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a b s t r a c t

If X is a geodesic metric space and x1, x2, x3 ∈ X , a geodesic triangle T = {x1, x2, x3} is
the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X . The space X is δ-hyperbolic
(in the Gromov sense) if, for every geodesic triangle T in X , every side of T is contained
in a δ-neighborhood of the union of the other two sides. We denote by δ(X) the sharpest
hyperbolicity constant of X , i.e. δ(X) := inf{δ ≥ 0 : X is δ-hyperbolic}. In this paper,
we obtain several tight bounds for the hyperbolicity constant of a graph and precise
values of this constant for some important families of graphs. In particular, we investigate
the relationship between the hyperbolicity constant of a graph and its number of edges,
diameter and cycles. As a consequence of our results, we show that if G is any graphwithm
edges with lengths {lk}mk=1, then δ(G) ≤

∑m
k=1 lk/4, and δ(G) =

∑m
k=1 lk/4 if and only if G

is isomorphic to Cm. Moreover, we prove the inequality δ(G) ≤
1
2 diamG for every graph,

and we use this inequality in order to compute the precise value δ(G) for some common
graphs.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The study ofmathematical properties of Gromov hyperbolic spaces and its applications is a topic of recent and increasing
interest in graph theory; see, for instance [2–5,13–15,22–26,29,31,32,34,37,39,41].

The theory of Gromov hyperbolic spaces was initially applied to study finitely generated groups, field in which it turned
out a crucial tool. After that, it was also successfully used in automatic groups (see [33]) and computer science. Recently,
new practical uses came up, like its utilization in secure transmission of information through the Internet (see [22–26]), in
the spread of viruses through the network (see [23,24]), or in the study of DNA data (see [13]).

In recent years, several investigators have shown their interest in proving that the metrics used in the geometric
function theory are Gromov hyperbolic. For instance, the Klein–Hilbert and Kobayashi metrics are Gromov hyperbolic
(under particular conditions on the domain of definition, see [8,27,6]), the Gehring–Osgood j-metric is Gromov hyperbolic,
and the Vuorinen j-metric is not Gromov hyperbolic except in the punctured space (see [17]). Also, in [28] the hyperbolicity
of the conformal modulus metric µ and the related so-called Ferrand metric λ∗, have been studied. Gromov hyper-
bolicity of the quasihyperbolic and the Poincaré metrics is also the subject of [1,7,10,18–21,30,34–40]. In particular, in
[34, Theorem 2.19], [37, Theorem 2.5], [39, Theorem 3.7] and [40, Theorem 4.20] it is proved the equivalence of the hyper-
bolicity of Riemann surfaces (with their Poincaré metrics) and the hyperbolicity of a simple graph; with all these arguments
it seems interesting to have hyperbolicity criteria for graphs.
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In our study on the hyperbolicity constant in graphs we use the notations of [16]. Now we give the basic facts about
Gromov’s spaces. If γ : [a, b] −→ X is a continuous curve in a metric space (X, d), we can define the length of γ as

L(γ ) := sup
 n−

i=1

d(γ (ti−1), γ (ti)) : a = t0 < t1 < · · · < tn = b

.

We say that γ is a geodesic if it is an isometry, i.e., L(γ |[t,s]) = d(γ (t), γ (s)) = |t − s| for every s, t ∈ [a, b]. We say that X is
a geodesic metric space if for every x, y ∈ X , there exists a geodesic joining x and y; we denote by [xy] any of such geodesics
(since we do not require uniqueness of geodesics, this notation is ambiguous, but it is convenient). It is clear that every
geodesic metric space is path-connected. If X is a graph, we use the classical notation [u, v] for the edge of a graph joining
the vertices u and v.

Throughout the paper we just consider graphs which are connected and locally finite (i.e., each ball contains just a finite
number of edges). These conditions guarantee that the graph is a geodesic space (since we consider that every point in any
edge of a graph G is a point of G, whether it is a vertex of G or not). We allow loops, multiple edges and edges of arbitrary
lengths in our graphs.

If X is a geodesic metric space and J = {J1, J2, . . . , Jn}, with Jj ⊆ X , we say that J is δ-thin if for every x ∈ Ji we have that
d(x, ∪j≠i Jj) ≤ δ. We denote by δ(J) the sharpest thin constant of J , i.e. δ(J) := inf{δ ≥ 0 : J is δ-thin}. If x1, x2, x3 ∈ X , a
geodesic triangle T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1]. The space X is δ-hyperbolic (or
satisfies theRips conditionwith constant δ) if every geodesic triangle inX is δ-thin.Wedenote by δ(X) the sharp hyperbolicity
constant of X , i.e. δ(X) := sup{δ(T ) : T is a geodesic triangle in X}. We say that X is hyperbolic if X is δ-hyperbolic for some
δ ≥ 0. If X is hyperbolic, then δ(X) = inf{δ ≥ 0 : X is δ-hyperbolic}. The hyperbolicity constant δ(X) of a geodesic metric
space can be viewed as a measure of how ‘‘tree-like’’ the space is, since those spaces with δ(X) = 0 are precisely the metric
trees.

