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1. TNTR~DUCTI~N 

Recently Ranhoeft [7] has established the existence of a unique classical 
solution for a one-phase, one-dimensional Stefan-like problem which is 
characterized by two free boundaries. In physical terms, the problem 
describes conceptually the principal phenomenon of hydration of tricalcium 
silicate (C,S) as the major constituent of Portland cement [S, 61. The 
mathematical description of the process of chemical reaction and diffusion 
of chemical reactants (water) through an ever-thickening spherical hydrate 
layer around the C,S-particles gives rise to the following system: 

4(x, ~)-k(~)u,,(X, t)=O in Q, 
4x2 0) = d(x), a<xdb 

44th f) = 0, O<t<T 

4s(t), f) = Cdt), O<t<T 

k(f) u,(r(t), 2) = --A f Cr(t)12, O<t<T 

(1.1) 
(1.2) 

(1.3) 

(1.4) 

(1.5) 

i Cdt)13 = -p -$ [r(t)13, o<t<T (1.6) 

r(f) > 0, s(t)<L,O<t<T (1.7) 

together with 

r(0) = a, s(O) = 6, d(a) = 0, c$( b) = Ch. (1.8) 
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In these equations, subscripts denote differentiation with respect to the 
indicated variables, C, I., p, and T are positive constants, d(x) is a 
continuously differentiable, non-negative function, k(t) is a continuous 
function satisfying 

O<k*<k(t)<k*<m for t>O, 

where k, and k* are suitable positive constants, and 

By a solution (v(t), s(t), u(x, t)) of (1.1 t(1.8) in some time interval 
[0, T], we mean 

(i) r(t) and s(t) are continuously differentiable in (0, T) and 
continuous in [0, T] with 0 < r(t) < s(t) < L; 

(ii) u(x, t) is continuous in QT except for a finite number of discon- 
tinuities at the boundaries x = 0, t = 0, x = L where both lim inf u(x, t) and 
lim sup u(x, t) are bounded; 

(iii) u,(x, t) is continuous in QT, u,,(x, t) and u~(x, t) are 
continuous in QT. 

For conciseness, one may summarize the results of Ranhoeft [7] as 
follows: 

THEOREM 1.1. There exists a time value T so that Problem ( 1.1 )-( 1.8) 
possesses a unique solution (r(t), s(t), u(x, t)) for t E [0, T]. Moreouer, r(t) 
is monotonically decreasing and s(t) is monotonically increasing in [0, T]. 

The proof of Theorem 1 follows by utilizing potential theoretic 
arguments and the maximum principle for parabolic equations. 

Remark 1.1. In the above theorem, T represents the supremum of the 
width of time intervals in which the triple (r, S, U) constitutes a solution of 
Problem (l.l)-( 1.8) and either T= + co, or one of the following cases 
occurs: lim r+rr(t)=O or lim,,.s(t)=L. 

The object of this note is to prove the stability of the free boundaries in 
(l.l)-( 1.8). To state the pertinent continuous dependence theorem consider 
two solutions (ri, sr, ur) and (r2, s2, u2) of ( 1.1 t( 1.8) corresponding to the 
data functions dI and +JS~ and the coefficients k, and k, in some time 
intervals (0, T, ) and (0, T, ), respectively. Moreover, set 
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T=min[T,, r,] 

a, = min[m;ln r, (t), min r,(t)], O<t<T 
, 

6, = min[min s, (t), min s,(t)], O<t<T (1.9) , I 

a, =max[maxr,(t), max rz(t)], O<t<T 
I 

h, = max[max s, (t), max s2(t)], O<t<T. 
, , 

In the next section we prove the following: 

THEOREM 1.2. Under the assumptions prescribed on the data and coef- 
ficients of the given problem, constants M and T* ( < T) can be found a 
priori such that 

Il(r,, sl)- (r2, ~z)II~~(~, T8) 

<M{lal -a21 + lb, -hI + IId, -4211Cl(u,h)+ IlkI -MC+CO.T*lf. 
(1.10) 

In (l.lO), by II ICI II cl(lI for a continuously differentiable function I/I(X) 
defined on the interval Z, we mean 

II * II cl(I) = II $ II c-q/) + II d$ldx II co(l), 

where II cc/ II c~cII = suprc,l $(x)1. The norm II II/ II CH,,, is sometimes denoted 
by 1) $ II N for k = 0, 1, 2, . . . . 

2. PROOF OF THEOREM 2 

It is convenient to perform the transformations 

x-r(t) 

‘=s(t)-r(t)’ v(y, t) = 4Mt) + (1 -Y) r(t), t) (2.1) 

so that (1.1 t( 1.8) convert into 

v,=k(t)[s(t)-r(t)]P2v,,~V+[S(t)-?(t)]-1 [ys(t)+(l-y)r(t)]v.,, 

(Y, t)ED.-(0, 1)x(0, T) 

v(~,O)=d(b~+a(l -.~))=fbL O<Y<l 

v(0, f) = 0, O<t<T 

v(1, t)=Cs(t), O<t<T 

(2.2) 

(2.3) 

(2.4) 

(2.5) 



132 FOUAD A. MOHAMED 

dr(t) -= -k(t)[2I*r(t)(s(t)-r(t))]- ’ v,.(O, t), O<t<T 
dt 

V-6) 

ds(f) dr(t) -= -pr2(t).Y-2(t)-p O<t<T. 
dt 

(2.7) 

For purposes of reference, let the symbol n signify the set of pairs of real 
valued function z(t) = (r(t), s(t)) defined for 0 d t < T and continuously 
differentiable for 0 < t < T with z(0) = (a, b) and 0 <a < b < L such that r 
and s satisfy 

I i(t)I + I4t)l d R t E (0, 0, (2.8) 

where R is a finite positive constant. 
From now on, let M denote a constant that depends on L, R, T, 

~,,a,, b,,b, along with the bounds il~jill and Ilkill, (j= 1,2). 
We now formulate the following 

LEMMA 2.1. Under the assumptions given on the problem data and 
coefficients, the solution of (2.2)-(2.5) satisfies the condition 

v,, (y, t) I < M, + Mt”‘2, (Y> tlED7-3 (2.9) 

where M, is a constant that depends on the quantities L, a,, a,, 

boy b, > II 4j II 1) and /I kill, (j= 1, 2) and v E (0, 1) depends on the same 
quantities that M does. 

