig. 1, for example, the 
5-th nearest neighbor decision rule would decide class ~o 2 is active because 
four of the five nearest neighbors to x c are from class co~. 

The  goal of this section is to describe a family of supervised, nonparametric  
decision rules, based on tolerance regions, which includes the previous 
k - N N  decision rules when there are two pattern classes. There  are two. 
practical purposes for doing so: First, a family of decision rules similar to 
the k - N N  rules can be specified which applies to a broader collection o f  
pattern recognition problems. This  is because, in the general class of rules, 
constraints are Weakened between the number  of training samples required 

1 For the problem considered herein, the underlying densitiesf(x i oJ~) are unknowm 
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in each training sample set and the respective a priori class probabilities; 
and, a discrete loss function weighting the importance of the finite number 
of ways to make a decision error can be introduced. 

x 2 

Class ~1 Observations -,,, + 

+ + 

Class •2 +~+ Observations ?o 
Candidate 

0 0 

FIG. 1. Fifth Nearest Neighbor decision rule. 

Second, within the family of decision rules based on tolerance regions, 
there are decision rules which have a property allowing for preprocessing 
of the training set data resulting in significant data reduction. Recognition 
based on such preprocessed data sets can be accomplished with a computer 
having limited storage capacity along with sequentially accessable memory, 
and the subtraction capability. 

In the next section, the theory of distribution free tolerance regions is 
reviewed. In Section III ,  decision rules are described which use the properties 
of distribution free tolerance regions. The resulting decision rules and their 
implementation properties are described in Section IV, and theoretical 
performance for a special case is considered in Section V. 

II.  DISTRIBUTION FREE TOLERANCE REGIONS 

The theory of statistical tolerance regions was initiated by Wilks [4]. 
Recent work in this area has been done by Kemperman [5], Fraser and 
Guttman [6], Fraser [7], and Wilks [8]. Fraser [7] provides an excellent 
discussion of tolerance regions in a general background. The following 
section is not to be construed as a survey. Although nothing new with 
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respect to the above papers is presented here, it permits readers unfamiliar 
with tolerance regions to become so. 

In  this section, we will be concerned with only a single p.d.f, f (x) ,  and 
a single set of training samples: let x a, x2,..., x n be n independent, L-  
dimensional random observations with p.d.f, f (x) .  Suppose we had a 
procedure which, for every possible way the n training samples could fall, 
gives a set of points in the observation space. A set J is called a tolerance 
region if it is a function of the training samples ([7], pp. 116). 

For Example 1, one procedure might be: Let the set J equal the set of 
all points within an ellipsoid of concentration of the multivariate Gaussian 
distribution whose mean and covariance are the sample mean and covariance 
of the n observations? 

For Example 2, let J be the set of all points in the observation space 
which are nearer to x 0 than to any observation. 

I f  J is an observed tolerance region, its coverage P~ is the probability 
that another sample drawn at random from f (x)  will fall in J .  That  is, 

P j  = f j f ( x )  dx. 

Of course, P j  is bounded by 0 and 1. Because the n observations are drawn 
at random, the set ~¢ is a random set and, hence, its coverage P j  is a random 
real variable. 

A tolerance region J is called a distribution-free tolerance region if the 
density function of Pc  is independent of the underlying p.d.f, f(x) .  It turns 
out as might be expected, that in the first example, above, the tolerance 
region is distribution free within the family of Gaussian p.d.f.'s. One would 
expect that distribution-free tolerance regions would be difficult to construct. 
Due to Wilks and authors who followed, this is seen not to be the case. 

Next we give one simple form of Tukey's  construction [9]. With it, we 
can show that the tolerance region of Example 2 is distribution free. The 
following rule will be used when we receive n L-dimensional observations 
from unknown p.d.f, f (x) .  Prior to knowledge of observations, an arbitrary 
real valued, noninfinite, continuous function ~(x) defined on the observation 
space, and a positive integer less than n - ~  1 is specified. When the n 

Knowledge of ellipsoid shape for local regions in the observation space is very 
important. Effectively, the use of a local ellipsoid corresponds to local dimensionality 
reduction. Success in pattern recognition may depend on how much is known a priori 
about the local ellipsoid shape. 
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observations are received, w e  will evaluate $(x) at each of the observation 
points. Associated with an observation x j is its "order" ~(x 0. The  observations 
are ranked according to their "order" from smallest to largest. Letting z 
equal the v-th smallest "order value", the set of all the points in the observa- 
tion space whose "order value" is tess than z is defined to be the tolerance 
region J .  

It  results that the coverage Pd for this construction always has the Beta 
distribution B e ( v ,  n - -  v q-  1), independent of the underlying p.d.f, f ( x ) .  

I f  X has the B e ( v ,  n - -  v + 1) distribution, X has the density 

( n! x*-l(1 - -  x) ~-~ 0 ~ x ~ 1 
f ( x )  = v - -  1)! (n - -  v)t (5) 

elsewhere 

To show that Example 2 is a distribution-free tolerance region, let 6(x) 
equal the Euclidian distance from a fixed point x 0 to x, and let v equal some 
fixed positive integer less or equal to n. The rule will be: J will be the 
set of all points inside the hypersphere centered at x 0 which contains v - -  1 
observations inside, one observation on the surface (which is not in J ) ,  
and n - - v  observations outside. This is the scheme used in [!]" A simple 
modification is to define 6 ( x ) =  x T Z - l x ,  where Z is a positive definite 
symmetric matrix. Then J would be a hyperellipse. 

