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SUMMARY

Complement is viewed as a critical serum-operative
component of innate immunity, with processing of
its key component, C3, into activation fragments
C3a and C3b confined to the extracellular space.
We report here that C3 activation also occurred
intracellularly. We found that the T cell-expressed
protease cathepsin L (CTSL) processed C3 into
biologically active C3a and C3b. Resting T cells con-
tained stores of endosomal and lysosomal C3 and
CTSL and substantial amounts of CTSL-generated
C3a. While ‘‘tonic’’ intracellular C3a generation was
required for homeostatic T cell survival, shuttling of
this intracellular C3-activation-system to the cell
surface upon T cell stimulation induced autocrine
proinflammatory cytokine production. Furthermore,
T cells from patients with autoimmune arthritis
demonstrated hyperactive intracellular complement
activation and interferon-g production and CTSL
inhibition corrected this deregulated phenotype.
Importantly, intracellular C3a was observed in all
examined cell populations, suggesting that intracel-
lular complement activation might be of broad phys-
iological significance.

INTRODUCTION

The complement system is a quintessential part of innate immu-

nity and key in the protection against infections (Volanakis,

1998). As a doctrine, complement is viewed as a systemic,

serum effector system, with the liver producing the majority of
Imm
soluble complement proteins (Walport et al., 2001a, 2001b).

Although liver-generated circulating C3 and C5 are indisputably

required for the detection and removal of pathogens (Walport

et al., 2001a, 2001b), an emerging paradigm suggests that

immune cell-derived and intrinsically operating complement

activation fragments are key in driving and modulating adaptive

T cell immunity (Heeger and Kemper, 2012; Kolev et al., 2013). A

growing body of evidence demonstrates the critical role of

signals transduced by complement receptors expressed on

CD4+ T cells, in addition to T cell receptor (TCR) activation, cos-

timulation, and environmental presence of interleukin-12 (IL-12)

(Murphy and Stockinger, 2010), in T helper 1 (Th1) cell-mediated

immunity (Liu et al., 2005; Strainic et al., 2008). In particular, the

C3 activation fragments C3a and C3b, generated by the T cell

itself (Cardone et al., 2010; this study did not define the mecha-

nism underlying autocrine C3 activation), are required for the

induction of interferon-g (IFN-g) secretion via autocrine engage-

ment of their respective receptors, the G protein-coupled recep-

tor (GPCR) C3a receptor (C3aR) and the complement regulator

CD46 (which binds C3b) (Le Friec et al., 2012; Liszewski et al.,

2005). This observation is underpinned by the fact that CD46-

deficient patients throughout life or C3-deficient patients in early

childhood suffer from recurrent infections and have severely

reduced T helper 1 (Th1) cell-mediated responses (Th2 cell

responses are normal) (Ghannam et al., 2008; Le Friec et al.,

2012). Although studies using T cells from C3ar1–/– and

C5ar1–/– animals demonstrate that these anaphylatoxin recep-

tors are also needed for effector cytokine secretion in mice

(Strainic et al., 2008), rodents lack CD46 expression on somatic

tissue (Tsujimura et al., 1998) and no functional homolog has

been identified yet (Fernández-Centeno et al., 2000). This

suggests that complement-mediated signaling pathways

contributing to Th1 cell induction differ between mice and

humans. Furthermore, the underlying mechanisms of cell-

derived local complement activation are poorly understood
unity 39, 1143–1157, December 12, 2013 ª2013 Elsevier Inc. 1143

mailto:claudia.kemper@kcl.ac.uk
http://dx.doi.org/10.1016/j.immuni.2013.10.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.immuni.2013.10.018&domain=pdf
http://creativecommons.org/licenses/by/3.0/


Immunity

Evidence for Intracellular Complement Activation
and controversial. In the mouse system, local generation of C3

activation products observed after T cell stimulation is thought

to be dependent on the formation of the C3-cleaving C3 conver-

tase. That is, TCR and CD28 activation on mouse CD4+ T cells

induces the expression and secretion of C3, factor B and factor

D proteins, the subsequent assembly of a C3 convertase, and

then extracellular cleavage of C3 (Lalli et al., 2008; Strainic

et al., 2008). Because our observation that human T cells gener-

ated C3a and C3b rapidly (within 5 min) after activation does not

align with the timeline for de novo induction of the required

protein machinery, we hypothesized that C3 cleavage is

achieved in a distinct fashion and set out to determine the

mechanism of C3 activation in human CD4+ T cells.

