Continuous Dependence of the Solution of a Stefan-like Problem Describing the Hydration of Tricalcium Silicate

Fouad A. Mohamed
Department of Mathematics, Texas Tech University, Lubbock, Texas 79409

Submitted by E. Stanley Lee
Received November 20, 1989

1. Introduction

Recently Ranhoeft [7] has established the existence of a unique classical solution for a one-phase, one-dimensional Stefan-like problem which is characterized by two free boundaries. In physical terms, the problem describes conceptually the principal phenomenon of hydration of tricalcium silicate $\left(C_{3} S\right)$ as the major constituent of Portland cement [5,6]. The mathematical description of the process of chemical reaction and diffusion of chemical reactants (water) through an ever-thickening spherical hydrate layer around the $C_{3} S$-particles gives rise to the following system:

$$
\begin{align*}
& u_{t}(x, t)-k(t) u_{x x}(x, t)=0 \quad \text { in } Q_{T} \tag{1.1}\\
& u(x, 0)=\phi(x), \quad a \leqslant x \leqslant b \tag{1.2}\\
& u(r(t), t)=0, \quad 0<t<T \tag{1.3}\\
& u(s(t), t)=C s(t), \quad 0<t<T \tag{1.4}\\
& k(t) u_{x}(r(t), t)=-\lambda \frac{d}{d t}[r(t)]^{2}, \quad 0<t<T \tag{1.5}\\
& \frac{d}{d t}[s(t)]^{3}=-\mu \frac{d}{d t}[r(t)]^{3}, \quad 0<t<T \tag{1.6}\\
& r(t)>0, \quad s(t)<L, 0<t<T \tag{1.7}
\end{align*}
$$

together with

$$
\begin{equation*}
r(0)=a, \quad s(0)=b, \quad \phi(a)=0, \quad \phi(b)=C b . \tag{1.8}
\end{equation*}
$$

In these equations, subscripts denote differentiation with respect to the indicated variables, C, λ, μ, and T are positive constants, $\phi(x)$ is a continuously differentiable, non-negative function, $k(t)$ is a continuous function satisfying

$$
0<k_{*} \leqslant k(t) \leqslant k^{*}<\infty \quad \text { for } \quad t \geqslant 0
$$

where k_{*} and k^{*} are suitable positive constants, and

$$
Q_{T}=\{(x, t): r(t)<x<s(t), 0<t<T\}
$$

By a solution $(r(t), s(t), u(x, t))$ of $(1.1)-(1.8)$ in some time interval $[0, T]$, we mean
(i) $r(t)$ and $s(t)$ are continuously differentiable in $(0, T)$ and continuous in [$0, T$] with $0<r(t)<s(t)<L$;
(ii) $u(x, t)$ is continuous in \bar{Q}_{T} except for a finite number of discontinuities at the boundaries $x=0, t=0, x=L$ where both $\lim \inf u(x, t)$ and $\lim \sup u(x, t)$ are bounded;
(iii) $u_{x}(x, t)$ is continuous in $\bar{Q}_{T}, u_{x x}(x, t)$ and $u_{t}(x, t)$ are continuous in Q_{T}.

For conciseness, one may summarize the results of Ranhoeft [7] as follows:

Theorem 1.1. There exists a time value T so that Problem (1.1)-(1.8) possesses a unique solution $(r(t), s(t), u(x, t))$ for $t \in[0, T]$. Moreover, $r(t)$ is monotonically decreasing and $s(t)$ is monotonically increasing in $[0, T]$.

The proof of Theorem 1 follows by utilizing potential theoretic arguments and the maximum principle for parabolic equations.

Remark 1.1. In the above theorem, T represents the supremum of the width of time intervals in which the triple (r, s, u) constitutes a solution of Problem (1.1)-(1.8) and either $T=+\infty$, or one of the following cases occurs: $\lim _{t \rightarrow T} r(t)=0$ or $\lim _{t \rightarrow T} s(t)=L$.

