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Abstract

We show that higher-order coefficients required to perform threshold resummation for electroweak annihilation processes, such as Drell-Ya
or Higgs production via gluon fusion, can be computed using perturbative results derived in deep inelastic scattering. As an example, we comput
the three-loop coefficienb®, generating most of the fourth tower of threshold logarithms for the Drell-Yan cross sectionNbtiseheme,
using the recent three-loop results for splitting functions and for the quark form factor, as well as a class of exponentiating two-loop contributions
to the Drell-Yan process.

0 2005 Elsevier B.VOpen access under CC BY license,

1. Introduction To be precise, the resummed exponent is expressed in terms
of moments of distributions singular as— 1,

tool in perturbative QCD. They have provided a deep underDy(N) = 1

standing of the structure of perturbation theory to all orders, -

which has in turn opened the door to studies on nonperturbative (— 1)+

effects, and they have also been extensively used in phenom- =" log"™ N + O(log’ N), (1.1)

enology, broadening the range of QCD predictions towards the k+1

edges of phase space, where even hard processes are dominatedvell as terms independent 8f corresponding to moments

by multiple soft gluon radiation. of §(1 — x) [5]. The pattern of exponentiation is nontrivial:

Resummation is closely related to factorizatipf]. For  in general, a perturbative calculation will contain terms of the

threshold resummations, the hard partonic cross section for farm % log? N multiplying the Born cross section, whereas in

given QCD process can be expressed as a convolution (witthe exponent one finds at most terms of the fotffﬂogk+lN.

respect to the energy fraction carried by hard partansof ~ Furthermore, ag-loop resummed calculation will determine

different functions responsible for soft, collinear and hard ra-<completely the coefficients of the terms in the exponent pro-

diation. The convolution turns into an ordinary product uponportional toa* log*t?=¢ N, to all orders inx,. Such terms are

taking a Mellin transform. Logarithmic enhancementsas 1 usually described as NILL, with leading logarithms (LL)

turn into logarithms of the Mellin variabl&/, and these loga- determined at one loop, next-to-leading logarithms (NLL) de-

rithms can be shown to exponentiate, using evolution equatiortermined at two loops, and so forth.

for the various functions involved in the factorization. Recently, the scope and expected precision of a range of
QCD calculations have been extended in a remarkable series of
papers by Moch, Vermaseren and Vogt (MVV), who computed

Soft gluon resummatior{§—3] have proven to be a valuable /1d N—1<|09k(1 _ x))
XX T E—
+

E-mail addresses: t45@nikhef.n) eric.laenen@nikhef.(E. Laenen), first the three-loop contribution to the QCD splitting functions
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tions [8], in what is arguably the most complex perturbative moments can be factorized |s5]
calculation ever carried out in quantum field theory. Their re- s \12 2

sults both test and extend the range of threshold resummatigh(V. €) = [I'(Q%, €)|"(¥r(N, €)) Ur(N, €)
for DIS, which can now be performed exactly t&IN. accu- 1
racy. Furthermore, RLL terms can also be determined, up to + O<_)'

N
a single unknown coefficient requiring a four-loop calculation, is th li ¢ ¢ K distributi
the fourth-order contribution to the cusp anomalous dimensiof| €€V &(N. €) is the Mellin transform of a quark distribution at

of a Wilson line in theVMis scheme. It can. however. be argueddefined energy fraction, responsible for collinear divergences,
convincingly that the numerical effect of this coefficient is neg—UlR(N’ e)d!s an elk?)nal func'ilon descrlgmg _theh effe_-ctsl_tlj(f soft
ligible [9]. Thus soft resummation for DIS can now be tested a@!uon radiation at large angles, aft| 0, ) is the (timelike)
the level of the fourth tower of logarithms, providing nontrivial qua”‘ form factor. Near threshold, where all gluon radiation

checks on the convergence of the expansion as the Iogarithm'i% SOﬁ_' the quark distribution qbeys a Suqlakov-type evolution
accuracy is increased. equation which can be solved in exponential form, as