Just as one tolerance region can be formed, the whole observation space 
can be partitioned into s nonoverlapping tolerance regions [9]. All that is 
required is that a list of s functions and integers be specified. Essentially, 
the same procedure is followed, except that tolerance regions at later stages 
of the construction must lie totally within tolerance regions of initial stages. 

For Example 3, suppose we have the following simple rule for six 
2-dimensional observations (see [9], p. 529): Order the observations by their 
first coordinates [~(x) = Xl, where x = (xl ,  x~)]. Let  h I be the value of 
the smallest x 1 value (% = 1). The  first tolerance region is the set of all 
points x such that x 1 ~ h 1 . This is just the region to the left of the leftmost 
observation. Now, the second order function ~2(x) = x 2 is used to order 
the remaining observations by their value x 2 . The first smallest value of x 2 
is denoted h 2 , and the second tolerance region is the set of points x = (xl,  x2) 
such that x a < h i ,  and x 2 < h~. This procedure can be continued to 
remove regions counter clockwise about the space, using ~(x) - -  Xl, or - -x  2 
on the other sides. The resulting partition of the observation space is shown 
in Fig. 2. 
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f Observations 

Fro. 2. Partitioning of observation space. 

It should be pointed out that the use of ordering functions in Example 3 
is not a consistent procedure. That is, as the number of available training 
samples increases, the longest diagonal of most tolerance regions does not 
go to zero. Hence, in the limit, 

max If(x) - -  f ( Y ) l  =/= O. 
x,Y~Ji 

This property is required of ~ in the next section. This problem is easily 
alleviated by subpartitioning tolerance regions to obtain the above property. 
One such procedure (Example 4) is to partition the space into L + 1 regions 
where each region contains approximately the same number of observations 
by using a modification of Example 3. Then, each tolerance region is 
processed in a similar manner with a cyclical use of the order functions 
until each region contains v samples. Because this procedure generates 
many infinite volume regions, the construction is started after bounding the 
samples by 2L hyperplanes. An illustration is provided in Fig. 3 for v = 1, 
n =  16. 
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FIG. 3. Subpar t i t ion ing  o f  observat ion space. 

~NObservations 

III .  ESTIMATION 

As before, it is now assumed that there are classified sets of training 
samples from each of M classes; a candidate observation, x c, of unknown 
class is available. The problem is to assign x ~ to one of the M classes. 

The approach using partitions formed by constructing sequential tolerance 
regions discussed in the last section is as follows: The training samples 
from the i-th class are processed to form tolerance regions which partition 
the observation space. The location of the tolerance regions and the statistics 
of the coverages of each region is the information which is learned about 
the i-th underlying class conditional density function. This information is 
used to form an estimate probability density at each point x of the observation 
space. To simplify notation, let ~:~ be the index of the tolerance region for 
the i-th class which contains x. I f  x happens to be on a boundary between 
tolerance regions, we arbitrarily will choose the smaller index. (Since the 
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volume of all boundaries is zero and hence contains zero probability, this 
choice will be made with zero probability if X is a random variable having 
a density with no discrete component. ) 

It is known a priori that the coverage of the ~i-th tolerance region has 
the Beta distribution Be(ve~ , n i -  ve, + 1), where ve~ is the number of 
samples involved in constructing a tolerance region using Tukey's construc- 
tion. We know that the average coverage of tolerance region ~:i is the mean 
of the Beta distribution, or veJ(n i + 1). Thus, we define the estimate of 
the density at x to be the ratio of the expected coverage of the tolerance 
region containing x to the volume ~be, of the tolerance region: 

(6) 

The above estimate is asymptotically identical with (2). Loftsgaarden and 
Quesenberry proved that (2) is an asymptotically unbiased estimate provided 
that the maximum diameter of the tolerance regions converges to 0. Thus, 
(6) also is asymptotically unbiased if x is a continuity point of f and the 
maximum diameter of the tolerance regions converges to zero. The difference 
in performance is evident only with finite sample size. 

IV. DECISION RULES AND IMPLEMENTATION 

The decision rule is obtained by replacing f (x  ] toi) in Eq. (1) by f(x 1 o J, ) 
[Eq. (6)], resulting i n :  

Choose class oJ~ active if 

M M 

Z L~j (x  I oJ~) P, = min Y Lqf(x  ] o~,) P, ,  (7) 
i=l l~.3<.M 4=1 

which by (6) is equivalent to 

M M Lk i ve* Pi Pi 
- -  min ~ L~ v~ (8) 

i=1 ni + 1 q)e~ l<j<~M~'ff= 1 " ni + 1 ePe~ " 

For the special case when the loss function weights all types of errors 
equally, and a correct decision has zero loss, Eq. (7) reduces to: 

Choose class oJ k active if 

f(x Io,~)e~ = max f ( x  1~o3 P~, 
! <~j<M 

(9) 

643/I6/2-3 
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which is equivalent to 

ve,P~ ve~P j 
max (lO) 

(n~ + 1) ~ek 1Kj~<M (nj + 1) Cej " 

Patrick [I0] shows that the decision rule (8) or (10) minimizes the risk 
conditioned on the location of tolerance regions and the unclassified candidate 
sample. 3 An outline of a proof is provided in Appendix I. We now will 
point out interesting properties of two special cases of the above rules. 