The object of this note is to prove the stability of the free boundaries in (1.1)-(1.8). To state the pertinent continuous dependence theorem consider two solutions $\left(r_{1}, s_{1}, u_{1}\right)$ and $\left(r_{2}, s_{2}, u_{2}\right)$ of (1.1)-(1.8) corresponding to the data functions ϕ_{1} and ϕ_{2} and the coefficients k_{1} and k_{2} in some time intervals ($0, T_{1}$) and ($0, T_{2}$), respectively. Moreover, set

$$
\begin{align*}
T & =\min \left[T_{1}, T_{2}\right] & & \\
a_{0} & =\min \left[\min _{t} r_{1}(t), \min _{t} r_{2}(t)\right], & & 0 \leqslant t \leqslant T \\
b_{0} & =\min \left[\min _{t} s_{1}(t), \min _{t}(t)\right], & & 0 \leqslant t \leqslant T \tag{1.9}\\
a_{1} & =\max \left[\max _{t} r_{1}(t), \max _{t}(t)\right], & & 0 \leqslant t \leqslant T \\
b_{1} & =\max \left[\max _{t} s_{1}(t), \max _{t}(t)\right], & & 0 \leqslant t \leqslant T
\end{align*}
$$

In the next section we prove the following:
Theorem 1.2. Under the assumptions prescribed on the data and coefficients of the given problem, constants M and $T^{*}(\leqslant T)$ can be found a priori such that

$$
\begin{align*}
& \left\|\left(r_{1}, s_{1}\right)-\left(r_{2}, s_{2}\right)\right\|_{C^{1}\left(0, T^{*}\right)} \\
& \quad \leqslant M\left\{\left|a_{1}-a_{2}\right|+\left|b_{1}-b_{2}\right|+\left\|\phi_{1}-\phi_{2}\right\|_{C^{1}(a, b)}+\left\|k_{1}-k_{2}\right\|_{C^{0}\left[0, T^{*}\right]}\right\} \tag{1.10}
\end{align*}
$$

In (1.10), by $\|\psi\|_{C^{\prime}(I)}$ for a continuously differentiable function $\psi(x)$ defined on the interval I, we mean

$$
\|\psi\|_{C^{1}(I)}=\|\psi\|_{C^{0}(I)}+\|d \psi / d x\|_{C^{0}(I)}
$$

where $\|\psi\|_{C^{0}(I)}=\sup _{\text {. } \in I}|\psi(x)|$. The norm $\|\psi\|_{C^{N}(I)}$ is sometimes denoted by $\|\psi\|_{N}$ for $N=0,1,2, \ldots$.

2. Proof of Theorem 2

It is convenient to perform the transformations

$$
\begin{equation*}
y=\frac{x-r(t)}{s(t)-r(t)}, \quad v(y, t)=u(y s(t)+(1-y) r(t), t) \tag{2.1}
\end{equation*}
$$

so that (1.1)-(1.8) convert into

$$
\begin{align*}
& v_{t}=k(t)[s(t)-r(t)]^{-2} v_{y y}+[\dot{s}(t)-\dot{r}(t)]^{-1}[y s(t)+(1-y) r(t)] v_{y} \tag{2.2}\\
& \quad(y, t) \in D_{T} \equiv(0,1) \times(0, T) \\
& v(y, 0)=\phi(b y+a(1-y)) \equiv f(y), \quad 0<Y<1 \tag{2.3}\\
& v(0, t)=0, \quad 0<t<T \tag{2.4}\\
& v(1, t)=C s(t), \quad 0<t<T \tag{2.5}
\end{align*}
$$

$$
\begin{align*}
\frac{d r(t)}{d t} & =-k(t)[2 \lambda r(t)(s(t)-r(t))]^{-1} v_{y}(0, t), \quad 0<t<T \tag{2.6}\\
\frac{d s(t)}{d t} & =-\mu r^{2}(t) s^{-2}(t) \frac{d r(t)}{d t}, \quad 0<t<T \tag{2.7}
\end{align*}
$$

For purposes of reference, let the symbol A signify the set of pairs of real valued function $z(t)=(r(t), s(t))$ defined for $0 \leqslant t \leqslant T$ and continuously differentiable for $0<t<T$ with $z(0)=(a, b)$ and $0<a<b<L$ such that r and s satisfy

$$
\begin{equation*}
|\dot{r}(t)|+|\dot{s}(t)| \leqslant R, \quad t \in(0, T) \tag{2.8}
\end{equation*}
$$

where R is a finite positive constant.
From now on, let M denote a constant that depends on L, R, T, $a_{0}, a_{1}, b_{0}, b_{1}$ along with the bounds $\left\|\phi_{j}\right\|_{1}$ and $\left\|k_{j}\right\|_{0}(j=1,2)$.