Another class of benchmark cross sections for soft gluoqu(N 6)
resummation is given by electroweak annihilation processes ' 1 1
in hadronic collisions, comprising Drell-Yan dimuon produc- {/d ZN—l/

b4

tion, electroweak boson production, and Higgs production via = €XP
gluon fusion. The inclusive cross sections for these processes

are known to NNLO[10-12]} and with the knowledge of the  gimijarly, eikonal exponentiation applies to the soft func-
three-loop splitting functions the corresponding resummationjy, U, which can be written as

can now be performed exactly afD\L level, both in theMS

and in the DIS factorization schemes. Lacking a three-loo/r (N, €)

1-zJ 1—y

0 b4

4y Kw(&((l—y)zQz),e)}. 2.2)

calculation, however, RLL terms are unknown, except for run- 1

ning coupling effects. It is the purpose of this Letter to show _ exp{—/dzZN_lgU (&((1 ~ Z)ZQZ) 6)} 23)
that, using only results extracted from the three-loop DIS cal- 1-z a '
culations of MVV, as well as known two-loop perturbative re- 0

sults for electroweak annihilation, one can bring the accuracyrhe electromagnetic quark form factdr, on the other hand, is
of threshold resummation for these processes in line with DISdefined by
performing NLL resummation up to the unknown, and very )
likely negligible, contribution of the four-loop cusp anomalous /7 (P1. p2: 1%, €) = (017, (0)| p1, p2)
dimension. _ = —ieeq0(p)yuu(p I (Q% ),  (2.4)
In the following, we will concentrate on the Drell-Yan cross o . )
section in theMS factorization scheme, although the reason-2nd it is one of the best understood amplitudes in perturba-
ing is readily generalized to other electroweak annihilationtivé QCD. Its logarithmic dependence on the scgfecan be
processes and to the DIS scheme. We will make use of a fagletermined using renor_mallzatlon_ group and gauge invariance
torization derived iff5], where the complete exponentiation of [13—15} and the resulting evolution equation can be solved
N-independent terms was proven, to show that the coefficien@XPlicitly in dimensional regularizatiofi6], yielding the ex-
of single-logarithmic contributions atloops in the resummed Ponential expression
exponent are completely determined by the knowledge of the _g?
g-loop nonsinglet splitting function, simple poles in thdéoop 5 1 dg? Y
quark form factor, ana@v-independent terms at— 1 loops in r(Q%e)=exp 2 / ra K(as.€)+G(a(5%).€)
the Drell-Yan cross section. We will explicitly compute these 0

coefficients at the three-loop level, and provide a general ansatz 12

for their expression to all orders. These results will be useful in n 1 / d_)~2 (&(Az)) (2.5)
refining the theoretical prediction for processes of great inter- 2) a2 YK ’ '
est at the LHC, such agp production and Higgs production §2

via gluon fusion, by extending our knowledge of soft-gluonwhere y (a,) is the cusp anomalous dimensidf7,18]
effects, and our control of the theoretical uncertainty due to ung (4, ¢) collects all other scale-dependent terms, and is finite

calculated higher-order perturbative as well as nonperturbativgse —, 0, while K («s, €) is a pure counterterm. A key feature
corrections. of Egs.(2.2)—(2.5)is the usage of thd-dimensional running
couplinga(£2), defined ind = 4 — 2¢ by the equation

2. Factorization and exponentiation % = fe, @) = —2¢a + B(@),
-2 OO - n
i . i . oA o o
Our starting point is the unsubtracted partonic cross sectioff (@) = o an (;) , (2.6)

for the Drell-Yan process. Near partonic threshold, its Mellin n=0
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where by = (11C4 — 21/)/3 andby = (17C5 — 5Cans —  gs(N) = _oWN.6)

3Crny)/6 in our normalization. Through, integration over (@is(N. €))?

