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1. Introduction

The precise determination of the CKM matrix elements V xb , 
x = c, u becomes increasingly important as an input for tests of 
the standard model at the precision level. Although lattice QCD as 
well as non-lattice methods – such as QCD sum rules – have made 
enormous progress, we are still facing a tension between determi-
nations of V xb from inclusive versus exclusive decays [1].

It is generally believed that |V cb| can currently be determined 
with the best precision via the inclusive decay B → Xc�ν̄ [2,3]. In 
this case one applies an operator product expansion (OPE) in terms 
of local operators, which sets up and expansion for the total rate, 
as well as for spectral moments, in powers of αs and �QCD/mQ , 
Q = b, c. This combined expansion seems to converge rapidly, giv-
ing us confidence in the precision of the method.

On the other hand, exclusive decays also allow for a precise de-
termination of V cb from the decays B → D(∗)�ν̄ by extrapolating 
to the point of maximal momentum transfer to the leptons [1]. At 
this point, heavy quark symmetries yield an absolute normalization 
of the form factors, and corrections to the form factor normaliza-
tions can be computed on the lattice [4,5] as well as from QCD 
sum rules [6–9].

The aforementioned tension between the inclusive and the ex-
clusive determinations of |V cb| is driven by the lattice values for 
the form factor normalization for the B → D(∗) form factors [8,9]; 
this is evident from the anatomy of the b → c transition at zero 
recoil, which can be studied with zero-recoil sum rules. The latter 
hint at smaller values for the form factor normalizations, which 
are fully consistent with the inclusive determination. In particular, 
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from the point of sum rules, the current lattice value would imply 
unexpectedly small contributions from the excited states [8,9].

More serious seems the problem with the determinations 
of |V ub|. The inclusive determination relies on a light-cone version 
of the OPE leading to the corresponding heavy mass expansion [1]. 
The hadronic input – the so-called shape functions – are not well 
known (in particular at subleading order), and thus the resulting 
expansion leads to larger uncertainties compared to ones in the 
local OPE relevant for semileptonic b → c decays.

The exclusive determinations on V ub rely mainly on the chan-
nel B → π�ν̄ . For this decay, the form factors need to be com-
puted either on the lattice [10,11] or estimated via light-cone sum 
rules [12]. Using these form factors, which turn out to be consis-
tent between the lattice and the QCD sum rules, a value of |V ub |
can be extracted that is about three standard deviations smaller 
than the inclusive one.

Since currently the exclusive determination of V ub rests mainly 
on a single channel, it is important to have an independent deter-
mination from an other channel. Since the purely leptonic decay 
B → �ν̄ suffers – even for the τ lepton – from helicity suppression, 
the existing measurements of B → τ ν̄ are currently too imprecise 
to decide between the exclusive and inclusive value of V ub . This 
tension has also lead to speculations (see e.g. [13,14]) that “new 
physics” is responsible for the effect, although right-handed cur-
rents have recently been excluded as an explanation [15].

Recently the LHCb Collaboration published a first measurement 
of the branching ratio of �b → p�ν̄ [16], which is in principle 
precise enough to challenge determinations based on B → π�ν̄ . 
However, this measurement is normalized to the branching ratio 
of �b → �c�ν̄ . Thus, the extraction of the ratio |V ub/V cb| requires 
the form factors to be calculated for both the �b → p as well as 
for the �b → �c transition. This has been done recently on the 
lattice for both transitions with sufficient precision in [17]. Their 
results for the �b → p transitions compare favorably with light-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Integration contour for the calculation of In,�(εM ); the radius of the contour 
is εM . Figure taken from [8].

cone sum rule calculations [18], but the precision of these sum 
rules is intrinsically limited.

In this work, we construct a zero-recoil sum rule (ZRSR) for the 
�b → �c transitions, along the same lines as for the B → D∗ form 
factor, see e.g. [8]. We shall investigate in this paper, if the tension 
present in the lattice calculation versus the zero-recoil sum rule for 
the mesons persists for the case of the baryons. In the next section 
we formulate the zero-recoil sum rule for baryons and compute 
the necessary OPEs to the required level of precision. We apply 
this method to both the axial vector and the vector current, which 
eventually yields constraints for a subset of the from factors that 
describe the �b → �c transitions. Finally we compare our results 
with the lattice values and conclude.