We now formulate the following
Lemma 2.1. Under the assumptions given on the problem data and coefficients, the solution of (2.2)-(2.5) satisfies the condition

$$
\begin{equation*}
v_{y y}(y, t) \mid<M_{0}+M t^{v / 2}, \quad(y, t) \in D_{T} \tag{2.9}
\end{equation*}
$$

where M_{0} is a constant that depends on the quantities L, a_{0}, a_{1}, $b_{0}, b_{1},\left\|\phi_{j}\right\|_{1}$, and $\left\|k_{j}\right\|_{0}(j=1,2)$ and $v \in(0,1)$ depends on the same quantities that M does.

For the proof of (2.9), it suffices to apply the arguments and techniques of Appendix 3 in [2] to v as the solution of (2.2)-(2.5).

Now, on replacing the function r, s, v, k, and f in (2.2)-(2.7) by respective ones $v_{j}, s_{j}, v_{j}, k_{j}$, and $f_{j}(j=1,2)$, then one can easily verify that the differences

$$
\begin{align*}
& w(y, t)=v_{1}(y, t)-v_{2}(y, t) \\
& \delta(t)=r_{1}(t)-r_{2}(t), \tag{2.10}\\
& f(y)=f_{1}(y)-f_{2}(y), \quad \\
& \tilde{k}(t)=s_{1}(t)-s_{2}(t)-k_{2}(t), \quad \Delta(t)=\left(\delta(t), \delta^{*}(t)\right)
\end{align*}
$$

satisfy the conditions

$$
\begin{align*}
w_{t} & =A(y, t) \quad w_{y y}+H(y, t) \quad \text { in } D_{T} \tag{2.11}\\
w(y, 0) & =f(y), \quad 0<y<1 \tag{2.12}\\
w(0, t) & =0, \quad 0<t<T \tag{2.13}\\
w(1, t) & =C \delta^{*}(t), \quad 0<t<T \tag{2.14}
\end{align*}
$$

$$
\begin{align*}
\frac{d}{d t} \delta(t) & =-E(t) w_{y}(0, t)+F(0, t), \quad 0<t<T \tag{2.15}\\
\frac{d}{d t} \delta^{*}(t) & =-\mu\left[\left(r_{1} / s_{1}\right)^{2} \dot{\delta}+\left(\dot{r}_{2} / s_{2}^{2}\right)\left\{\delta^{*}\left(s_{2}+s_{2}\right)\left(r_{1} / s_{1}\right)^{2}+\delta\left(r_{1}+r_{2}\right)\right\}\right] \tag{2.16}
\end{align*}
$$

where

$$
\begin{gather*}
A(y, t)=k_{1} /\left(s_{1}-r_{1}\right)^{2} \tag{2.17}\\
B(y, t)=\left[y \dot{s}_{1}+(1-y) \dot{r}_{1}\right] /\left(s_{1}-r_{1}\right), \tag{2.18}\\
E(t)=k_{1} /\left[2 \lambda r_{1}\left(s_{1}-r_{1}\right)\right] \tag{2.19}\\
H(y, t)=\left(\delta-\delta^{*}\right)\left\{\left(s_{1}+s_{2}-r_{1}-r_{2}\right) k_{1} v_{2, y y} /\left[\left(s_{1}-r_{1}\right)\left(s_{2}-r_{2}\right)\right]^{2}\right. \\
\left.+\left[y \dot{s}_{1}+(1-y) \dot{r}_{1}\right] v_{2, y} /\left[\left(s_{1}-r_{1}\right)\left(s_{2}-r_{2}\right)\right]\right\} \\
+\tilde{k} v_{2, y y} /\left(s_{2}-r_{2}\right)^{2}+\left[y \dot{\delta}^{*}+(1-y) \dot{\delta}\right] v_{2, y} /\left(s_{2}-r_{2}\right), \tag{2.20}\\
F(0, t)=-v_{2, y}(0, t)\left[r_{1}\left(s_{1}-r_{1}\right) \tilde{k}+k_{1}\left\{\left(r_{1}+r_{2}-s_{1}\right) \delta-r_{2} \delta^{*}\right\}\right] \\
{\left[2 \lambda r_{1} r_{2}\left(s_{1}-r_{1}\right)\left(s_{2}-r_{2}\right)\right] .} \tag{2.21}
\end{gather*}
$$