the scale of the coupling generatas infrared and collinear IT(0%, )2\ (Wr(N,€)2Ur(N,€)

poles in Eqs(2.2)—(2.5) so that all functions appearing in the = ( Dy (€)2 )[ (Pr(N, €))2 ]
exponents are finite as— 0, with the exception of the coun- 1

tertermK in the quark form factor, whose only effect however + O(ﬁ) (2.10)

is to cancel singularities arising from tlgeindependent limit
of integration in the integral of the anomalous dimensjgn  This expression has the important feature that virtual and real
Further, dimensional continuation of the coupling regulates theontributions are separately finite. Factoring out the virtual
Landau pole, which lies on the integration contoudis 4, al-  part @(_VS)(N) = |I'(02, €)|?/(¢v (€))%, and mapping the real
lowing for an explicit evaluation of the exponents in terms ofterms to the conventional expression for the resummed Drell—
analytic functions ot ande [19,20} Yan cross section in thElS scheme, including/-independent

Our next task is to perform mass factorization on Bj1).  terms as done in Ref5], we are lead to our basic equation
We do it here in théIS scheme, where we can make use of the

expressiorn4] >® (V) = lim [(WR(N,G))ZUR(N,G)}
MS™ 7 >0 (pr(N, €))?
2 1
2 N-1_
diis(N, €) =exp{/ dgiz{/dzzli_zlf\(&@?)) =exp[FMS(as)
0 0
1 (1-2)20?
1 N-1_1 du2
—i—B(;(&(gZ))” +o(ﬁ>. 2.7) +/dzzlj{2 / M—“ZA(%(Mz))
0 Q2

Here A(a;) can be extracted from the singular behavior of the 1

nonsinglet QCD splitting functions as— 1, and is known + Do ((1— z)ZQZ))” + O(ﬁ)' (2.11)

to be related to the cusp anomalous dimensionAlgy,) =

vk (a5)/2, while Bs(ay) is the coefficient of§(1 — x) in the  Eq.(2.11)spells out our basic strategy to determine the resum-

same splitting function. Once again, it is easy to see thafyaiion coefficientss ™ (V) must be finite by the factorization
diis(N, €) is a pure counterterm, with all poles generated by MS

: - , V)
integration over the running coupling. Clearly, §6.7)is a _theorem, given our construction of the virtual p%(N),
simple exponentiation of the splitting function in the IR limit, the Poles arising from the denominator, furthermore, are com-

including running coupling effects. Since it does not have arPletely determined by the splitting functions and by the quark

obvious diagrammatic interpretation (see, however, Raf), ~ form factor, as seen from Eqg.7) and (2.9)requiring their
there is a certain amount of arbitrariness in distinguishing regfancellation determines a subset of the perturbative coefficients

and virtual contributions in Eq2.7). This arbitrariness was ex- ©f the numerator functions, which are sufficient to control the

ploited in Ref.[5] to define expansion of the functiond andD.
Pyis(N. €) = pv (€)Pr(N ., €), (2.8) 3. Constraintsfrom finiteness
where The scale dependence & R)(N) can be explicitly com-
0? puted order by order making use of the exponential expressions
1 [ dg? s for the functions)g, Ug and¢g. An important point is the fact
¢v(e) =exp 5/5—2 K (as, €) +G(a(£7)) thatyr andUy are renormalization group invariafif], which
0 determines explicitly the scale dependence of their exponents.

Consider, for example, the quark distributipi. Imposing RG

2
1 [ dir? invariance leads to
o3 [Samiaoay)|| @9)
2 (ui—i—ﬁ(e o) >K (w o (1?) e):O (3.1)
8[,(, 9 A aas lﬂ l,l, E) ) £ E) .

52
The structure of Eq2.9)clearly mimicks that of the quark form -\ hich can be solved perturbatively using the explicit expression
for the 8 function, Eq.(2.6), and writing

factor, Eq(2.5), and in fact it is designed so tha (¢) will pre-
cisely cancel all IR and collinear poles arising framQ?, ¢).
This requirement, togethervyith the requiremegttﬁfw(te) b_e a _ ad as "

pure counterterm, uniquely fixes the new funct@,), which ~ <v (& &, €) = Z ol VA GEOR (3.2)
can be determined recursively frofay, €), as was done ex- n=1