Remark 1. Any bigon, i.e., a triangle with two equal vertices, in a δ-hyperbolic space is obviously δ-thin. Note that any
geodesic polygon with n ≥ 3 sides in a δ-hyperbolic space is (n − 2)δ-thin (we just have to decompose the polygon as a
union of triangles).

Remark 2. There are several definitions of Gromov hyperbolicity (see e.g. [16]). These different definitions are equivalent
in the sense that if X is δA-hyperbolic with respect to the definition A, then it is δB-hyperbolic with respect to the definition
B, and there exist universal constants c1, c2 such that c1δA ≤ δB ≤ c2 δA (see e.g. [16, p. 41]). However, for a fixed δ ≥ 0, the
set of δ-hyperbolic graphs with respect to the definition A, is different, in general, from the set of δ-hyperbolic graphs with
respect to the definition B. We have chosen this definition since it has a deep geometric meaning (see e.g. [16, Chapter 3]).

Remark 3. Some authors (see e.g. [13]) consider just those geodesic triangles in any graph G that have vertices in V (G); by
doing so we obtain a definition which is equivalent (in the sense of Remark 2) to our definition if every edge in G has length
1. However, if wewant to deal with graphs with edges of arbitrary length, wemust consider geodesic triangles with vertices
in G.

We would like to point out that deciding whether or not a space is hyperbolic is usually extraordinarily difficult. Note
that, first of all, we have to consider an arbitrary geodesic triangle T , and calculate the minimum distance from an arbitrary
point P of T to the union of the other two sides of the triangle to which P does not belong to. And then we have to take
supremum over all the possible choices for P and then over all the possible choices for T . It means that if our space is, for
instance, an n-dimensional manifold and we select two points P and Q on different sides of a triangle T , the function F that
measures the distance between P and Q is a (3n + 2)-variable function (3n variables describe the three vertices of T and
two variables describe the points p and q in the closed curve given by T ). In order to prove that our space is hyperbolic
we would have to take the minimum of F over the variable that describes Q , and then the supremum over the remaining
3n+ 1 variables, or at least prove that it is finite. Without disregarding the difficulty of solving a (3n+ 2)-variable minimax
problem, note that the main obstacle is that we do not even know in an approximate way the location of geodesics in the
space.

Let (X, dX ) and (Y , dY ) be twometric spaces. Amap f : X −→ Y is said to be an (α, β)-quasi-isometry, withα ≥ 1, β ≥ 0,
if for every x, y ∈ X:

α−1dX (x, y) − β ≤ dY (f (x), f (y)) ≤ α dX (x, y) + β.

We say that f is a quasi-isometry if we disregard the constants α and β .
When α = 1 and β = 0, f is said to be an isometry.
A quasi-isometry, in general, is not continuous as we can see in the following example.
The function f : R −→ R defined by f (x) = [x] is a (1, 1)-quasi-isometry but f is not continuous in N.
Let X be a metric space, Y a non-empty subset of X and ε a real positive number. We define the ε-neighborhood of Y in X ,

as the set Vε(Y ) := {x ∈ X : dX (x, Y ) ≤ ε}.
Twometric spaces X and Y are quasi-isometric if there exists a quasi-isometry f : X −→ Y and a real number ε ≥ 0 such

that f (X) is ε-full in Y , i.e.,Vε(f (X)) = Y . An (α, β)-quasigeodesic of ametric space X is a (α, β)-quasi-isometry γ : I −→ X ,
where I is an interval of R.
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If D is a closed subset of X , we always consider in D the inner metric obtained by the restriction of the metric in X , that is

dD(z, w) := inf

LX (γ ) : γ ⊂ D is a continuous curve joining z and w


≥ dX (z, w).

Consequently, LD(γ ) = LX (γ ) for every curve γ ⊂ D.
The following are interesting examples of hyperbolic spaces. R is 0-hyperbolic: in fact, any point of a geodesic triangle

in the real line belongs to two sides of the triangle simultaneously, and therefore we can conclude that R is 0-hyperbolic.
R2 is not hyperbolic: it is clear that triangles with arbitrarily large diameter can be drawn, and then R2 is not hyperbolic
with the Euclidean metric. This argument can be generalized in a similar way to higher dimensions: a normed vector space
E is hyperbolic if and only if dim E = 1. Every metric tree of arbitrary length is 0-hyperbolic. In fact, any point of a geodesic
triangle in a tree belongs simultaneously to two sides of the triangle. Every bounded metric space X is (diam X)-hyperbolic.
Every simply connected complete Riemannian manifold with sectional curvature verifying K ≤ −k2, for some positive
constant k, is hyperbolic. We refer to [9,11,12,16] for more background and further results.

2. Hyperbolicity constant in graphs

Since it is not easy to guarantee the hyperbolicity, it is interesting to relate the hyperbolicity constant with other
important parameters of a graph or with some properties of the graph.

We start with some results which relate hyperbolicity with local hyperbolicity. We say that a sequence of closed sets
{Kn}n in a metric space X is an exhaustion of X if Kn ⊆ Kn+1 for every n and given any compact set K ⊂ X , there exists N with
K ⊆ KN .