Here, we have demonstrated that the rapid human CD4+

T cell-derived generation of C3a and C3b was mediated via

a C3 convertase-independent but cathepsin L (CTSL)-depen-

dent mechanism. We further show that complement activation

occurred intracellularly where it contributed to the regulation of

cell survival. In vivo significance for an essential role of intra-

cellular C3 activation in controlling T cell activity was supported

by the observations that T cells from autoimmune arthritis

patients displayed increased intracellular C3a generation,

mTOR activity, and proinflammatory cytokine production and

that this phenotype could be reversed by the pharmacological

targeting of intracellular CTSL activity.

RESULTS

CTSL Cleaves Human C3 into Biologically Active C3a
and C3b
To explore potential C3 convertase-independent mechanisms of

autocrine complement activation in human CD4+ T cells, we

performed gene expression studies on these cells with focus

on endogenous proteases. This approach revealed the presence

of large amounts of messenger RNAs (mRNAs) coding for the

endosomal and lysosomal proteases cathepsin B (CTSB),

cathepsin G (CTSG), and CTSL in resting T cells that increased

upon activation (data not shown). When we assessed the ability

of these proteases to cleave C3 in vitro, we found that CTSL

cleaved C3 efficiently into C3a and C3b (Figures 1A and 1B),

whereas CTSG (see Figures S1A and S1B available online) and

CTSB (data not shown) degraded C3 but did not generate

specific activation fragments. C3 had previously been described

as a substrate of CTSL expressed by humanmelanoma cells but

in those studies, C3 was not processed into C3a and C3b but

rather fully degraded (Frade et al., 1998). CTSL-mediated C3a

andC3b generation could be inhibited by aCTSL-specific chem-

ical inhibitor and by one function-blocking antibody to CTSL

(Ab1, Figure 1A). Although CTSL cleaved C4 into C4a and

C4b-like fragments (Figure S1C), it did not cleave C5 into C5a

and C5b activation fragments (Figure S1D). Because a receptor

for C4a has not been identified in any species and a role for C3a

in human T cell biology is indicated, we subsequently focused on

the role of CTSL-mediated C3 activation. The cleavage of C3 by

CTSL created biologically active fragments as CTSL-generated

C3a could induce oxidative bursts in neutrophils, and CTSL-

generated C3b was able to bind CD46 (Figures S1E–S1G). We

next assessed the expression of C3 and CTSL in human CD4+

T cells. We detected mRNA and also unanticipated C3 and
1144 Immunity 39, 1143–1157, December 12, 2013 ª2013 Elsevier In
CTSL protein amounts in resting T cells (Figures 1C and 1D).

CTSL was found, as expected, in the endoplasmic reticulum

(ER), the lysosomes, and late ER-derived secretory vesicles

(Reiser et al., 2010) (Figure 1E). C3 localized also to the ER and

additionally to early and late ER-derived secretory vesicles

(Figure 1E). Thus, CTSL and C3 reside in overlapping and also

distinct locations in resting T cells.

CTSL Mediates Intracellular and Extracellular C3
Activation in T Cells
To address whether CTSL-mediated processing of C3 occurs in

human CD4+ T cells, we assessed for presence of extracellular

and intracellular C3a in resting T cells and in T cells that had

been activated with antibodies to CD3 and CD3+CD46 for 1 hr.