plicitly in Ref. [5]. We are now ready to give our final expres- where from now org will denote the ratio of the relevant scale
sion for the Drell-Yan partonic cross section in 8 scheme, (here(1— x)Q) to the renormalization scale, for which we take
which is u = Q. Alternatively, one can impose
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KW(E,OL?,G)ZKI/,(].,&(E),E)=Z<aj(_[ﬁ) K&j”(l, €), (3.3)

n=1

273

2 being a matter of historical conventions); further, one finds
that a combination of coefficients &fzy andy is determined

by ¢, yielding

which also determines the scale dependence of the perturbatlve

coefficientsc ) (€, €). Using for the running coupling the solu-
tion of Eq.(2.6) expanded to three loops

(€2 ay,€)
_ —2¢ 2. —4e 90 (0 o2
=o,f " e (1-6%)
b2
3:—6¢ Y0 (1 _ g2 _ ghe
+ale” 87'[26|:2€( £2) 4 by(1—¢ )} (3.4)
one finds

kP O =k A e,

b
) €0 =k2 Lo+ 2rf (L as (57> ~ 1),
(3.5)
k) (6.0 =k (L g™

bo
+ 26( e >+ S (@, e))é‘ (-1
1 o 0 e (p—4e
- — 1 — —b € -1
8€K]// ( ’€)<ZE 1 E (s )7
with analogous results holding for the functi@@ (¢, «y, €).
The last formal step is to use the finitenesscpfand gy as

(3.6)

€ — 0 to expand the-dependent coefficients as
k(1) = ijf’,){e" g1 e) = Z gk, (3.7)
as well as
S (» as '\ () k.
Gy, €)=Y GP(e) — Z ZG
p=0
(3.8)

Expanding, in a similar way, the various other functions in-
volved in Eq.(2.10)in powers ofag /7, one can easily deter-

mine the structure of IR-collinear poles, by computing simple

integrals.
It is instructive to briefly examine the information that can
be extracted at the one-loop level. From Efj11)one derives

(1 @
1 1
{26 (K ) te € [

) 8uotKy
+(24® — & )DO(N)} + ZK(D yD1(N)

lim — VK Go

e—0

€3]
5 2B —

gg-)l (1)2
1 1 ,
85/)0+K1§,)1)D0(N) + — v }

=

= F(i) + DDYDo(N) 444V Dy (N). (3.9)

The cancellation of double poles requires, unsurprisingly, that Lo _

;fl)o = )/K) Cancellation of single poles yields two equations,

since the coefficient of the distributidbo(N) must separately
vanish. One finds that™® = Kl(;:)o/z yP /2 (the factor of

g0tk = (3.10)
Turning our attention to finite terms, we see first that the co-
efficient of the leading distributio®1(N) is confirmed to be
A® =M /2 had we not assumed the functids) appear-

ing in ¢ to be the same as the one featuring in the resum-
mation, this result would now have been derived at one loop.
Next we see that single logarithms are givertlysame com-
bination of Drell-Yan coefficients that was determined by the
cancellation of simple poles. This determin@s" in terms of
DIS data as

—4BY +2GV.

p® =4BP —2GD. (3.11)

Finally, the one-loop exponentiated constants are given by
1 1 1

F& = (2 + K4 p)/2.

8Iearly, all the coefficients involved at one loop are known or
easily computed. For example, one firitls in theMS scheme,

@ e T(@2—¢)
1, = ZC eyE )
o (L) =2Cre" 150
'd—e)
e (L) = ~20rE L (3.12)
while, as derived iff5], GP = G = 3Cr/2. Itis well known
thatB(l) 3CF/4, so one finds c0n3|stently
p®=o, F,\(A_lé:—ég(Z)Cp, (3.13)

as confirmed by a direct one-loop calculation of the Drell-Yan
Cross section.