Theorem 4. Assume that there exist δ ≥ 0 and an exhaustion {Kn}n of a geodesic metric space X such that Kn is δ-hyperbolic for
every n. Then X is δ-hyperbolic.

Proof. Let T = [xy] ∪ [yz] ∪ [zx] be any geodesic triangle in X , and let u ∈ [xy]. Vδ(T ) is contained in KN for some N . Since T
is a geodesic triangle in X , it is also a geodesic triangle in KN . Since KN is δ-hyperbolic, there exists v ∈ [yz] ∪ [zx] such that
dX (u, v) ≤ dKN (u, v) ≤ δ. �

With the same aim, we relate the hyperbolicity of a graph with the hyperbolicity of its subgraphs.
We say that a subgraph Γ of G is isometric if dΓ (x, y) = dG(x, y) for every x, y ∈ Γ .

Lemma 5. If Γ is an isometric subgraph of G, then δ(Γ ) ≤ δ(G).

Proof. Note that, by hypothesis, dΓ (x, y) = dG(x, y) for every x, y ∈ Γ ; therefore, every geodesic triangle in Γ is a geodesic
triangle in G. Hence, δ(Γ ) ≤ δ(G). �

In [16, p. 87] we can find the following result.

Lemma 6 (Invariance of Hyperbolicity). Let f : X −→ Y be an (α, β)-quasi-isometry between two geodesic metric spaces. If Y
is δ-hyperbolic, then X is δ′-hyperbolic, where δ′ is a constant which just depends on δ, α and β .

Besides, if f is ε-full for some ε ≥ 0, then X is hyperbolic if and only if Y is hyperbolic. Furthermore, if X is δ′-hyperbolic, then
Y is δ-hyperbolic, where δ is a constant which just depends on δ′, α, β and ε.

Theorem 7. Assume that Γ is a subgraph of a graph G such that there exist α ≥ 1 and β ≥ 0with dΓ (x, y) ≤ αdG(x, y)+β , for
every x, y ∈ Γ . If G is hyperbolic, thenΓ is hyperbolic. Moreover, if there exists a constant c such that every connected component
E of G \ Γ satisfies diamG E ≤ c, then G is hyperbolic if and only if Γ is hyperbolic.

Proof. By Lemma 6, it suffices to note that the inclusion i : Γ −→ G is an (α, β)-quasi-isometry, since dG(x, y) ≤ dΓ (x, y)
for every x, y ∈ Γ . Furthermore, if every connected component E of G \ Γ satisfies diamG E ≤ c , then i is c-full. �

The next result relates δ with an important parameter of a graph, the diameter. It is a simple but useful result.

Theorem 8. In any graph G the inequality δ(G) ≤
1
2 diamG holds, and furthermore, it is sharp.

Proof. Let us consider a geodesic side γ in any geodesic triangle T ⊂ G. Denote by x, y the endpoints of γ , and by γ1, γ2 the
other sides of T . For any p ∈ γ , it is clear that

d(p, γ1 ∪ γ2) ≤ d(p, {x, y}) ≤
1
2
L(γ ) ≤

1
2

diamG ,

and consequently, δ(G) ≤
1
2 diamG. �

The equality in Theorem 8 is attained by many graphs, as shown in the following theorem.
We will also need the following result (see [37, Lemma 2.1]). As usual, by cyclewemean a simple closed curve, i.e. a path

with different vertices, unless the last vertex, which is equal to the first one.
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Lemma 9. Let us consider a geodesicmetric space X. If every geodesic triangle in X which is a cycle, is δ-thin, thenX is δ-hyperbolic.

This lemma has the following direct consequence.

Corollary 10. In any geodesic metric space X,

δ(X) = sup

δ(T ) : T is a geodesic triangle which is a cycle


.

Theorem 11. The following graphs with edges of length 1 have these precise values of δ.

• The path graphs verify δ(Pn) = 0 for every n ≥ 1.
• The cycle graphs verify δ(Cn) = n/4 for every n ≥ 3.
• The complete graphs verify δ(K1) = δ(K2) = 0, δ(K3) = 3/4, δ(Kn) = 1 for every n ≥ 4.
• The complete bipartite graphs verify δ(K1,1) = δ(K1,2) = δ(K2,1) = 0, δ(Km,n) = 1 for every m, n ≥ 2.
• The Petersen graph P verifies δ(P) = 3/2.
• The wheel graph with n vertices Wn verifies δ(W4) = δ(W5) = 1, δ(Wn) = 3/2 for every 7 ≤ n ≤ 10, and δ(Wn) = 5/4 for

n = 6 and for every n ≥ 11.

Furthermore, the graphs Cn and Kn for every n ≥ 3, Km,n for every m, n ≥ 2, the Petersen graph and Wn for every 4 ≤ n ≤ 10,
verify δ(G) =

1
2 diamG.