For the proof of (2.9), it suffices to apply the arguments and techniques 
of Appendix 3 in [2] to u as the solution of (2.2)(2.5). 

Now, on replacing the function r, s, u, k, and f in (2.2)-(2.7) by respec- 
tive ones u,, s,, uj, ki, and f, (j= 1,2), then one can easily verify that the 
differences 

W(Y, t) = “1 (Y, t) - h(Y, t) 

d(t) = rl (t) - r2(t), s*(t)=s,(t)-ss,(t) (2.10) 

.f;(A=fd.+f,(y), &)=k,(+k,W, d(t)=(d(t), d*(t)) 

satisfy the conditions 

wt=A(y, t)w,,.+H(y, t) in D, (2.11) 

W(Y> 0) =.7(Y)> O<y<l (2.12) 

w(0, t) = 0, O<t<T (2.13) 

w(1, t) = a*(t), O<t<T (2.14) 
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$3(t)= -E(t) WJO, t)+F(O, t), O<t<T (2.15) 

$ h*(t) = -/~[(r,/s,)~ 8 + (+;){6*(s, +s~)(Y,/s,)~ + 6(r, + Ye)}]., (2.16) 

where 
A(Y, t) = k,l(s, - r1 12, (2.17) 

B(y,t)=CyS,+(l-y)i,l/(s,-r,), (2.18) 

E(t) =k,lP~r, (s, - rI 11, (2.19) 

~(~,~)=(~-~*){(~~+~~2-rl-r2)~,~2,,.,.lC(~,-rl)(~2-r2~~l2 

+ C.G, + (1 -Y) iI1 b..ICbl - rl )b2 - r2)l ) 

+~u2,,.,.l(s2-r2)2 + CA* + (1 -Y) 81 u~,,,,/(s~-~~), (2.20) 

F(O, t)= -f-3,.(0, t)Cr,(s,-r,)j;+k,{(r,+r,-s,)6-r,6*j]/ 

C23,r,r2(s,-r,)(s2-r2)l. (2.21) 

Next, utilizing (2.8) and (2.9) yields 

max MY, 01 ~~(II~II,+ ll~*ll,+ II~IIJ. 
I’E [O, l] 

(2.22) 

(Here, e.g., I/ 6 IIf denotes the sup in (0, t) of 6(z).) 
Let w(y, t) be decomposed into the sum 

w(y, t) = W(y, t) +yCG*(t). (2.23) 

Then W(y, t) solves the problem 

w, = A(Y, t) w,,, + H*(Y, t), (YY t)EDT (2.24) 

WY, 0) =.7(y) -Yc6*(0), YE (0, 1) (2.25) 

W(0, t) = 0, t E (0, T) (2.26) 

W(1, t)=O, t E (0, T), (2.27) 

where H*(y, t) = B(y, t)[ WY+ C’S*] -yC6* + H(y, t). 
Let G(y, t; c, 7) denote the Green’s function for the operator 

a/at - A(y, t) a2/ax2 in D,. Then the solution of (2.24)-(2.27) is repre- 
sented by the integral 

+ j; G,(Y> t; i, 0) W(L 0) 4, (2.28) 



134 FOUAD A. MOHAMED 

Applying the analysis and techniques of Appendix 1 in [2] implies that 
the second integral in (2.28) is bounded by M 117 /I,. 

On the other hand, recalling well-known estimates on Green’s function 
(see, e.g., [ 1; 3, p. 413; 4]), we deduce that the first integral in the right side 
of (2.28) is bounded by 

+J’J’ (r-r))iexp[ -y/“7’)2] 
0 0 

.;z;;, [CC II J* IIT + H(i, 7114 d7 

Employing the definition of B and the inequality (2.22), then the last 
expression becomes bounded by 

M J; (t--z)-‘j2 .l.pI;:, I W,.(Y, 711 dT 

+J; (t-7)V”2 IIA lI,d7+ Ilh , 

where 

llh= lIJll,+ l18*llr (2.30) 

(2.29) 

From the above results, we deduce that 

max I W,.(y, t)l <M 
FE co, 11 

[i(r-r))1’2 max I W,,(Y, 711 d7 
VE [O. 11 

+ '(t-z)- Ii2 I(iII,dz+II~II,+ IIk"l(, s 0 

At this stage, an application of Gronwall’s lemma yields 

max I W,(y, t)I dM 
YE co, 13 

I’* IIkd7+ ll~ll,+ll~ll,}. (2.32) 

In view of (2.23) and (2.32), we get 

~~~~-7/~1i211~ll~~7+ll.711,+lI~llr). (2.33) 
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Finally, the utility of (2.14), (2.15), (2 .33) and the definitions of E(t) and 
F(0, t), lead to 

Hence by virtue of (2.30) and Gronwall’s lemma, we obtain 

II j II r 6 w II 7 II I + II E II , L (2.35) 

from which (1.10) follows, concluding the proof of Theorem 2. 
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