2. Zero recoil sum rule

The sum rule at zero recoil ist set up in the same way as in the 
case for mesons [8] by considering the forward matrix element

T�(v · q) ≡ 1

N�

∫
d4x e−i (v·x) (v·q)〈�b(P )|

× T
{

b̄(x)�c(x), c̄(0)�b(0)
}|�b(P )〉 (1)

where we shall discuss two possible choices of the currents � ⊗�: 
γμ ⊗ γ μ (V × V ) and γμγ5 ⊗ γ μγ5 (A × A). The normalization 
constant N� corresponds to the number of degrees of freedom for 
the chosen current at zero recoil, NV = 1 and N A = 3, respectively. 
Furthermore, P ≡ M�b v is the momentum of the �b baryon, from 
which we define the velocity v .

We want to set up a sum rule at the kinematical point where 
the charm quark also moves with the same velocity v which is the 
point of zero-recoil transferred by the b → c transition. Thus we 
redefine the quark fields as

b̄(x) = e+imb(v·x)b̄v(x), and c(x) = e−imc(v·x)cv(x) , (2)

which suggests to define the parameter ε = mb − mc − (v · q). We 
can then reparametrize the forward matrix element in terms of ε, 
which leads to

T�(ε) = 1

N�

∫
d4x ei (v·x)ε〈�b(P )|

× T
{

b̄v(x)�cv(x) c̄v(0)�bv(0)
}|�b(P )〉 (3)

Since M�b − M�c � mb − mc , the quantity ε corresponds to the 
excitation energy of the intermediate charm states above the �c . 
The steps leading to the sum rule are formally as in [8], however, 
the relevant hadronic matrix elements will be different. Along the 
lines of [8] we define the contour integrals

In,�(εM) ≡ −1

2π i

∮
|ε|=εM

εn T�(ε)dε , (4)

where the relevant contour is shown in Fig. 1.
Inserting a complete set of states, the lowest possible state is 

the �c moving with velocity v , the higher states will excited states 
of the �c but also non-resonant contributions such as �cπ or Dp, 
where the final state hadronic system moves with velocity v . Look-
ing first at the integral I0,�(εM) the lowest contribution thus is 
related to the square of the �b → �c matrix elements at zero re-
coil

F ≡ 1

NV

∑
s′

〈�b(v, s)|b̄vγμcv |�c(v, s′)〉

× 〈�c(v, s′)|c̄vγ
μbv |�b(v, s)〉 (5)

for the vector current, and

G ≡ 1

N A

∑
s′

〈�b(v, s)|b̄vγμγ5cv |�c(v, s′)〉

× 〈�c(v, s′)|c̄vγ
μγ5bv |�b(v, s)〉 (6)

for the axial-vector current.
We use the form factors for the �b → �c transitions in the 

helicity basis, which is introduced in [19]. For the vector current 
they read

〈�c(v ′, s′)|c̄γμb|�b(v, s)〉
= ū�c (v ′, s′)

[
f0(w)(M�b − M�c )

qμ

q2
(7)

+ f+(w)
M�b + M�c

s+

×
(

M�b vμ + M�c v ′
μ − (M2

�b
− M2

�c
)

qμ

q2

)
(8)

+ f⊥(w)

(
γμ − 2M�c M�b

s+
(vμ + v ′

μ)

)]
u�b (v, s) , (9)

and for the axial vector current one has

〈�c(v ′, s′)|c̄γ5γμb|�b(v, s)〉
= −ū�c (v ′, s′)γ5

[
g0(w)(M�b + M�c )

qμ

q2
(10)

+ g+(w)
M�b − M�c

s−

×
(

M�b vμ + M�c v ′
μ − (M2

�b
− M2

�c
)

qμ

q2

)
(11)

+g⊥(w)

(
γμ + 2M�c M�b

s+
(vμ − v ′

μ)

)]
u�b (v, s) . (12)

In terms of the heavy hadron velocities v , v ′ and their scalar prod-
uct w = v v ′ one finds q = M�b v − M�c v ′ and q2 = M2

�b
+ M2

�c
−

2M�b M�c w . In addition, we abbreviate

s± = (M�b ± M�c )
2 − q2 . (13)

With these definitions we obtain

F = | f0(w = 1)|2 , and (14)

G = 1

3

[
2|g⊥(w = 1)|2 + |g+(w = 1)|2

]
. (15)

The form factors fλ and gλ , λ = 0, +, ⊥, have been recently cal-
culated on the lattice [17], and are published in form of a handful 
of parameters, including their correlation matrix. Using their re-
sults for the form factors, the authors of [17]1 obtain at the zero 
recoil point w = 1:

F = 0.972 ± 0.058 , and G = 0.817 ± 0.044 . (16)

1 The values shown here are taken from the arXiv version 3.
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Table 1
Summary of the prior PDFs used in the numeric analyses. The central values lead to mkin

b (μ = 0.75 GeV) =
4.62 GeV, mkin

c (μ = 0.75 GeV) = 1.20 GeV, and αs(

√
mkin

b mkin
c ) = 0.284.