Proof. It is clear that δ(Pn) = 0, δ(K1) = δ(K2) = 0 and δ(K1,1) = δ(K1,2) = δ(K2,1) = 0, since these graphs are trees.
Since diam Cn = n/2, Theorem 8 gives that δ(Cn) ≤ n/4. Let us consider a bigon with two vertices {x, y} at a distance

n/2, with sides γ1, γ2 such that γ1 ∪ γ2 = Cn. The midpoint p of γ1 satisfies d(p, γ2) = d(p, {x, y}) = n/4. Consequently,
δ(Cn) = n/4. We also have δ(K3) = 3/4, since K3 = C3.

If n ≥ 4, then the diameter of the complete graphs Kn is diam Kn = 2. Therefore, Theorem 8 gives that δ(Kn) ≤ 1.
Consider a cycle g of length 4 in Kn. Fix a point x in the midpoint of a fixed edge of g; let us consider the point y ∈ g at a
distance 2 from x and the bigon with vertices {x, y} and sides γ1, γ2 such that γ1 ∪ γ2 = g . The midpoint p of γ1 satisfies
d(p, γ2) = d(p, {x, y}) = 1. Hence, δ(Kn) = 1.

The argument for Km,n, with m, n ≥ 2, is similar to this last one.
Let us fix two non-adjacent points x, y in the ‘‘exterior’’ pentagon P0 of the Petersen graph P and consider the path with

length three g1 ⊂ P0 joining x and y. Let g2 be the path with length three not contained in P0 joining x and y. Let p be the
midpoint of g1. Then we have δ(P) ≥ d(p, g2) = d(p, {x, y}) = 3/2.

Note that diam V (P) = 2. Given two points p1, p2 ∈ P , let us denote by vi a vertex with d(pi, vi) ≤ 1/2 for i = 1, 2.
Then d(p1, p2) ≤ d(p1, v1) + diam V (P) + d(p2, v2) ≤ 1/2 + 2 + 1/2 = 3, and diam P ≤ 3. Hence, Theorem 8 gives that
3
2 ≤ δ(P) ≤

1
2 diam P ≤

3
2 , and we deduce δ(P) =

3
2 and diam P = 3.

The wheel graphW4 is isometric to K4, and then δ(W4) = 1. Theorem 8 gives that δ(Wn) ≤
1
2 diamWn. It is not difficult

to check that diamW4 = diamW5 = 2, diamW6 = 5/2 and diamWn = 3 for every n ≥ 7. Since W5 contains a cycle with
length 4, then δ(W5) ≥ 1; since δ(W5) ≤

1
2 diamW5 = 1, we conclude that δ(W5) = 1.

Let us consider the cycle C in Wn with length n − 1 containing every vertex minus the central vertex.
Let x be the midpoint of any edge in C , and consider the points y and z in C at distances (n − 1)/2 and (n − 1)/4,

respectively, from x. Then T := {x, y, z} is a geodesic triangle with [xy] ∪ [yz] ∪ [zx] = C if n ∈ {6, 7} (recall that
diamW6 = 5/2 and diamW7 = 3). The midpoint p of [xy] verifies d(p, [yz] ∪ [zx]) = d(p, {x, y}) = (n − 1)/4, and
consequently, δ(Wn) ≥ (n − 1)/4 if n ∈ {6, 7}. Therefore, δ(W6) ≥ 5/4 and δ(W7) ≥ 3/2. Since diamW6 = 5/2 and
diamW7 = 3, we have that δ(W6) = 5/4 and δ(W7) = 3/2.

Let x be the midpoint of any edge in C , and consider the points y and z in C at distances 3 and (n − 4)/2, respectively,
from x in C . Then T := {x, y, z} is a geodesic triangle with [xy] ∪ [yz] ∪ [zx] = C if n ∈ {8, 9, 10} (recall that diamWn = 3
for every n ≥ 7). The midpoint p of [xy] verifies d(p, [yz] ∪ [zx]) = d(p, {x, y}) = 3/2, and consequently, δ(Wn) ≥ 3/2 if
n ∈ {8, 9, 10}. Since diamWn = 3 for every n ≥ 7, we have that δ(Wn) = 3/2 if n ∈ {8, 9, 10}.

If n ≥ 11, then the cycle C in Wn has length n − 1 ≥ 10, and it is not a geodesic triangle, since any geodesic γ verifies
L(γ ) ≤ diamWn = 3. Let us consider the cycle C ′ in Wn with length 9 containing eight consecutive vertices in C and the
central vertex v0 in Wn. Let x be the point in C ′ at a distance 9/2 from v0. Consider the points y and z in C ′ at a distance
3 from v0. Then T := {x, y, z} is a geodesic triangle with [xy] ∪ [yz] ∪ [zx] = C ′, since n ≥ 11. The point q in [xy] with
d(p, x) = 5/4 verifies d(p, [yz] ∪ [zx]) = d(p, x) = 5/4, and consequently, δ(Wn) ≥ δ(T ) ≥ 5/4 if n ≥ 11. We are proving
that this triangle is, in fact, an extremal triangle.

Let us consider any geodesic triangle T = {x, y, z} in Wn with n ≥ 11. By Corollary 10, we can assume that T is also a
cycle. Since the cycle T is not C , then it must be a cycle C ′′ in Wn with length m ≥ 3 containing m − 1 consecutive vertices
in C (which we will call v1, . . . , vm−1) and the central vertex v0 in Wn. Note that m ≤ 9, since any geodesic γ verifies
L(γ ) ≤ diamWn = 3.