For this, an antibody to C3a was used that only recognizes a

C3a neo-epitope on the cleaved fragment, but not on C3a within

the C3 a chain (Hartmann et al., 1993; Miller et al., 2012). While

nonactivated T cells constitutively express CD46 (Cardone

et al., 2010), no C3a, CTSL, C3b, or C3aR could be found on

the surface of resting T cells (Figure 2A). Upon CD3 or

CD3+CD46 activation, however, C3a appeared on the exterior

of the cell, and this C3a generation could be significantly

decreased (about 20% for CD3-activation and 50% for

CD3+CD46 activation) by addition of the CTSL inhibitor or an

antibody that blocks CTSL-mediated cleavage of C3 (Figure 2A).

Similarly, CTSL, C3b, and the C3aR were also detected on the

surface of stimulated T cells (Figure 2A). We observed intra-

cellular expression of the C3aR (in line with presence of C3AR1

mRNA, Figure 1C) and a C3a generation in resting T cells. A

further increase in intracellular C3a upon activation could only

be prevented by the cell-permeable CTSL inhibitor, but not by

the cleavage-blocking antibody (Figure 2A; for a summary of

MFI values obtained, see Figure S2). In line with the presence

of C3a in resting T cells, immunoblot analyses of lysates from

nonactivated T cells showed predominantly the processed a

chain of C3, indicative of C3b generation (Figure S2B). Confocal

microscopy combinedwith statistical analysis of protein colocal-

ization coefficients suggested that C3 or C3b and CTSL, C3a

and C3aR, and C3 or C3b and CD46 reside in part in overlapping

locations in resting T cells. Furthermore, their colocalization was

increased upon T cell activation, particularly on the cell surface

(Figures 2B and 2C). These data support a model in which

CTSL generates ‘‘tonic’’ C3a from existing C3 pools in resting

T cells, as well as on the cell surface upon TCR stimulation. In

agreement with this, CTSL is functionally active at both an acidic

pH in the lysosome, as well as pH 7.4 as occurs in an extracel-

lular environment (Dehrmann et al., 1995). Importantly, surface

translocation of this system is independent of costimulation

because CD46 (Figure 2A) or CD28 (data not shown) engage-

ment was not required.

CSTL-Mediated Intracellular C3a Generation Is
Required for T Cell Survival
Wenoticed that CD4+ T cells culturedwith increasing amounts of

CTSL inhibitor (which prevented intra- and extracellular C3a

generation) entered an apoptotic state within 8–12 hr (Figure 3A).

C3aR (and C5aR) engagement on TCR- and CD28-stimulated

mouse CD4+ T cells is connected with mTOR activity, which is

required for T cell survival and induction of effector T cell
c.



Figure 1. Resting Human CD4+ T Cells Contain Stores of C3 and C3-Activating Cathepsin L

(A) CTSL-mediated C3 cleavage in the presence of CTSL inhibitors, including a chemical inhibitor, a function-blocking (Ab1) and a non-function-blocking antibody

to CTSL (Ab2) and analysis by immunoblotting for C3 cleavage components.

(B) CTSL-mediated cleavage of C3 generates C3a. C3 incubation with CTSL (50, 100, and 200 ng) generates C3a detected by silver staining (left panel) and

immunoblotting with two anti-C3a antibodies to cleaved C3a and C3a contained in the C3 a chain (right panel).

(C) T cells contain mRNAs coding for C3, CTSL, and the C3a receptor (C3aR). Data shown in (A)–(C) are representative of three experiments (n = 3).

(D) Resting CD4+ T cells contain intracellular C3 and CTSL as assessed by flow cytometry analysis.