Case 1. Suppose that the spherical tolerance regions of Example 2 are 
used in (10) for the case U = 2 and P1/P2 = (nl + 1)/(n 2 + 1). This is 
the binary, 0 - -  i loss function case when the number of training samples 
from each class are representative of the a priori class probabilities. Then 
(10) reduces to: 

Choose class ~o k active if 

Vek ~3~ 
= max . (11) 

q ~  i=1,2 q~j 

Also, suppose, for the moment, that the same tolerance region construction 
is used for both classes so that re1 = vq = v. Then, the volume ~el will 
be smaller than the volume of ~e2 if, and only if, the v-th class 1 sample 
is closer to x c than the v-th class 2 sample is to x c. But this is equivalent 
to choosing the class which is most highly represented among the first 
2v + I nearest neighbors of the pooled samples. This is also equivalent to 
choosing the class which is most highly represented among the first 2v 
nearest neighbors, providing that a tie does not occur. Thus, this special 
case of decision rules based on tolerance regions gives exactly the same 
decision as the k-Nearest Neighbor rule, where v = [(k + 1)/21% with the 
exception mentioned for the case when k is even. Rule (I0) is more general 
than the k -NN rule in the sense that weights can be attributed to different 
types of errors, and problems can be handled in which the training samples 
available are not in the same proportions as the a priori class probabilities. 
Further, different circular tolerance region construction methods may be 
used for each class. This is provided by allowing for the inequality of 
vq  and v q .  

An example of a problem in which the k -NN rule cannot be applied is 
as follows. 

a The unclassified candidate sample is the sample to be recognized using the 
generalized k -- NN decision rule. In this paper, it is sometimes denoted as x c. 
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Suppose we know that P1 = P2 = 1/2. However, the training samples 
available for the two classes are of size n 1 ~- r and n~ = 3r. In this case, 
if the k-NN rule were applied, the algorithm would "learn" that P1 = 1/4 
and P2 z 3/4 with a resultant degradation in performance. The generalized 
k-NN rule using circular tolerance regions would easily take this into account. 

The generalized k-NN rule offers more experimental freedom than the 
k -NN decision rule because, in the former, the value of v¢~ may be different 
for each class. 

Case 2. We now discuss a second special case of decision rules (10) 
based on tolerance regions. Suppose that once the training samples are 
received, the observation space is partitioned for each class. The location 
of the regions will be independent of the candidate. The result is that, 
instead of creating tolerance regions after each candidate, as in Case 2, the 
process need be completed only once (i.e., presuming that the training set 
has not changed). We are going to consider construction techniques such 
as illustrated in Example 3 which lend themselves to this procedure. 

In Example 3 of Section II, the sequence of numbers h i ,  h a ,..., hsi deter- 
mined the location of all of the tolerance regions in a simple manner for 
a single class. Thus, the sequence can be thought of as "coding" or repre- 
senting the estimate densky f(x), with the understanding that the rule for 
constructing the tolerance regions is known. 

The function f(x]mi) is evaluated at x, using the preprocessed data by 
first locating the tolerance region in which x lies. This is done by making 
a sequence of at most si differences of real numbers. The tolerance region 
volume is determined by the tolerance region's boundaries. 

Because the method of constructing tolerance regions is assumed known 
at recognition time, the ve~ are known for all i and x. Thus, all of these 
parameters are obtainable from the reduced data set for substitution into 
Eq. (10). As a consequence of storing the tolerance region parameters rather 
than the original data, data reduction-resuks. 

An alternative procedure is to generate for each tolerance region of each 
class, during preprocessing, a sequence whose elements are a monotonic 
function of Piv~J(n~ -~ 1). Recognition would then consist of finding the 
index of the tolerance regions containing x in each class and then choosing 
the class with the highest Piv¢J(ni + 1) which are found in the table. One such 

M monotonic function would be the natural order of the s ---~ )-~i=l si numbers. 
This particular list could be stored in a condensed list. 

The practical advantages of preprocessing the data to obtain tolerance 
region parameters are multifold: The primary advantage is that of complexity 
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reduction in implementing the decision rule. Instead of calculating f (x  I co,) 
using a Case 1 generalized k-NN rule based on ni, L-dimensional observations 
per class, which consumes copious amounts of computer storage and 
computation time, the Case 2 generalized k-NN rule is based on only si, 
1-dimensional observations per class where s~ = n~. Thus, preprocessing 
to obtain tolerance region boundaries reduces the amount of storage required 
to implement the decision rule by a factor of at least 1/L. If  re, = k for 
all i and x, reduction by a factor of 1/kL takes place (2/kL for the alternative 
procedure). Thus, large storage reductions can be obtained at the expense 
of preprocessing. 

As a result of data reduction, the complexity of calculation at recognition 
time is greatly reduced. In addition to the fact there are fewer numbers 
to process, the computations involve only subtraction if a preprocessed 
volume list is available under the alternative procedure. 

I t  is possible that a volume q~i in the density estimate (6) or the decision 
rule (8) will be infinite. In such a case, f (x  [ co,) is zero. 

V. THEORETICAL PERFORMANCE 

The objective is to outline a calculation of theoretical performance of the 
generalized k-NN decision rule using circular tolerance regions 4 against any 
two underlying distributions (the performance will clearly be a function of 
the two distributions. This objective is accomplished by first calculating the 
probability of error ( 0 -  1 loss function) incurred through use of the 
decision rule at every point in the observation space. The performance is 
then the average of the point performance with respect to the mixture 
distribution (only point performance is considered in this paper). 