Assume first that x = v0 is a vertex of T . Since every point a ∈ Wn verifies d(a, v0) ≤ 3/2, then L([xy]), L([xz]) ≤ 3/2
and hence, d(p1, [xz] ∪ [yz]) ≤ d(p1, {x, y}) ≤ 3/4 for every p1 ∈ [xy] and d(p2, [xy] ∪ [yz]) ≤ d(p2, {x, z}) ≤ 3/4 for every
p2 ∈ [xz]. Without loss of generality, we can assume that d(y, v1) ≤ d(z, v1).
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If d(y, v0) < 1, let us denote by y′ the point with y′
∈ [v2, v3] and d(y, y′) = 2. Then z ∈ [v1, v2] ∪ [v2y′

], since

d(y, y′) = d(y, v1) + d(v1, v2) + d(v2, y′) = 2,
d(v2, y′) = 1 − d(y, v1),

d(v3, y′) = 1 − d(v2, y′) = d(y, v1) = 1 − d(y, v0),

d(y, y′) = d(y, v0) + d(v0, v3) + d(v3, y′) = 2;

therefore, L([yz]) ≤ 2 and d(p3, [xy] ∪ [xz]) ≤ d(p3, {y, z}) ≤ 1 for every p3 ∈ [yz].
If 1 ≤ d(y, v0) < 3/2, then y ∈ [v1, v2]; let us denote by y′′ the point with y′′

∈ [v3, v4] and d(y, y′′) = 5/2. Therefore,
z ∈ [yv2] ∪ [v2, v3] ∪ [v3y′′

], since

d(y, y′′) = d(y, v2) + d(v2, v3) + d(v3, y′′) = 5/2,
d(v3, y′′) = 3/2 − d(y, v2),

d(v4, y′′) = 1 − d(v3, y′′) = 1 − 3/2 + d(y, v2) = 1/2 − d(y, v1),

d(y, y′′) = d(y, v1) + d(v1, v0) + d(v0, v4) + d(v4, y′′) = 5/2.

Hence, L([yz]) ≤ 5/2 and d(p3, [xy] ∪ [xz]) ≤ 5/4 for every p3 ∈ [yz].
If d(y, v0) = 3/2, then y is the midpoint of [v1, v2]; let us denote by y′′′ the midpoint of [v4, v5]. Since d(y, y′′′) =

3 = diamWn, we have that z ∈ [yv2] ∪ [v2, v3] ∪ [v3, v4] ∪ [v4y′′′
]. If p3 ∈ [yz] verifies d(p3, v3) ≥ 1/4, then

d(p3, [xy] ∪ [xz]) ≤ d(p3, {y, z}) ≤ 3/2 − 1/4 = 5/4. If p3 ∈ [yz] verifies d(p3, v3) ≤ 1/4, then d(p3, [xy] ∪ [xz]) ≤

d(p3, v0) ≤ d(p3, v3) + d(v3, v0) ≤ 1/4 + 1 = 5/4.
Hence, if v0 is a vertex of T , we have proved that δ(T ) ≤ 5/4. If v0 is not a vertex of T , a similar argument gives also

δ(T ) ≤ 5/4. Therefore, δ(Wn) ≤ 5/4 for every n ≥ 11. Hence, δ(Wn) = 5/4 for every n ≥ 11.
Finally, it is straightforward that the graphs Cn, Kn, Km,n andWn verify δ(G) =

1
2 diamG (for the values of n,m appearing

in the statement of the theorem), since the hyperbolicity constants of these graphs are known. �

It is interesting to remark the unexpected behavior of δ(Wn). This illustrates the difficulty of the study of the hyperbolicity
constant. The final conclusion of Theorem 11 shows that it is not easy to characterize the graphs verifying δ(G) =

1
2 diamG

(even if G has every edge with length 1).
We are interested in other classes of graphs for which we have δ(G) =

1
2 diamG.

Theorem 12. Let Ca,b,c be the graph with two vertices and three edges joining them with lengths a ≤ b ≤ c. Then δ(Ca,b,c) =

(c + min{b, 3a})/4.

Proof. Let us denote by x1, x2, the vertices of Ca,b,c , and by A, B, C the edges with lengths a, b, c , respectively.
Assume first that b ≤ 3a. Let x0 be the point in C with d(x0, x1) = (c + a)/2 and y0 be the point in B with d(y0, x1) =

(b− a)/2. Consider the geodesics [x0x1] ⊂ C , [x1y0] ⊂ B and [x0y0] = [x0x1] ∪ [x1y0]. Note that L([x0y0]) = (c + b)/2. Let p
be the point in [x0x1] ⊂ C with d(p, x0) = d(p, y0) = (c+b)/4. Then the geodesic bigon B = {x0, y0} given by the geodesics
[x0x1]∪[x1y0] and [x0x2]∪[x2y0] has δ(B) ≥ (c+b)/4, since d(p, x2) = (c+a)/2−(c+b)/4+a = (c−b+6a)/4 ≥ (c+b)/4
(since b ≤ 3a), and hence, d(p, [x0x2] ∪ [x2y0]) = d(p, {x0, y0, x2}) = (c + b)/4. Since diam Ca,b,c = (c + b)/2, we have that
δ(Ca,b,c) ≤ (c + b)/4 by Theorem 8. Therefore, in this case we have δ(Ca,b,c) = (c + b)/4 = (c + min{b, 3a})/4.