Parameter Mean value/1σ interval Unit Prior Source/comments

Quark-gluon coupling and quark masses
αs(mZ ) 0.1184 ± 0.0007 – gaussian @ 68% [20]
mb(mb) 4.18 ± 0.03 GeV gaussian @ 68% [20]
mc(mc) 1.275 ± 0.025 GeV gaussian @ 68% [20]

Hadronic matrix elements (nominal choice)
μ2

π (1 GeV) 0.50 ± 0.10 GeV2 gaussian @ 68% see Eq. (24)

ρ3
D (1 GeV) 0.17 ± 0.08 GeV3 gaussian @ 68% see Eq. (25)
In the rest of this paper we confront the above lattice results 
with the constraints obtained form the zero-recoil sum rule.

2.1. Axial vector sum rule at zero recoil

We start the discussion with the axial vector sum rule

I0,A(εM) = 1

N A

∑
Xc, ε≤εM

〈�b(v, s)| b̄vγμγ5cv |Xc(v)〉

× 〈Xc(v)| c̄vγ
μγ5bv |�b(v, s)〉

≡ G + G inel(εM) (17)

In the above, G inel(εM) captures all inelastic contributions to the 
correlation function up to an energy εM , i.e., all contributions 
with excitation energies 0 < ε ≤ εM . Note that both terms G and 
G inel(εM) are positive. We can therefore rewrite the sum rule as 
an upper bound for G:

G ≤ I0,A(εM) . (18)

The left-hand side of Eq. (17) can be evaluated in the OPE [8], 
and one obtains

I0,A(εM) = ξ
pert
A (εM ,μ) − �A

1/m2(εM ,μ) − �A
1/m3(εM ,μ)

+O(�4
had/m4

b,�had/m4
c ) (19)

where the perturbative contribution is the same as for the mesonic 
case

ξ
pert
A (εM = μ = 0.75 GeV) = 0.970 ± 0.02 , (20)

which contains the αs and the α2
s corrections [8].

The power corrections differ from the mesonic results, since a 
priori the forward matrix elements for the �b are different from 
the ones for the B mesons. Furthermore, for the �-like heavy 
baryons, the matrix elements of all the spin-triplet operators van-
ish. This is due to the fact that the light degrees of freedom do not 
have any angular momentum and thus cannot generate a chromo-
magnetic field. Hence, all matrix elements involving these opera-
tors – including μ2

G (�b), ρ3
LS(�b) – vanish. The non-perturbative 

power corrections for the baryonic case therefore read

�A
1/m2 = μ2

π (�b)

4

(
1

m2
c

+ 1

m2
b

+ 2

3mbmc

)
(21)

�A
1/m3 = ρ3

D(�b)

4m3
c

+ ρ3
D(�b)

12mb

(
1

m2
c

+ 3

m2
b

+ 1

mbmc

)
. (22)

The kinetic energy operator for the �b baryon has been dis-
cussed in the context of the �b baryon lifetime [21]. Using the 
spin-averaged heavy meson masses one obtains up to terms of or-
der 1/m
μ2
π (B) − μ2

π (�b) = 2mbmc

mb − mc

(
(M�b − M�c ) − (M B − M D)

)
× (1 +O(1/m2)) . (23)

The most recent results of a combined fit of the B-meson hadronic 
matrix elements and V cb to the measured lepton-energy moments 
in B → Xc�ν yield μ2

π (B) = (0.47 ±0.07) GeV2 [22]. Using Eq. (24)
this translates to

μ2
π (�b) = (0.50 ± 0.10) GeV2 , (24)

where we increase the uncertainty to account for the lack of 1/m2

terms.
Given the small difference between the kinetic energy param-

eters of baryons and mesons, we use also for the Darwin term of 
the �b the same value as for the B-meson. The mesonic matrix 
element is obtained in [22]; for the �b we use the same central 
value and increase the uncertainty by a factor of two,

ρ3
D(�b) � (0.17 ± 0.08) GeV3 . (25)

Using these numbers and the central values for the quark 
masses in Table 1, we obtain

�A
1/m2(εM = μ = 0.75 GeV) = 0.108 , (26)

�A
1/m3(εM = μ = 0.75 GeV) = 0.028 . (27)

We note that �1/m2 is about 20% larger than for the mesonic case, 
while �1/m3 for the �b baryon yields numerically the same result 
as for the meson. The above results shall only be illustrative, and 
have been obtained for our default choice of input parameter.