The problem is described by the following experiment: suppose an 
experimenter has at his disposal a procedure to draw random vector samples 
from either of two distributions, and x ~ (x •+1, the sample being tested, 
will henceforth be called the candidate sample x c) is a point fixed in the 
observation space. The underlying continuous c.d.f.'s and specifically, 
W 1 ----f(x~ I col), W 2 = f(x~l~o~), are known to the experimenter. 

With no loss of generality, assume P1W1 > P~W~. The experimenter 
will draw n~ supervised random vector samples from each of the two 
underlying distributions, thereafter presenting them as training samples 
characterizing the underlying distribution function (unknown to the G K  
estimation system). Clearly, the experimenter knows that the minimum 
probability of error rule will choose class o~1, because P1W1 > P~W~. 

4 For convenience we will refer to this rule as the GK rule. 
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Let P~a be the probability the G K  decision rule choose class o) 2 , when 
in fact class co 1 is most probable. Pc ,  the probability of error if x c were 
caused by class o)~ with probability P~Wx/(PIW 1 + P2W2) = 7 h can then 
be calculated in terms of P2.1 • 

Now, we analyze what happens at recognition time. The  G K  system 
accepts ni supervised vector samples and obtains the location of the tolerance 
regions partitioning the observation space for class COl, i ~ 1, 2. By 
definition, the indexes of the two tolerance regions Jel and o¢e2 containing 
x c are always the same: ~:1 = ~2 = 1. Let  Ui and 0 i be, respectively, the 
coverage of Je~ with respect to f ( x  ] COl) and the volume of Je~., i = 1, 2. 
Then, the G K  decision [according to Eq. (10)] will be: 

Choose class o)~ if 

PlY1 P2v~ 
(n 1 -~ 1) • 1 < (n 2 -@ 1) • 2 " 

We will calculate the conditional probability of the above event, conditioned 
on P1W1, P2W2 , at point x c, where 

W1 = f(xC I o)1) 

W2 = f(x~ I o)2). 

The  calculation~will be made under the assumption that PaW1 > P2W~. 
Denote this conditional probability P2,1 : 

PlY1 P2v2 
P 2 a = P [ ( n l ÷ l )  01 < ( n 2 ÷ l )  O~]" 

To determine this probability, the distribution law on 01 and O 2 must be 
determined. To accomplish this, an assumption is made that the tolerance 
regions are "sufficiently small" such that it is reasonable to state: Ui = WiOi • 
This approximation will be poor for small training sample sets fo r  most 
underlying distributions.5 

Hence, 

] P2.1 ~ P P~viW~ g, > P2v~w= u~ . 

Note that the tolerance region can only be "sufficiently small" with some hopefully 
high probability. It appears, however, that a theoretical performance result can be 
obtained without the uniformity assumption. 
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The probability of this event is calculable since U 1 and U 3 have the beta 
distribution, independent of the underlying p.d.f.'s. Define 

R i  = g i / o  i - -  n i + 1 
p i v i W i  U i '  

i =  1,2. 

Then  R i is a random variable having the scaled beta distribution: 

nfl OduO~)~"-l(l - -  uOi)ni--vi; 0 < U < 1/0,, O, > 0 fi(u) = (v i _ 1)! (n, - v,)! 

and 

P2,1 ~ P[R1 > R2] = 

I r.I/o1 ~ e s 

Jo lJoA(S)f~(t)dttds if 0 1 > 0 2  

1~°'If '  1 (11) 1 -- fo ofl(s)A(t) ds & if 01 < 03. 

The  above integrals are evaluated in Appendix I I  with the result 6 

P2,1 ~ -  

nfl nfl 

(V 1 - -  1)! (?-)2 - -  1)! 

( 05 ].2+s 
n2--v2 ( - - 1 )  j ~ -~1  ] (V3 + ~1 ~ - j  - -  1)! 

.~=o j!(n3 -- v3 -- j)! (v3 ÷ j)(v3 + nl + j)! 

if 01 > 03 

nl ! n2 [ ni-vt (--1) j ~ - 2 !  (Vl + v3 + j  - -  1)! 

1 (vl - -  1)t (v3 - -  1)! .= jr(n1 -- vl - - j ) t  (Vl ÷j) (v l  + n~ + j ) !  

if 01 < 03 

For the special case when vl = v3 = v and n 1 = n 3 = n, and n approaches 
infinity, the limiting form of P3,1 (Appendix I I I )  has been found: 

1 2.-1 (2v - -  1](  P2W3 ¢ 
e31 = ( P3w3 ¢ o l  2 v I eW -1' , ,1= = oo (13) 

1 -~ P i W 1  ] v I = 73 2 = v, 

6 Note  tha t  (11) and (12) p resume  the  assumpt ion  Ui = W i ~ i .  Except  where  
Wi = 0, this  assumpt ion  precludes the  possibility of infinite volume @i. 
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Since P2a is the probability that the decision rule will choose class 2 
evaluated under the assumption that class 1 is more probable, and 
P2W2/(P~W1 + P~W2) = ~% is the probability the vector x ~ actually is from 
class ~2, the probability of error (or misclassification of x *) for this experiment 
is found by substituting (13) into the equation below: 

P~ = ~/2(1 - -  P2.1) + (1 - -  %)(P2,0 .  (14) 
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The  probability/O2,1 of choosing the less likely class and P~,  the probability 
of error for the asymptotic case, are plotted in Figs. 4 and 5 against the 
probability of error if the statistics had been known. 