Now assume that b > 3a. Let us consider a geodesic triangle T ; in order to compute δ(Ca,b,c) without loss of generality,
we can assume that T is a cycle, by Corollary 10. If the closed curve given by T is C ∪ A, then δ(T ) ≤ (c + a)/4 < (c + 3a)/4
and the first inequality is attained by taking T as a geodesic bigon. If the closed curve given by T is B ∪ A, then δ(T ) ≤

(b + a)/4 < (c + 3a)/4 and the first inequality is attained by taking T as a geodesic bigon.
Let us consider an arbitrary geodesic triangle T := {x, y, z} lying in C ∪ B, and let p be any point in T . Without loss of

generality, we can assume that p belongs to the geodesic side [xy] of T .
Assume first that [xy] ⊂ B; then [xy] is contained in the cycle B∪ A, which has length b+ a; since [xy] is a geodesic, then

L([xy]) = d(x, y) ≤
1
2
L(B ∪ A) =

b + a
2

<
c + 3a

2
,

d(p, [xz] ∪ [yz]) ≤ d(p, {x, y}) ≤
1
2
L([xy]) <

c + 3a
4

.

In a similar way, if [xy] ⊂ C , then d(p, [xz] ∪ [yz]) ≤ (c + a)/4 < (c + 3a)/4. Hence, by symmetry, we can assume that
x1 ∈ [xy], x ∈ C , y ∈ B and p ∈ [xx1].

Let us define U := d(x, x1) and V := d(y, x1). Since [xx1] is contained in the cycle C ∪ A, which has length c + a, we have
L([xx1]) = d(x, x1) ≤ (c + a)/2. Then we have U ∈ [0, (c + a)/2]. Since [x1y] ⊂ B ∪ A and [xy] ⊂ C ∪ B we deduce, in
a similar way, that V ∈ [0, (b + a)/2] and U + V ≤ (c + b)/2. Let γ2, γ3 be the other geodesics in T . We denote by t the
distance d(p, x) =: t .

Define U0 := (c − a)/2 and V0 := (b + a)/2; we know that V ≤ V0.
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Assume that U ≤ U0. Since V ≤ V0, we have that U + V ≤ (c + b)/2. Then d(p, γ2 ∪ γ3) = min{t, U − t + a, U − t + V }

and we have (since U ≤ U0, V ≤ V0 and a ≤ V0)

max
p∈[xx1]

d(p, γ2 ∪ γ3) = max
t∈[0,U]

min

t, U − t + a, U − t + V


≤ max

t∈[0,U0]
min


t, U0 − t + a, U0 − t + V0


= max

t∈[0,U0]
min


t, U0 − t + a


=

U0 + a
2

=
c + a
4

<
c + 3a

4
.

Now assume that (c − a)/2 < U; recall that U ≤ (c + a)/2. Since we need U + V ≤ (c + b)/2, then

V ≤ min
b + a

2
,
c + b
2

− U


=
c + b
2

− U =: V1,

and

max
p∈[xx1]

d(p, γ2 ∪ γ3) = max
t∈[0,U]

min

t, U − t + a, U − t + V


≤ max

t∈[0,U]

min

t, U − t + a, U − t + V1


= max

t∈[0,U]

min

t, U − t + a,

c + b
2

− t

.

Since

U + a ≤
c + a
2

+ a =
c + 3a

2
<

c + b
2

,

we deduce that

max
p∈[xx1]

d(p, γ2 ∪ γ3) ≤ max
t∈[0,U]

min

t, U − t + a,

c + b
2

− t


= max
t∈[0,U]

min

t, U − t + a


≤ max

t∈[0,U]

min

t,

c + 3a
2

− t


=
c + 3a

4
.

Since every inequality can be attained, we deduce maxp∈[xx1] d(p, γ2 ∪ γ3) = (c + 3a)/4. Therefore, we have δ(Ca,b,c) =

(c + 3a)/4 = (c + min{b, 3a})/4. �

Proposition 13. δ(Ca,b,c) =
1
2 diam Ca,b,c if and only if b ≤ 3a.

Proof. Using Theorem 12 and diam Ca,b,c = (c+b)/2, we have δ(Ca,b,c) =
1
2 diam Ca,b,c if and only if c+b

4 =
1
2 diam Ca,b,c =

δ(Ca,b,c) =
c+min{b,3a}

4 , and this holds if and only if b ≤ 3a. �

In a subsequent work (see [31, Proposition 20]) the authors, using Theorem 12, obtain the following general result. We
include a proof for the sake of completeness.