At two loops, the pattern repeats itself with a few twists.
The cancellation of triple and double poles brings in no new
information, except the fact that the functiop begins to differ
from yx by running coupling effects,

1
+ =boCF.

w3 (sl 3 =+

This however is just a reshuffling betweg¢ and Uy, in fact

at the level of single poles the effect cancels and one finds,
as expected, that requiring the cancellatiorDgf N) /e terms
yieldsA® = y1(<2)/2 [22,23] N-independent single-pole terms,
on the other hand, constrain a combination of coefficiengg,of

andky , namely
bo
2 2 ( ) (3.15)

(2)
Turning to finite terms, one finds that once again running cou-
pling effects involvingy g and Ur cancel, and single loga-
rithms are determined by

@, 3 o

2
8uot 5Ky.1

2
=y (2

2
P ) i

(3.14)

@, 3w

(2)
8uaT 5Ky2

8o+ 2 = —4B? +2G@ +

. bo
— 4@ _ ZG(Z)_Z( <1>1Jr 1(//1>2)
@ _ ,x@ _ bo
=4B;” —2G®@ — ZFNTs (3.16)
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All required ingredients are knoeréz) from Refs.[24,25]  The detailed structure of the coefficients in terms of the func-
while G®@ = G(()Z) _ b0G<11>/4 was given irf5].1 One finds then  tionsgy andky,, as before, turns out to be irrelevant, and the an-
swer is simply expressed in terms of lower order contributions
2 101 11 7 to the functionFi=(ay). This is remarkable, but easily under-
D® = <_E T E;(Z) T §€(3)>CACF stood: in fact thg%etails of the factorization given in E2j1),
14 2 while conceptually crucial to prove formally the exponentiation
+ (— - —;(2)>nfCF, (3.17)  oflogarithms to all orders, cannot affect the overall structure of
27 3 : ) ! o
IR-collinear poles: one could, for example, define a modified
which agrees with a direct comparisph26] with the two-loop  quark density including eikonal effects, and poles would still
calculation of Ref[10], in the spirit of27]. Exponentiated two- cancel. Inspection of Eq$3.11), (3.16) and (4.3gads us then
loop constants are also constrained by to the following all-order ansatz for the functidi(«;), which

@ summarizes the results of our work.

@_1( @ K2\ _bof o 3w . . d
Fis= ;1<gU,1 + 7) - 1—6<gu,2 + 5"1/[,3)’ B18) De) = 4By (@) — 26(@) + fl@) 7 ~Fis(@).  (44)
where running coupling effects are readily evaluated usingrhe functionD(a;), governing threshold resummation for elec-
Eq.(3.12) troweak annihilation at the single-logarithmic level, is thus
completely determined at ordes! by the knowledge of vir-
4. The coefficients D® at higher orders tual contributions to the nonsinglet splitting function, and IR-

collinear poles of the quark form factor, to the same order, plus

It is straightforward to continue the analysis at three loopsthe value of exponentiatel -independent terms arising from
As expected, the cancellation of quartic and triple poles at threeeal emission at order;'—l.
loops in Eq.(2.11)is achieved automatically as a consequence We are now in a position to evaluate the three-loop contri-
of lower-order constraints. Double poles specify the relationbution to the functionD(e;), thanks to the recent results of
ship betweer, andyk at the three-loop level; using E@.15)  MVV. The three-loop contribution to the functioBs(«;), in
one can write fact, is given in Ref[6]; the three-loop coefficient of the func-
tion G (ay) is given (in[5]) by the expression
GO =6y - beG(ﬁ - bZlG(ll) + i—‘ngl), (4.5)
As before, running coupling effects do not affect the known re- o ) ) )
lationship betweer («;) andyk (;): demanding the cancella- and all relevant coeff.|C|ents in the expansion of the function
tion of Do(N') /e terms at this order in fact yields® — y[((3)/2. G (a5, €) can be found in Ref28], where MVV use their results

N-independent single-pole terms, on the other hand, yield th r DIS structure functions to evaluate explicitly the quark form
' ' actor at three loops; finally, the value 6f;s () at two loops

2
@ _.®, b o b @, 3 @
Kyo=VK Z’ﬂ/;,l — 1—6K1//’2 + b]_(Kw’l + ZgU,O . 4.