I t  is easy to  show that for the special case of v 1 = v 2 = v, P1 = P2,  
the generalized k - N N  decision rule has the same risk as the k - N N  indicated 
by Cover and Hart  [2] for k = 2 v -  1. This  might have been guessed 
because the generalized k - N N  decision rule using circular tolerance regions 
gives the same decision as the k - N N  rule for the above mentioned special 
c a s e .  

Theoretical small sample performance is not distribution free. Small 
sample performance is an open research problem. Experimental small sample 
performance may be found in Ref. [11]. The  result (14) for probability of 
error is at the point xC; an extension would be to obtain probability of error 
by averaging the point performance on the mixture distribution. 

VI. EXAMPLE 

An example illustrating application of the generalized k-Nearest Neighbor 
decision rule is illustrated in Fig. 6 for a two class case. Let  X 1, X2,..., X ~1 
be n 1 training samples from class i and y1, y2 ..... y~2 be n 2 training samples 
from class 2. A priori supply the class probabilities P1,  P2,  and metrics 
p(x, xO, p(y, x ~) for the respective classes. Given that there are to be vl 
class 1 samples and v 2 class 2 samples in two respective tolerance regions 
centered at x c, compute the tolerance region volumes ¢1 and ¢3-  For 
example, ~x is computed after finding the v~ nearest samples to x c using 
the metric p(x, xC). 

Experimentally, it has been found very desirable to shape the metrics p 
to fit the data's covariance structure. Because the data's covariance structure 
can vary for different points x ~, it may be desirable to partition the observation 
space into regions and assign local metrics to the respective regions. ~ (One 
way to partition uses the straight line ordering functions described in 
Section II .)  

Another modification of the system shown in Fig. 6 would be to incorporate 
a provision for estimating or adapting the metrics with a priori starting 

However, the reader should be warned that this double-use of the data invalidates 
the theorem. Incidently, the problem is very nearly similar to the parametric estimation 
problem of estimating the gaussian component density in a mixture using unsupervised 
estimation [12]. 
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metrics. We conjecture that a priori starting metrics reflect a priori knowledge 
about the problem model and are very important for solving pattern recog- 
nition problems. 

C 
X 0 

xl,x2,...,xnl 
0 ~ Pi(x'xC)' Vl' Pl 

Compute ] 

PlVl 

(ni+i)J i 

o ] ~ (n2+i)¢2 

1 2 n y , y ,..., yZ 

02 (y'xc)' v2' P2 

Ifa >b 
o ~  

Ifa<b 
o ~  

Fro. 6. Example using circular tolerance regions. 

I t  has been observed for a typical problem, where f(x]o~i) may be 
muhimodal ,  L = 6, and n 1 = n 2 = 500, that experimental performance 
depends critically on v 1 and v S . Reasonable values might be v 1 = v~ = 3. 
An explanation is that for small sample sizes, if v 1 = vz = 1, there are too 
few samples for local density estimation; and if vl ~-v2 ----- 15, the local 
density concept does not apply. 

CONCLUSIONS 

A generalized k - N N  decision rule is presented which utilizes local density 
estimation (2) in the decision rule (1). I t  may be appropriate to call this 
generalized k - N N  decision rule the k - N N  8 rule to distinguish it from the 
decision rule studied by Cover and Hart  [2] and the decision rule studies 
by Fix and Hodges [3]. Then,  the decision rule studied by Cover and Har t  
could be called the k - N N  2 decision rule, and the one studied by Fix and 
Hodges the k - N N  1 decision rule. 
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Properties of the generalized k -NN decision rule (k-NN a rule) are discussed 
in the paper. 

A P P E N D I X  I. OUTLINE OF MINIMUM CONDITIONAL RISK ARGUMENT 

Let ~/ be the class of all rules for obtaining si distribution-free tolerance 

region# in the L-dimensional observation space I L, given n i samples xl,..., x ~ 
from class o~i. Denote the ~:-th tolerance region by J ~  ; then 

si M 
= U n = Z n, (1) 

se=l i=1  

because distribution-free tolerance regions cover the L-dimensional space 
and they are mutually exclusive. In like manner, the observation space for 
each of the M classes is covered by distribution-free tolerance regions, 
such that 

M 

S = ~ s i ,  (2) 
i=1 

where s is the total number of distribution-free tolerance regions, formed 
using n supervised vector samples. 

In order to keep the notation as simple as possible, we will not provide 
for indexing the unlimited number of ways or rules for forming distribution 
free tolerance regions. We will, however, distinguish between the rules 
used for the respective classes; thus, let ~i be the rule for obtaining 
distribution-free tolerance regions for the i-th class. Let ~? denote the M 
rules ~1,72 ,..-, ~M, ~/i ~ ~_- 

Assume that I L consists of elementary, disjoint regions whose union is I L. 

A specific elementary region is denoted I t with corresponding volume % 
The  event that observation x 8 is in It  is denoted xt s. Denote by Yt ~ the 
sequence (Xt 1, Xt 2 . . . . .  Xtn),  where I t  for Xt 1 is not necessarily the same as I ,  
for xt 2, etc. 