Corollary 14. Denote by Ca1,a2,...,ak the graph with two vertices and k edges joining them with lengths a1 ≤ a2 ≤ · · · ≤ ak. Then

(i) δ(Ca1,a2,...,ak) =
ak+min{ak−1,3a1}

4 .
(ii) δ(Ca1,a2,...,ak) =

1
2 diam Ca1,a2,...,ak if and only if ak−1 ≤ 3a1.

Proof. Let us denote by x1, x2, the vertices of Ca1,a2,...,ak , and by A1, A2, . . . Ak the edges with lengths a1, a2, . . . , ak,
respectively.

Let us consider a geodesic triangle T ; in order to compute δ(Ca1,a2,...,ak) without loss of generality, we can assume that T
is a cycle, by Corollary 10. Then the closed curve given by T is Ai ∪ Aj with 1 ≤ i < j ≤ k.

If i = 1, then A1 ∪Aj is an isometric subgraph of Ca1,a2,...,ak . If i > 1, then A1 ∪Ai ∪Aj is an isometric subgraph of Ca1,a2,...,ak .
Hence, by Lemma 5 and Theorem 12, we have

δ(Ca1,a2,...,ak) = max

max
1<j≤k

δ(Ca1,aj), max
1<i<j≤k

δ(Ca1,ai,aj)


= max

max
1<j≤k

aj + a1
4

, max
1<i<j≤k

aj + min{ai, 3a1}
4


= max

ak + a1
4

,
ak + min{ak−1, 3a1}

4


=

ak + min{ak−1, 3a1}
4

. �



J.M. Rodríguez et al. / Discrete Mathematics 311 (2011) 211–219 217

3. Bounds on the hyperbolicity constant in a graph

A path γ between two points in a graph is called a bridge if the internal vertices of γ have degree two. In particular, any
edge is a bridge, since it has no internal vertices.

Theorem 15. Assume that γ is a bridge in a graph G and γ ′ is a geodesic in the closure of G \ γ joining the same points than γ .
Thenmax{L(γ ), L(γ ′)} ≤ 4δ(G).

Proof. Let us denote by a and b, the endpoints of γ .
Assume first that γ is a geodesic joining a and b; then L(γ ) ≤ L(γ ′). Let c be a point of γ ′ such that dG(a, c) = dG(b, c) =

L(γ ′)/2; since γ ′ is a geodesic in the closure of G \ γ , then γ ′ is the union of two geodesics (in G) [ac] and [cb]. Let us
consider the geodesic triangle T with sides γ , [ac], [cb]. Let u be themidpoint of [ac]. Since γ is a bridge and γ ′ is a geodesic
in the closure of G \ γ , we have dG(u, {a, c}) = dG(u, γ ∪ [cb]). Hence, δ(T ) ≥ dG(u, {a, c}) = L(γ ′)/4, and we conclude
L(γ ) ≤ L(γ ′) ≤ 4δ(G).

Now assume that γ is not a geodesic; then γ ′ is a geodesic in G (since γ is a bridge), and L(γ ′) ≤ L(γ ). Using the previous
argument, changing the role of γ and γ ′, we also deduce L(γ ′) ≤ L(γ ) ≤ 4δ(G). �

A curve γ is a minimal closed geodesic if γ is a cycle such that for any two points of γ , there exists a geodesic γ ′ joining
them with γ ′

⊂ γ .

Remark 16. Every bridge is contained in a minimal closed geodesic.

Theorem 17. If G is any graph, then

δ(G) ≥
1
4
sup{L(γ ) : γ is a minimal closed geodesic}.

Proof. Consider any fixed minimal closed geodesic γ . Let x, y ∈ γ such that dG(x, y) = L(γ )/2. Then T = {x, y} is a bigon,
with two geodesics γ1, γ2 verifying γ1 ∪ γ2 = γ . Let us consider u ∈ γ1 with dG(u, x) = dG(u, y) = L(γ )/4. Since γ is a
minimal closed geodesic, then dG(u, γ2) = dG(u, {x, y}) = L(γ )/4, and δ(G) ≥ δ(T ) ≥ L(γ )/4. This gives the result. �

It is interesting to obtain inequalities involving the hyperbolicity constant and other important parameters of a graph. In
this sense we obtain the following theorems.

Theorem 18. Let G be a graph with edges of length 1. If there exist a cycle g in G with length L(g) ≥ 5 and a vertex w ∈ g with
degree two, then δ(G) ≥ 5/4.

Proof. Let us denote by u, v ∈ g the two vertices which are the neighbors of w, and by g1 the subcurve of length 2 joining
u and v and containing w. Since the closure h of g \ g1 is a curve in G joining u and v with L(h) ≥ 3 and h ∩ g1 = {u, v}, the
following setM is non-empty

M :=

σ is a curve in G joining u and v with L(σ ) ≥ 3 and σ ∩ g1 = {u, v}


.

Let us consider a curve g2 in M verifying L(g2) = min{L(σ ) : σ ∈ M}; since g2 ∈ M , we have L(g2) ≥ 3.
Let z be the midpoint of g2; it is clear that the two subarcs of g2 joining z with u and v are geodesics by the minimizing

property of g2. Since w has degree two and u, v are the neighbors of w, the two subarcs γ1, γ2 of γ := g1 ∪ g2 joining z with
w are geodesics.