Next, utilizing (2.8) and (2.9) yields

$$
\begin{equation*}
\max _{y \in[0,1]}|H(y, t)| \leqslant M\left(\|\dot{\delta}\|_{t}+\left\|\dot{\delta}^{*}\right\|_{t}+\|\tilde{D}\|_{t}\right) \tag{2.22}
\end{equation*}
$$

(Here, e.g., $\|\delta\|_{t}$ denotes the sup in $(0, t)$ of $\delta(\tau)$)
Let $w(y, t)$ be decomposed into the sum

$$
\begin{equation*}
w(y, t)=W(y, t)+y C \delta^{*}(t) \tag{2.23}
\end{equation*}
$$

Then $W(y, t)$ solves the problem

$$
\begin{align*}
W_{t} & =A(y, t) W_{y y}+H^{*}(y, t), \quad(y, t) \in D_{T} \tag{2.24}\\
W(y, 0) & =\tilde{f}(y)-y C \delta^{*}(0), \quad y \in(0,1) \tag{2.25}\\
W(0, t) & =0, \quad t \in(0, T) \tag{2.26}\\
W(1, t) & =0, \quad t \in(0, T) \tag{2.27}
\end{align*}
$$

where $H^{*}(y, t)=B(y, t)\left[W_{y}+C \delta^{*}\right]-y C \delta^{*}+H(y, t)$.
Let $G(y, t ; \zeta, \tau)$ denote the Green's function for the operator $\partial / \partial t-A(y, t) \partial^{2} / \partial x^{2}$ in D_{T}. Then the solution of (2.24)-(2.27) is represented by the integral

$$
\begin{align*}
W_{y}(y, t)= & \int_{0}^{t} \int_{0}^{1} G_{y}(y, t ; \zeta, \tau) H^{*}(\zeta, \tau) d \zeta d \tau \\
& +\int_{0}^{1} G_{y}(y, t ; \zeta, 0) W(\zeta, 0) d \zeta \tag{2.28}
\end{align*}
$$

Applying the analysis and techniques of Appendix 1 in [2] implies that the second integral in (2.28) is bounded by $M\|\widetilde{f}\|_{1}$.

On the other hand, recalling well-known estimates on Green's function (see, e.g., $[1 ; 3$, p. 413;4]), we deduce that the first integral in the right side of (2.28) is bounded by

$$
\begin{aligned}
M\{ & \left\{\int_{0}^{t} \int_{0}^{1}(t-\tau)^{-1} \exp \left[\frac{-\gamma(y-\zeta)^{2}}{t-\tau}\right]\right. \\
& \cdot \max _{\zeta \in[0,1]}\left[B(\zeta, \tau)\left(W_{y}(\zeta, \tau)+\zeta C\left\|\delta^{*}\right\|_{\tau}\right)\right] d \zeta d \tau \\
& +\int_{0}^{t} \int_{0}^{1}(t-\tau)^{-1} \exp \left[\frac{-\gamma(y-\zeta)^{2}}{t-\tau}\right] \\
& \left.\cdot \max _{\zeta \in[0,1]}\left[\zeta C\left\|\delta^{*}\right\|_{\tau}+H(\zeta, \tau)\right] d \zeta d \tau\right\}
\end{aligned}
$$