The problem is to decide, with minimum risk, which class caused ~t*~+l 
given supervised samples Yt  n and ~7. By a straightforward extension of (7), 

s Properties of distribution-free tolerance regions are discussed in Section II. 
A distribution-free tolerance limit should not be confused with a distribution-free 
tolerance region; the former is a statement concerning the probability mass (or 
coverage) in the distribution free tolerance region. 
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risk conditioned on y n and r/ is minimized by the following decision rule: 
Decide oJ. active if 

n n+l Z Laip(°Ji' x~+a[ Y * '  r/i) = II~n Z LKiP( °°i, xt ] ytn, r/i) • (3/ 
i=1 i=l K=I 

~+1 I Yt~, ~7i) can be evaluated according to the following The term p(oJi,  x t 
lemma. 

LEMMA 1. I f  ni supervised samples f o rm  si distribution-free tolerance regions 
using rule ~7i , and sample x n+l is in tolerance region Je, , having volume q~ e, and 
coverage ~ , then 

n+l p(o~, , x ,  [ Y,",  r/,) = - -  E [P ,~e ,  I y,n, '7,] (4) 
~be~ 

or i f  8n i is the set o f  tolerance regions 9 for  class oJ i [3~ I = (Yt" ,  r/i)] 

P(~oi , x~ +1 I 3n i) = ~ E[Pi~e~ t 3n~] • (5) 

Proof. The lemma is proven in two parts. We will denote the event 
x~ +x ~ ~¢~ by ~n+le~ , and let ~t°~ i denote the sequence of n i tolerance regions 
for class ~o i successively containing samples x 1, x2,..., x n~. The first part of 
the proof of Lemma 1 follows. 

PART 1. 

p ( % ,  x~+l &a/, ~/i) = ~ P ( % ,  ~,+ae, I ~e2, r/i) (6) 

for all x~ +1 e ~ .  

Proof. If the event (oJi, x~ +1) occurs, then so does the event Nn+le, 
because x~ +a C ~n+le~ ; in other words, the event (~oi, x~ +1, ~+le~ ) occurs. 
Thus, 

p (%,  x~+~ I ~e', ~,) = p ( % ,  x.+l , , ~ + 1 ~ ,  I ze~, r/i) 

_ ,,+1 , ~ . ' ,  r/i) P ( ~ . + ~ ,  % I ~e, ,  '~,)- (7) -p(x~ I~' .+ le  ' , % 

The set of tolerance regions (the partition denoted 3. i) is uniquely determined 
by the n training samples Y,~ and the tule ~/i for forming the tolerance regions. 
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Now consider the term p(x~+l i ~,+xe,, o~i, ~ i ,  ~7i). ~ i  adds nothing to 
estimating conditional probability mass in 1,, given ~¢e,, because the event 
Je, is a complexity constraint prohibiting fine knowledge of the probability 
structure within ~e,. Furthermore, we have no reason to favor any region 
1, e Je, with more mass than any other. Thus, each elementary region in 
~ has equal mass with the upshot that 

P(X~ +1 [ ~ n + l e , ,  ¢°i, ~n  i, ~i) = P(x~+* 1 4 , ,  ~o¢) -- q~e, (8) 

since (~+le , ,  ~7i) = (4,).  This concludes Part 1. 
Next we show that P (~+le , ,  °°i I £ei, ~71), in relation (7), is simply the 

conditional expectation of the product P ~ e , ,  where ~ae, is the probability 
mass (coverage) in tolerance region Je,-  

PART 2.  

(9) 

where 

~ ,  = p[x? +1 e 4 ,  I o,d = P[&+I~, I ,od. 

Proof. Since P (~+ le , ,  COl) is completely characterized by ~ e P i ,  it 
follows that 

P(~-+le,, ~°i ] 5f~ i, ~i) = f Pi~e, dF(Pi,  ~ ,  1 X', i, ~7,) 

Relations (8) and (9) inserted in (7) give the desired result, 

q~ E[Pi~¢ ~ ] ~ i ,  ~i]. 

This concludes the proof of Lemma 1. 
Inserting (4) in (3) gives: Decide oJ a active if 

t Z E[P,~e, l Y,", ~7,] = m~n ~z., ~ , I y n, V,] ; (10) 
i=1 ~¢t ~' i=1 ~¢ K=I 
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Or equivalently: Decide ~o a active if 

= E [ P i ~  13n i] L, ~ t i~'e, [Sn I] n~n . (11) 
i=1  ~i z=.t i K=I 

If ~e~ is the coverage of a tolerance region formed using vet samples, where 
the total number of samples is ni, then the expected value of the coverage 
is veJ(n i -]- 1). In terms of our notation, 

E[~e~ [ Y~", ~7i] -- ni -?~ " (12) 

Inserting (12) in (10) or (11) and assuming Pi known, the resulting decision 
rule is: Decide ,% active if 

. I Pi a~e ~ ve~ -- n~n Pi (13) 
i=1 i ni @ 1 _ qSel n i @ 1 X=l" 

And ifL~i = 1 for j ~ i and zero, otherwise, relation (13) reduces to decide 
co a active if 

Pa vea m~x I PK VeK IM 
- -  . ( 1 4 )  

@e~ n~ + 1 @eK n/c -]- 1 x=l 

The results of Lemma 1 through Eq. (14) can be summarized according to 
the following theorem. 