constraint : i .
can be extracted by comparing our exponentiated expression
3 Kff’)l with the two-loop calculation of Ref10]. We find
_l’_ -
fuoT 3 p@ _ (807_469 o Lan 187, 0\ o
4@, o=@® b0 @ 5 @ vs =\ 324 142° 4° 72¢ ATE
=—4B;” +2G*™ + gyt =Ky o
4\"0t e 41 35 17
—— 4+ =02+ =3 Cr. 4.6
+< 162+72§()+36§( ))nf F (4.6)

b2 11 b 4
S R ) R (e R R .
Collecting all ingredients, or result fd® is

2509

T_h_e finite coefficients 01D,~(]\{) with i =1, 2, 3 provide non- s 297029 6139 187
trivial tests of the results achieved so far. Further, concentratingp'> = ( — 2332 + T;(2) ——C°D+—=2¢3
on single logarithms, and using Edg.2), one finds that 3328~ 324 60 108
11
) <2 ~ 58253 - 6:<5>)C§CF
@ _gg® _o6@0 _20(,@ | "¥2
DY =47 267 = (nglJ“ 2 > 31313 1837, 235,
b2 3 b 11664 324§ 30§
+ ‘o g(l) + _K(l) _ _1(g(1) +K(l))
16 U,2 2 v,3 4 U,1 v,2 155
Y —%§(3) nfCaCrp
_ ar® ~(3 (2) 1.0
=4B;” —2G¥ —boF L — > Firs (4.3) 1711 1 @ 1 22) 19 @ )n,C2
— — = - = - — n
864  2° 5 18 ) CF
1 Notice however a misprint in Eq. (4.6) of R¢B]: the coefficient olC 4 C 58 10 5 2
_ 2 + —7—29+ 2—7§(2) + 2_7§(3) nfCF- (4.7)
in GE) should read2545/108+ 11z(2)/3 — 13¢(3)) /4.
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The coefficient of the highest power of in D® canbe inde- high-rank Casimir operators constructed out of the symmetric
pendently checked by comparing it with the renormalon calcuSU (V) tensorsd,;. come into play.
lations 0f[29] and[30]: indeed, their results agree with the last  All this notwithstanding, we argue that at the three-loop level

line of Eq.(4.7)2 the simple prescription is still valid, and one can in fact compute
DS) by simply replacing the overall factor @fy with C4. To
5. Discussion see it, one can make use of an observation of Réi, already

exploited in Ref[35]. According to this observation, it is pos-

We have analyzed threshold resummation for the Drell-Yarible to isolate in the quark form factor, and specifically in the
process in theMS scheme, in light of the recent results ob- function G («;, €), a class of maximally non-Abelian contribu-
tained for deep inelastic scattering by MVV. Building upon atjons, dubbed,?**’ in Ref.[35], which exhibit the same behav-
factorization proposed in Refb], we have been able to derive jor as the eikonal anomalous dimensian(i.e., they obey the
a general relationship expressing the functidfy), responsi-  simple replacement rule, as verified up to three loop8j).
ble for threshold logarithms in the Drell-Yan cross section aiye have explicitly checked up to three loops that in fact the
single-logarithmic level, in terms of data requiring the knowl- leading terms of our equationBélk) —2G®  coincide with the

edge of the virtual part of the nonsinglet splitting function, andmaximally non-Abelian factors‘kq up to an irrelevant multi-
the singular terms in the quark form factor, at the same per:

) ) . plicative factor. Since the remaining term in our E4.4)is a
turbative order, plus a well-defined set/@findependent terms  ,hning coupling effect, determined at lower orders where the
arising in the Drell-Yan cross section at lower orders. Our mai

Itis Eq(4.4), and, using MVV ks, it h bled us t Replacement rule is known to apply, we conclude that indeed
result is Eq(4.4), and, using results, it has enabled us to (3) . : -
evaluate the three-loop coefficieht®, given in Eq.(4.7). t?)f C/:S also given by Eq(4.7), with the overallCr replaced

e b s a1 W concde by noing hat we expect tese resls o b
) g p are g ' useful for hadron collider phenomenology. In fact, along the
is relevant for the process of Higgs production via gluon fu-