Employing the definition of B and the inequality (2.22), then the last expression becomes bounded by

$$
\begin{align*}
& M\left\{\int_{0}^{t}(t-\tau)^{-1 / 2} \max _{y \in[0.1]}\left|W_{y}(y, \tau)\right| d \tau\right. \\
& \left.\quad+\int_{0}^{t}(t-\tau)^{-1 / 2}\|\dot{\Delta}\|_{\tau} d \tau+\|\tilde{k}\|_{l}\right\} \tag{2.29}
\end{align*}
$$

where

$$
\begin{equation*}
\|\dot{\Delta}\|_{t} \equiv\|\dot{\delta}\|_{t}+\left\|\dot{\delta}^{*}\right\|_{t} \tag{2.30}
\end{equation*}
$$

From the above results, we deduce that

$$
\begin{align*}
\max _{y \in[0,1]}\left|W_{y}(y, t)\right| \leqslant & M\left\{\int_{0}^{t}(t-\tau)^{-1 / 2} \max _{y \in[0.1]}\left|W_{y}(y, \tau)\right| d \tau\right. \\
& \left.+\int_{0}^{t}(t-\tau)^{-1 / 2}\|\dot{d}\|_{t} d \tau+\|\tilde{f}\|_{1}+\|\tilde{k}\|_{t}\right\} . \tag{2.31}
\end{align*}
$$

At this stage, an application of Gronwall's lemma yields

$$
\begin{equation*}
\max _{y \in[0,1]}\left|W_{y}(y, t)\right| \leqslant M\left\{\int_{0}^{t}(t-\tau)^{-1 / 2}\|\dot{\Delta}\|_{\tau} d \tau+\|\tilde{f}\|_{1}+\|\tilde{k}\|_{1}\right\} \tag{2.32}
\end{equation*}
$$

In view of (2.23) and (2.32), we get

$$
\begin{equation*}
\left|w_{y}(0, t)\right| \leqslant M\left\{\int_{0}^{t}(t-\tau)^{-1 / 2}\|\dot{\Delta}\|_{\tau} d \tau+\|\tilde{f}\|_{1}+\|\tilde{k}\|_{t}\right\} \tag{2.33}
\end{equation*}
$$

Finally, the utility of (2.14), (2.15), (2.33) and the definitions of $E(t)$ and $F(0, t)$, lead to

$$
\begin{equation*}
\|\dot{\delta}\|_{t},\left\|\dot{\delta}^{*}\right\|_{t} \leqslant M\left\{\int_{0}^{t}(t-\tau)^{-1 / 2}\|\dot{\Delta}\|_{\tau} d \tau+\|\widetilde{f}\|_{1}+\|\tilde{k}\|_{t}\right\} \tag{2.34}
\end{equation*}
$$

Hence by virtue of (2.30) and Gronwall's lemma, we obtain

$$
\begin{equation*}
\|\dot{d}\|_{t} \leqslant M\left(\|\widetilde{f}\|_{1}+\|\widetilde{k}\|_{t}\right) \tag{2.35}
\end{equation*}
$$

from which (1.10) follows, concluding the proof of Theorem 2.

References

1. J. R. Cannon and F. A. Mohamed, A multifree boundary problem arising in the theory of liquid flow in a porous medium, Boll. Un. Mat. Ital. B (7) 3 (1989), 69-93.
2. A. Fasano and M. Primicfrio, Free houndary problems for nonlinear parabolic equations with nonlinear boundary conditions, J. Math. Anal. Appl. 72 (1979), 247-273.
3. O. A. Ladyzhenkaja, V. A. Solonikov, and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc. Transl. 23 (1968).
4. F. A. Mohamed, Two-phase free boundary problems of nonlinear equations, Nonlinear Anal. Theory Methods Appl. 12 (1988), 389-407.
5. J. M. Pommersheim and J. R. Clifton, Mathematical modeling of tricalcium silicate hydration, Cement Concrete Res. 9 (1979), 765-770.
6. J. M. Pommersheim and J. R. Clifton, Mathematical modeling of tricalcium silicate hydration. II. Hydration sub-models and the effect of model parameters, Cemeni Concrete Res. 12 (1982), 765-772.
7. A. Ranhoeft, Existence and uniqueness of a classical solution for a one-dimensional free boundary problem describing the hydration of tricalcium silicate, in "Differential Equations and Optimal Control" (M. Kisielewicz and W. Souski, Eds.), pp. 65-73, Zagan, Zielona and Gura, 1985.