THEOREM 1. I f  ni supervised samples form s, distribution-free tolerance 
regions using rule ~i , then x ~+1 is in tolerance region J~i ' having volume ~ e~ and 
coverage ~e , ,  and if p(x [ ooi) is uniform in Je~, then risk conditioned on yn 
and rule ~ is minimized by using decision rule (14). 

The set ~/, against which risk is minimized, has not been shown to be op- 
timum. However, the use of ~7 (which replaces the samples with distribution- 
free tolerance regions) appears to be an engineering approach having practical 
application and merits further consideration. 

APPENDIX II 

We wish to evaluate the integral 

I = 
l l - -  

1/01 s 

f f f (s)A(t) at as: ol > o. 
~ 0  0 

1/0.2 f, 

f fofl(t)f2(s ) ds dt: 01 < 0 2 
~ 0  
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where  

Case 1. 

nil Oi(uOi) "i-1 (1 - -  u0i)"*-";  
A ( u )  = (v ,  - 1)! (n ,  - v , ) !  

O <~ u <~ l/Oi, 0 i > 0 .  
01 > 02. 

8 8 ~2--'2 
f f2(t)dt = : n2' 02 (02')'5--I Z 

o o (v2 - 1)! (n~ - v2)! J=O ( °9" 
~2--'2 n 21 ( - -  1)J (0:)'~+~ 

(v~ - -  1)1 "j~o fl(n.~ - -  v 2 - - / ) l  (v 2 + j ) "  

Since f2(s) is 0 for s > 1/0 2 > 1/01, 

fo" °: o::1.1(1 o:). .1 I = [ (7) 1 - -  1)l (n I - -  v,)!  

n~! ,,~-vov ( - 1 )  ~ ( ° : )  "~+" [ 1 ds 
, 1 1 ,  m),.. + m)' 

I = 
nfl n2[ 

(v 1 - -  1)! (v2 - -  1)t 

-~-,~ (__l)m ~/Ol (015),1-1 (1 - -  0 : )  '~l-'x (Ozs) "~+~ ds 

Let  
1/0x 

11 = f (015) "1-1 (1 - -  013) nl-'l (025) "2+m d$. 
~o 

This  is integrated by  expanding the  center  t e rm,  result ing in 

1/01 ~ ' 1  
j ( ( - -1)J  (01s)J (nl - -  vl)! ,1-1 ,~+m ,,+,~+~-1 /1 = 01 02 s ds 

o j=o j!(n~- v l - j ) !  
(2) 

"1--'1 (__ ] ) j  (n I __ Vl)! ( 02 ~v2+m ] 

= ~ '  j [ (n  I - -  v 1 - - j ) !  01-a \ 01 / j + m + v 1 + v 2 ' j=0 

U p o n  subst i tut ing Eq.  (2) into (1), 

I = nfl n2l 
(vx - -  1)l (v2 - -  1)! 

712--V 2 
Z 

( - 1 ) ~  ( ° 2 :  '÷m 
\ 01 ] ~1--'1 

m!(n 2 - -  v z - -  m)! (v 2 -+- m) j=O 

j + m  -I- vl  + v 2  4: O. 

1 
' ~--l/j + m 6- vl  + v2 

jl(n~ - -  v~ - - j ) t  
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But note the identity 1° 

Equation (3) is the desired result• 

P -1  
(--1)J = [l~I_~ (a + j ) ]  --  ( a -  1)[ 

~oj!(P - ~ .  (a + j) ~-~= ~ ~ 

"~-~v (-1)m ~-K(l ! (vl + v~ + m 1)! nfl n2! 
(~)1 - -  1)! (V 2 -- 1)! ~ o  m!(n2 - -  v2 - -  m)!  (v2 + m) (v~, + n 1 -1- m)! 

(3) 

Case 2. 
for interchange of class subscripts. It then results: 

nit n2! ~-~x-" (--1)m \ 01 ! 
(vl --  1)t (v 2 -- 1)! ,~L'__ o ml(n~ - -  v 2 - -  m)! 

( v l  @ v2 4-  m - -  1)! 
(v2 + m ) ( %  ÷ n 1 4- m)! ' 

P e  z 

01 < 02 . The integral for Case 2 is identical to Case 1 except 

nl! n2[ 
~=~ m! (n  i - -  v i - -  m)!  

(vl + v 2 + m - -  1)! 
( v l @ m ) ( v  1 + n ~ + m ) ! '  

(v l - -  1)t (vz--  1)! 

01 > 02 

01 < 02. 

APPENDIX III  

We wish to evaluate I for the special case when nl = n2 = n, vl =- v2 = v, 
P 1 W 1  > P z W  z and n --~ 0% where 

nl !  n2! 

( V  1 - -  1)! (v2 -- 1)l 

1 ~ ( , '  

i nfl nz! 
- ( ~ 1  - 1 ) !  ( v 2  - 1)t 

\ 

( 02 ~+~ 
-~-~2 ( - - 1 )  j \ ~ - !  (v2 + v l  + J  - -  1)! 

.= j l (n2  - -  v~ - - j ) !  (v2 +j)(v2 + nl + j ) !  ' 

01 > 02 (la) 

.1_~ ( - 1 ) ;  ~-~-~ I (vl + v2 + J  - 1)! 