> . . . lines of [9], the knowledge ofD® allows to perform NLL
sion, In the effective theory with the top quar'k mtggrat'ed OUt'threshold resummation for Drell-Yan and Higgs production, to
It is, in fact, easy to show that an equation identical in form

e ... what is expected to be a very good approximation. This can be
:%Eq.(rlcl).4323I(3§ealSa(i_g)rsglu?]g;lg:]tlsa_tsd;Ieegtr;)rv(\a/e;k ?Qnrl'r;lil- used not only to provide a more accurate QCD prediction for
on, provi various functi Invov ppropriately, o e processes, but also to check for the stability and the con-

red(tal?r?tehd: :cn :%Ct’ftgre;hflld \:\if’#g‘ Amatlop |n|thatdcss<;.\hcan still b ergence properties of both ordinary perturbation theory and
cas e form of Eq(2.11) (as) replaced by the cusp the expansion of its resummed counterpart in towers of loga-

an_omalous dimension for aW|Ison_ line in the ad10|r;t repreS e ithms. Finally, we note that several of the building blocks of
tation, 24, (), and two new function®, («,) and FI\/TS(“S)'

S o : T our analysis also enter in resummations and high-order pertur-
TheMS distribution can be similarly defined for initial gluons, pative calculations for more complicated processes at hadron
with Bs(as) replaced by the virtual part of the appropriate gluoncolliders (see for examp[86]). It would be interesting to study

splitting function. The gluon form factor obeys an exponentia-the extent to which our techniques can be applied also in that
tion identical in form to Eq(2.5). All ingredients are thus in  context.

place to yield Eq(4.4). A more delicate question is whether

this implies a simple relationship between the perturbative co-

efficients of D andD,. Up to two loops, one verifies by explicit Noteadded
calculation[12,31]that D, can be obtained frond by simply
replacing the overall factor of r with C4 [34], just as one
does in deriving4, from A. It is unlikely, however, that such

a simple behavior will persist to all orders: in fact, while it is
natural to expect that purely eikonal quantities sucA as the
function U will be sensitive only to the representation of the
gauge group in which the eikonal line is placed, not all informa-
tion encoded in Eq4.4) arises from eikonal lines; it is known, Acknowledgements

for example[35], that subleading poles in the gluon form fac-

tor cannot be obtained from the quark form factor with such ) . . ] ) ]

a simple prescription. Even eikonal functions would probably e thank Lance Dixon for a stimulating discussion which

require a more careful treatment at high enough order, whefontributed motivation to perform this analysis. L.M. thanks
Einan Gardi for several discussions and for the test performed

- in Sectiord, as well as the CERN PH Department, TH Unit for
2_ Wg thank Einan Gardi for pointing out this check to us and providing ushospitality during the completion of this work, which was also
With his results. o . __supported in part by MIUR under contract 2004021808_009.

The effects of the extra renormalization of the effective quon—quon—nggs_I_h Kof E.L. i ted by the F dation for Fund )
vertex [32,33] can be reabsorbed into a redefinition of the funct®nThis € WOrk Of £.L.. IS supported by the Oun_ ation for l_m amen
has been shown to two loops in Rg81] and can be shown to all orders by tal Research of Matter (FOM) and the National Organization for

following the arguments in Ref5]. Scientific Research (NWO).

While our Letter was being written, S. Moch and A. Vogt
completed their own calculation @@, for both quark- and
gluon-initiated scattering37], using a different line of argu-
ment. Their results completely agree with ours.



276 E. Laenen, L. Magnea / Physics Letters B 632 (2006) 270-276

References [19] L. Magnea, Nucl. Phys. B 593 (2001) 269, hep-ph/0006255.
[20] L. Magnea, in: G. Bruni, et al. (Eds.), Proceedings DIS 2001 Bologna
11 G. St Nucl. Phvs. B 281 (1987) 310 2001, World Scientific, p. 362, hep-ph/0109168.
[2] o Srerman, Tluch Phvs. 8 22 P(h é S 1080) 328 [21] C.F. Berger, Phys. Rev. D 66 (2002) 116002, hep-ph/0209107.
[2] S. Catani, L. Trentadue, Nucl. Phys. (1989) 323. [22] J. Kodaira, L. Trentadue, Phys. Lett. B 112 (1982) 66.