Let us consider the bigon {w, z} with sides γ1, γ2, and the point p ∈ γ1 at a distance 5/4 from w. Since L(γ1) = L(γ2) =

L(γ )/2 ≥ 5/2, we deduce d(p, {w, z}) ≥ 5/4. If σ is any curve joining p and γ2 \ {w, z}, then L(σ ∩ γ1) ≥ 1/4. Let q ∈ V (G)
be the last point of σ in γ1; then d(p, γ2) = L(σ ∩ γ1) + d(q, γ2) ≥ 1/4 + 1 = 5/4. Then δ(G) ≥ 5/4. �

Theorem 19. Let G be any graph with m edges. Then δ(G) ≤
∑m

k=1 lk/4, where lk = L(ek) for every edge ek ∈ E(G). Moreover,
δ(G) =

∑m
k=1 lk/4 if and only if G is isomorphic to Cm.

Proof. It is not difficult to check the result for m = 1 (then the extremal graph is a vertex with a loop) and for m = 2 (in
this case the extremal graph has two vertices and a double edge). Now assume thatm ≥ 3.

Let T be any fixed geodesic triangle, γ1, γ2, γ3 be the geodesics joining the vertices of the triangle, and γ = γ1 ∪ γ2 ∪ γ3
be the closed curve given by T . In order to compute δ(G), by Corollary 10, we can assume that γ is a cycle.

We have L(γ ) ≤
∑m

k=1 lk, and hence L(γj) ≤
∑m

k=1 lk/2, for every j. If x ∈ γj =: [yz], then d(x, {y, z}) ≤ L(γj)/2 ≤∑m
k=1 lk/4 and consequently δ(T ) ≤

∑m
k=1 lk/4. Hence, δ(G) ≤

∑m
k=1 lk/4.

If δ(G) =
∑m

k=1 lk/4, then every inequality in the previous argument must be an equality. In particular, we have that
L(γ ) =

∑m
k=1 lk and we deduce G = γ . Therefore, we conclude that G is a cycle and, consequently, it is isomorphic

to Cm. �

We deduce the following result for graphs with edges of length 1.
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Corollary 20. Let G be any graph with m edges. If every edge has length 1, then δ(G) ≤ m/4. Moreover, δ(G) = m/4 if and only
if G is isometric to Cm.

Given a graph G, we say that a family of subgraphs {Gn}n of G is a tree-decomposition of G if ∪n Gn = G, Gn ∩ Gm is either
a vertex or the empty set for each n ≠ m, and if the graph R is a tree, where V (R) = {vn}n and [vn, vm] ∈ E(R) if and only if
Gn ∩ Gm ≠ ∅.

We will need the following result (see [4, Theorem 5]).

Lemma 21. Let G be a graph and {Gn}n be a tree-decomposition of G. Then δ(G) = supn δ(Gn).

Furthermore, we have the following result.

Theorem 22. Let G be any graph with m edges. If every edge has length 1 and G is not isometric to Cm, then δ(G) ≤ (m − 1)/4.
Moreover, δ(G) = (m − 1)/4 if and only if G is isometric to Cm−1 with an edge e0 attached, and we have either that e0 is a loop
or that the other vertex of e0 has degree 1 or e0 joins two different vertices of Cm−1 at a distance (in Cm−1) less than or equal to 3.

Proof. Let T be a geodesic triangle, γ1, γ2, γ3 be the geodesics joining the vertices of the triangle, and γ = γ1 ∪ γ2 ∪ γ3 be
the closed curve given by T . In order to compute δ(G), by Corollary 10, we can assume that γ is a cycle.

If L(γ ) = m, then γ = G, andG is isometric to Cm, which is a contradiction. Hence, L(γ ) ≤ m−1 and L(γj) ≤ (m−1)/2, for
every j. If x ∈ γj =: [yz], then d(x, {y, z}) ≤ L(γj)/2 ≤ (m−1)/4 and consequently δ(T ) ≤ (m−1)/4 and δ(G) ≤ (m−1)/4.

If δ(G) = (m−1)/4, then every inequality in the previous argumentmust be an equality. Thenwehave that L(γ ) = m−1.
Since γ is a cycle, we conclude that G is isometric to Cm−1 with an edge e0 attached.

A possibility is that e0 is attached just in some vertex of Cm−1. Then we have either that e0 is a loop or that the other
vertex of e0 has degree 1. Both cases are possible, since δ(G) = (m − 1)/4 by Lemma 21 (in both cases, {γ , e0} is a tree-
decomposition of G).

In other case, e0 joins two different vertices of Cm−1, and G is isometric to some C1,b,c , with b, c ∈ Z+, 1+ b+ c = m and
b ≤ c. Theorem 12 gives that δ(C1,b,c) = (c + min{b, 3})/4. Hence, δ(G) = (m − 1)/4 if and only if c + min{b, 3} = m − 1,
i.e., min{b, 3} = b or b ≤ 3. �
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