For a more thorough numerical study, we use and extend 
EOS [23]. This allows us to carry out a standard Bayesian uncer-
tainty propagation based on Monte Carlo techniques, see e.g. [24]. 
We choose uncorrelated prior probability density functions (PDFs) 
for all input parameters based on the principle of maximum en-
tropy [25]. We use Gaussian distributions throughout this work, 
since in all cases the mean and variance of the parameters are 
known. For a summary of the PDFs, see Table 1. Note that we use 
the quark masses in the kinetic scheme, calculated from the cor-
responding MS mass. The conversion involves the full O(α2

s ) and 
the third-order BLM corrections [2]. We draw 106 random sam-
ples from P (I0,A), the PDF of our quantity of interest. The result 
PDF and the corresponding Cumulative Probability Density Func-
tion (CDF) are shown in Fig. 2. For our choice of the prior PDFs, 
the result is a gaussian distribution to very good accuracy, with 
skewness −0.08 and excess kurtosis of −0.04. From the result PDF 
we obtain the mode and the central 68% probability interval

I0,A(εM = μ = 0.75) = 0.811+0.025
−0.026 . (28)

Note that in the above we do not account for the uncertainties 
from higher powers in the OPE, i.e., the contributions O(α3

s ) and 
O(αs/m2). We expect these not to exceed the level of the O(1/m3)

contributions, which are small.
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Fig. 2. The result PDF (left) and the CDF (right) for the quantity I0,A as obtained from 106 random samples of the parameter space. We show the central 68% probability 
interval as the grey-shaded area.

Fig. 3. The result PDF (left) and CDF (right) of G inel as obtained from 106 samples of both the OPE result for I0,A and the lattice result for G . The grey-shaded area shows 
those results with G inel < 0, which is unphysical. We find that the unphysical range of G inel accumulates ∼ 55% probability.
Following Eq. (17), we can also compute the inelastic contribu-
tions G inel from our nominal results for I0,A and the lattice results 
for G . Using 106 samples of both quantities, we obtain the PDF 
and CDF for the quantity G inel as shown in Fig. 3. Again, the PDF is 
approximately gaussian with skewness of about −0.01 and excess 
kurtosis of about −0.006. We obtain the mode of the distribution 
and the central 68% probability interval as

G inel = −0.005+0.049
−0.052 . (29)

Roughly 55% of the samples of G inel turn out to be unphysical, 
since they are negative. Thus we conclude from this statistical 
analysis that the situation for the �b → �c is very similar as for 
the B → D∗ case: The lattice results for the form factors at zero 
recoil saturate the corresponding zero-recoil sum rule by a very 
large degree, leaving almost no room for inelastic contributions. In 
fact, compared to the mesonic case, the situation seems to be even 
worse, since the central value obtained from the lattice Eq. (16) ex-
ceeds the central value for our upper bound. Furthermore, for the 
mesonic case, one may estimate the inelastic contributions, which 
turn out to be sizable. This in turn implies that the zero-recoil sum 
rules would predict a smaller value for the form factors. Unfortu-
nately, the estimates in the mesonic case rely on the so-called BPS 
limit, which cannot be used in the case of baryons. Since an esti-
mate of the inelastic contributions in the case of the �b requires 
(possible even model dependent) input, we will not discuss this in 
the present paper.
2.2. Vector sum rule at zero recoil

The vector sum rule is obtained from Eq. (3) by inserting � ⊗
� = γμ ⊗ γ μ and NV = 1,

I0,V (εM) = 1

NV

∑
Xc , ε≤εM

〈�b(v, s)| b̄vγμcv |Xc(v)〉

〈Xc(v)| c̄vγ
μbv |�b(v, s)〉

≡ F + F inel(εM) . (30)

Analogous to the axial vector current, F inel(εM) captures all inelas-
tic contributions to the correlation function with excitation ener-
gies less than εM , i.e., all contributions with excitation energies 
0 < ε ≤ εM . Again, F and F inel(εM) are positive, and we can there-
fore rewrite the sum rule as an upper bound for the term F :

F ≤ I0,V (εM) . (31)

The OPE result for the left-hand side of Eq. (30) reads

I0,V (εM) = ξ
pert
V (εM ,μ) − �V

1/m2(εM ,μ) − �V
1/m3(εM ,μ)

+O(�4
had/m4

b,�had/m4
c ) (32)

where the perturbative contribution has been evaluated to order 
αs in [26]. For the central values of the input parameters we obtain

ξ
pert

(εM = μ = 0.75 GeV) = 1.03+0.03 , (33)
V −0.01
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Fig. 4. The result PDF (left) and CDF (right) for the quantity I0,V as obtained from 106 random samples of the parameter space. We show the central 68% probability interval 
as the grey-shaded area.

