PULMONARY ARTERY STIFFNESS IS INDEPENDENTLY ASSOCIATED WITH THE DEGREE OF RIGHT VENTRICULAR DYSFUNCTION IN PULMONARY HYPERTENSION

ACC Oral Contributions
Georgia World Congress Center, Room A408
Tuesday, March 16, 2010, 2:45 p.m.-3:00 p.m.

Session Title: Pulmonary Hypertension: Predictors of Prognosis
Abstract Category: Venous Thrombosis/Pulmonary Embolism/Pulmonary Hypertension
Presentation Number: 0925-06

Authors: Gerin Rachel Stevens, Ana Garcia-Alvarez, Sean Pinney, Mario J. Garcia, Valentin Fuster, Javier Sanz, Mount Sinai School of Medicine, New York, NY, Montefiore Medical Center, Bronx, NY

Background: Pulmonary artery (PA) pressures are directly correlated to right ventricular (RV) dysfunction in pulmonary hypertension (PH). We hypothesized that PA stiffness may influence RV ejection fraction (RVEF) or RV mass index (RVMI) beyond the degree of PA pressure.

Methods: Right heart catheterization and cardiac magnetic resonance (CMR) were performed within one week in 124 patients [86 women, age 54.9 ±15.6 years] with known or suspected PH. CMR was used to measure RVEF, RVMI, relative PA cross-sectional area change (elasticity) and the area for a given change in PA pressure (distensibility).

Results: Using Spearman correlation, PA elasticity and distensibility were significantly associated with RVMI and RVEF (Figure, p-values<0.001). Using multivariate regression analysis, elasticity was independently associated with RVMI and RVEF, respectively, after adjusting for age, gender, ethnicity, and mPAP ($\beta = -0.002, p=0.046$ or $\beta = 0.26, p=0.002$) or pulmonary vascular resistance index (PVRI; $\beta = -0.003, p=0.003$ or $\beta = 0.29, p<0.001$). Distensibility was independently associated with RVMI and RVEF, respectively, after adjusting for age, gender, and ethnicity, but remained significant only after further adjustment for PVRI ($\beta = -0.025, p=0.032$ or $\beta = 3.0, p=0.004$) and not mPAP.

Conclusion: Measures of PA stiffness are associated with RVMI and RVEF independent of the degree of PH. These findings suggest that the loss of PA elasticity may be an important determinant of RV hypertrophy and function in PH.