[3] S. Forte, G. Ridolfi, Nucl. Phys. B 650 (2003) 229, hep-ph/0209154. 231 G.P. Korch G. Marchesini. Nucl. Phys. B 406 (1993) 225. hep-
[4] H. Contopanagos, E. Laenen, G. Sterman, Nucl. Phys. B 484 (1997) 304, ] pHIéZlc())rzcmemsky, - varenesini, BUct. Fhys. ( ) + Nep

hep-ph/9604313.
24] R.T. Herrod, S. Wada, Phys. Lett. B 96 (1980) 195.
[5] T.O. Eynck, E. Laenen, L. Magnea, JHEP 0306 (2003) 057, heP'Ph}[zg,] G. Curci, W, Furmanski, R. Petronzio, Nucl. Phys. B 175 (1980) 27.

0305179.
[26] A. Vogt, Phys. Lett. B 497 (2001) 228, hep-ph/0010146.
[6] S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B 688 (2004) 101, [27] L. Magnea, Nucl. Phys. B 349 (1991) 703.

hep-ph/0403192. [28] S. Moch, J.A.M. Vermaseren, A. Vo
. , JAM. , A. Vogt, hep-ph/0507039.
[7] A. Vogt, S. Moch, J.A.M. Vermaseren, Nucl. Phys. B 691 (2004) 129, |5q) \1 Beneke, V.M. Braun, Nucl. Phys. B 454 (1995) 253, hep-ph/9506452.

hep-ph/0404111. ;
[30] E. Gardi, Nucl. Phys. B 622 (2002) 365, hep-ph/0108222.
{g} éAM'\:')'Cxeg"Laiﬁersgé n/:é;/gghS'AM\%ZT EZE'Ewggggggg' [31] V. Ravindran, J. Smith, W.L. van Neerven, Nucl. Phys. B 704 (2005) 332,
' e o R ) hep-ph/0408315.
[10] ?F;gamberg, W.L. van Neerven, T. Matsuura, Nucl. Phys. B 359 (1991)[32] H. Kluberg-Stern, J.B. Zuber, Phys. Rev. D 12 (1975) 467.
[11] W L. van Neerven, E.B. Zijlstra, Nucl. Phys. B 382 (1992) 11 [33] V.P. Spiridonov, K.G. Chetyrkin, Sov. J. Nucl. Phys. 47 (1988) 522, Yad.
- » BB, Zljistra, Nucl. Fhys. : Fiz. 47 (1988) 818 (in Russian).

[12] Eﬁ\/’@%ﬂ%%de“ W.B. Kilgore, Phys. Rev. Lett. 88 (2002) 201801, hep-(34 5 Catani, D. de Florian, M. Grazzini, JHEP 0105 (2001) 025, hep-

ph/0102227.
13] A.H. Mueller, Phys. Rev. D 20 (1979) 2037.
{14% J.C. Coliins. Ph Z Rev. D 22 (:(L980))1478 [35] S. Moch, J.A.M. Vermaseren, A. Vogt, hep-ph/0508055.
[15] A éen Phy’s Ryev' D2.4 (1981) 3281 ’ [36] G. Sterman, M.E. Tejeda-Yeomans, Phys. Lett. B 552 (2003) 48, hep-
) ' : ’ : ph/0210130.
[16] L. Magnea, G. Sterman, Phys. Rev. D 42 (1990) 4222. [37] S. Moch, A. Vogt, hep-ph/0508265.

[17] G.P. Korchemsky, A.V. Radyushkin, Nucl. Phys. B 283 (1987) 342.
[18] G.P. Korchemsky, Phys. Lett. B 220 (1989) 629.



	Threshold resummation for electroweak annihilation from DIS data
	Introduction
	Factorization and exponentiation
	Constraints from finiteness
	The coefficients D(k) at higher orders
	Discussion
	Note added
	Acknowledgements
	References