Fig. 5. The PDF and the CDF of F inel as obtained from 106 samples of both the OPE result for I0,V and the lattice result for F . The grey-shaded area shows those results with 
F inel < 0, which is unphysical. We find that the unphysical range of F inel accumulates ∼ 55% probability.
where the uncertainty is estimated form a variation of the scale 
0 ≤ μ ≤ 1.5 GeV.

The nonperturbative corrections have been given in [6,26]

�V
1/m2 = μ2

π (�b)

4

(
1

mc
− 1

mb

)2

(34)

�V
1/m3 = ρ3

D(�b)

4

(
1

mc
− 1

mb

)2 (
1

mc
+ 1

mb

)
(35)

and reflect the fact that the vector current is conserved in the limit 
mb = mc .

Inserting the central values from Table 1 for the hadronic ma-
trix elements and the quark masses, we obtain

�V
1/m2(εM = μ = 0.75 GeV) = 0.047 , (36)

�V
1/m3(εM = μ = 0.75 GeV) = 0.017 . (37)

As before, these results are only meant as an illustration, and we 
repeat the statistical procedure as outlined in Section 2.1. We ob-
tain for the mode and central 68% probability interval of the result 
PDF for I0,V

I0,V (εM = μ = 0.75) = 0.965 ± 0.013 , (38)

based on 106 samples. We display the resulting PDF and CDF for 
I0,V in Fig. 4. We compute the inelastic contribution as well – just 
as before in the case of the axialvector current – and obtain
F inel = −0.010+0.061
−0.057 , (39)

as the mode and central uncertainty interval at 68% probability; 
see Fig. 5 for the respective result PDF and CDF. We further find 
that ∼ 55% of the drawn samples are unphysical, i.e., they show a 
negative inelastic contribution.

Thus our findings are qualitatively the same as in the case of 
the axial current: The lattice result for the scalar vector form factor 
f0 at the non-recoil point again saturates the zero-recoil sum rule 
to a very large degree, leaving also for this case almost no room 
for inelastic contributions.

3. Discussion and conclusion

The determination of CKM matrix elements from exclusive 
semileptonic decays requires reliable calculations for the form fac-
tors describing the corresponding hadronic transition. Since the 
form factors are genuinely non-perturbative, the only known “ab 
initio” calculational method is lattice QCD. The progress in this 
field made in the last years in the construction of efficient al-
gorithms as well as the increasing computing power has turned 
lattice calculation of form factors into an indispensable tool in fla-
vor physics.

However, despite this progress it is important to perform checks 
of the lattice results from “continuum” methods. One of these 
methods are QCD sum rules. On the one hand they are firmly 
rooted in QCD, on the other hand they allow for a detailed study 
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of the “anatomy” of the results obtained e.g. for form factors. It 
has to be clear that a QCD sum rule can never make a precision 
prediction for a hadronic quantity, since the method is intrinsically 
limited to a level of a few ten percent.

Nevertheless, QCD sum rules can serve to validate results ob-
tained from other methods, e.g. from lattice QCD. In particular, the 
zero-recoil sum rules can give a hint on the sizes of the from fac-
tors at the non-recoil point; in case of the B → D∗ transition one 
can combine the zero-recoil sum rule with an estimate for the in-
elastic contributions to actually estimate the form factor itself.

In the analysis presented here we have shown that the lattice 
results [17] for the �b → �c transition form factors saturate the 
zero-recoil sum rule to a large extent. In fact, we found that the 
central values for the lattice results exceed the sum rule’s upper 
bounds, leaving practically no room for any inelastic contribution. 
This seems to be the case for both the axial-vector as well as for 
the vector current.

In fact, the degree of saturation of the sum rule for the �b →
�c seems to be higher than for the B → D∗ transition, where the 
lattice value for the form factor at zero recoil still leaves room 
for a (too?) small inelastic contribution. Unfortunately, the inelastic 
contributions for the baryonic case are harder to estimate than in 
the mesonic case; any estimate of the inelastic contributions for 
the baryons would require (probably model-dependent) additional 
input. We leave the discussion of this to future work.

We further find that for both the vector and the axialvector sum 
rule, our results for the inelastic contributions are of similar order 
or smaller than the 1/m3 power corrections. The leading unknown 
contributions to the OPE are of order αs/m2, and might well be 
capable to allow for small inelastic contributions.
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