.= j ! ( n l  - -  v l  - - j ) !  ( v l  + j ) ( v t  + n~ + j ) !  ' 

01 < 02 (lb) 
to I. J. Schwatt, "An Introduction to Operations With Series," 2nd ed. of 1924, 1st ed., 

p. 129. Chelsea, New York. 
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and 

P¢73¢ W i 
Oi - -  - -  • 

hi- f i  1 

We will denote I~  = lim._~o I .  Since 

01 Plvl W1 PzvzW2 
nl + 1 n. + 1 

we evaluate Eq. (la). 

t( i( I 
( o3 ~o+, (2~ - 1 + j ) !  

n! 2 - ( - 1 ) 5  ~G-i! 
I~ = l ~  (o - 1)~ ) j~(~---~ - j)~ (~ +j ) ( ,  ~- ~ - j ) t  

For  n large but  fixed, the general te rm of the sum is driven to 0 as j increases. 
Hence,  let 

n! 
(n - f lv  -flj)!  - -  n-*-J[1 -fl o(n)] 

n! 
(n - -  v - - j ) l  - -  n~+J[1 + o(n)], 

where lim.~oo I o(n)l = O. 
T h e n  

1 *-" ' 0 ,~+~ (2v + j  - -  1) [1 + Ol(n)][1 -fl O.(n)] 
I - -  [ ( v - - l ) ! ] "  E (--1)J(-~-~2) ' (v+i) j l  

j=O 

and 

_ , 

Ioo [(v - -  1)!] 2 j=o ( - v - - ~ # !  " 

We now obtain I~o in closed form. Since 

f~ 02 P2W, rJ+V _ ~j+,- laj~: ,  v > 0 ,  where r -  - -  
~) q- J 0 O1 P1W1 

1 ~ ~ - 1  ~ ( - -1)  j (2v -fly - -  1)! ~ d~. 
I v  [(v - -  1)!] 2 f0 j=0 Jl 
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But  since n 

(.Ca -}- m - -  1)! ~.,,~, 
1 - -  ~ ( - 1 ) m  m!-~-~i-- ])T. 

(1 + ~)~ ~=o 

( 2 v - -  1)! f "  ~:,,-1 
I .  = [(Vl _ _  1)l] 2 o (1 + ~)2~ d~. 

I f  Z =  1 + ~ , t h e n  

(2v -- 1)! f l+r  Z. $ v Z ( - l ) ~ - l + j  (V -- 1 )Z j  dZ 
/~  - -  [(v - -  1)!] 2 +1 ~=o J 

( 2 v -  1)! ~'-' (v - -1 ) [1 - -  (1 -t-r) s-=~'+l] 
I~ - -  [~-~ - 1~]- 2 ~o (--1)v-l+J J ' ~ ' 7 2 V ~ ' i "  ]" 

Hence ,  

or  

/, 
I~ = 1 + r '  v ---- 1 

3r 2 -~- r 3 

(1 + r) 3 '  
v = 2  

---- 1 0 r a + 5 r ~ + r 5  v = 3  
(1 + rp  ' 

( l ~2V--1 z ~ l  2v - -  

3=V 

P2W2 02 
where  r - -  - -  - -  

P1W1 01 " 

RECEIVED: January 29, 1969; revised: September 19, 1969; revised: November 20, 1969 

REFERENCES 

1. D. O. LOFTSGAARDEN AND C. P. QUESENBUR¥, A nonparametric estimate of a 
multivariable density function, Ann. Math. Statist. 36 (1965), 1049-1151. 

2. T. M. COVER AND P. E. HART, Nearest neighbor Pattern classification, I E E E  
Trans. IT-13, No. 1 (1967), 21-27. 

11 Mangulis, V., Handbook of Series for Scientists and Engineers, Academic Press, 
1965, New York/London. 

643/I6/2-4 



152 PATRICK AND FISCHER 

3. E. Fix AND J. L. HODGES, JR., "Discriminatory Analysis; Small Sample Perform- 
ance," USAF School of Aviation Medicine, Randolph Field, Texas, Project 
21-49-004, Report No. 11, under Contract No. AF41(148)-31, August, 1952. 

4. S. S. WILKS, Determination of sample sizes for setting tolerance limits, Ann. 
Math. Statist. 12 (1941), 91-96. 

5. J. H. B. KEMPERMAN, Generalized tolerance limits, Ann. Math. Statist. 27 (1956), 
180-186. 

6. D. A. S. FRASER AND I. GUTTMAN, Tolerance regions, Ann. Math. Statist. 27 
(1956), 162-179. 

7. D. A. S. FRASER, "Nonparametric Methods in Statistics," Chap. 4.3, Wiley, 
New York, 1957. 

8. S. S. WILKS, "Mathematical Statistics," Chap. 18, Wiley, New York, 1962. 
9. J. W. TuKEY, Nonparametric estimation, II. Statistically equivalent blocks and 

tolerance regions--the continuous case, Ann. Math. Statist. 18 (1947), 529-539. 
10. E. A. PATRICK, "Distribution Free, Minimum Conditional Risk Learning Systems" 

Purdue Technical Report, TR-EE66-18, November 1966. 
11. E. A. PATRICK, K. FOKUNAGA, D. R. ANDERSON, F. P. FISCHER, II., L. Y. L. SHEN, 

Final Report, Part II., Experimental Results, "Supervised and Unsupervised 
Adaptive System for Submarine Detection (U)," Purdue University TR-EE68-22, 
June, 1968. 

12. E. A. PATRICK AND J. P. COSTELLO, "Bayes Related Solutions to Unsupervised 
Estimation," Proceedings of the 1969 National Electronics Conference, December 
1969. 