(E) Subcellular localization of C3 and CTSL stores assessed by confocal microscopy. Scale bars represent 10 mM. (D and E) are representative of n = 5

experiments. Clnx, calnexin, endoplasmic reticulummarker; EEAI, early endosomal vesicle marker; Lamp1, lysosomal marker; MFI, mean fluorescence intensity;

Rab5, late endosomal vesicle marker. (I, magnification 360; II to VII, magnification 3100). See also Figure S1.
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Figure 2. CTSL Generates Intracellular and Extracellular C3a

(A) C3a generation in resting and activated T cells (1 hr) in the presence of different CTSL-blocking reagents: a chemical CTSL inhibitor (CTSLi), a function-

blocking (block), and a non-function-blocking antibody to CTSL (non-block) (left panel). Expression of CTSL, C3b, and C3aR was also measured but without

addition of CTSL-blocking reagents (right panels). Shown are representative data of three independently performed experiments (n = 3).

(B andC) C3b andC3a and their respective receptors translocate and colocalize upon T cell activation. Nonactivated or anti-CD3 and anti-CD46-activated T cells,

permeabilized and stained for C3, CTSL, C3a, C3aR, and CD46 in the combinations depicted and analyzed by confocal microscopy (B). Shown are two

representative staining examples side-by-side for each condition from eight similarly performed experiments with a different donor each time (n = 8). Scale bar

represents 5 mM. (C) Statistical analysis ± SD for colocalization events of the proteins assessed under (B) with Pearson’s Correlation Coefficient method.

(Magnification 3100). *p < 0.05. See also Figure S2.
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responses (Strainic et al., 2008, 2013; Yang and Chi, 2012).

In agreement with this, CTSL inhibition reduced mTOR phos-

phorylation in resting (Figure 3B) as well as in activated T cells

(Figure S3A). Cell viability and mTOR activation could not be

‘‘rescued’’ by addition of purified C3a (Figures 3A and 3B).

Reduction of intracellular C3aR expression via siRNA in resting

T cells induced a comparable decrease in cell viability and

mTOR activity (Figure 3C), as did the inhibition of GPCR signaling

via addition of pertussis toxin (Figure 3D)—and neither pheno-

type could be reversed via C3a supplementation (Figures 3C

and 3D). That the CTSL inhibitor was not toxic but exerted

specific effects on CD4+ T cell intracellular C3a production

was demonstrated in human lung epithelial cells (which also

contain C3a stores). Addition of up to 1,000 times higher con-

centrations of CTSL inhibitor did not alter intracellular C3a

generation or cell viability (Figures S3B and S3C). Furthermore,

incubation of CD4+ T cells with a specific CTSG inhibitor had

no effect on intracellular C3a amounts or cell survival (Figures

S3D and S3E). Together, these results indicate that intracellular

C3a generation and C3aR activation contribute to homeostatic

mTOR activity and T cell survival. Indeed, a recent study demon-

strated that GPCR signaling is not confined to the plasma

membrane but also occurs from intracellular compartments

(Irannejad et al., 2013) and C3aR expression was detected in

the lysosomes of resting T cells (Figure 3E). Thus, nonactivated

CD4+ T cells do not express C3aR on the cell surface but have

strong intracellular C3aR expression and the intracellular

C3aR-C3a interaction contributes to a metabolic pathway

required for cell survival.

However, this raises the question of why T cells from C3-

deficient patients, which cannot produce IFN-g (Ghannam

et al., 2008; Le Friec et al., 2012), survive and proliferate

normally. Interestingly, although C3 serum-deficiency has been

confirmed in all published case studies; whenever intracellular

C3 was assessed in these patients, C3 or C3-like protein

products can be observed (Ghannam et al., 2008; Katz et al.,

1994; S Reis et al., 2006; Singer et al., 1994). This supports our

findings: We analyzed C3 gene mRNA expression in peripheral

blood mononuclear cells (PBMCs) isolated from three C3-

deficient patients (P1, P2 and P3) (Ghannam et al., 2008; Pekkar-

inen et al., 2013) and showed that PBMCs and CD4+ T cells

from P1 and healthy donors had comparable C3mRNA patterns

and amounts (Figures 3Fi and 3Fii). Cells from Patients P2 and

P3 (siblings) contained reduced amounts of C3 mRNA and also

had a deletion of about 30–40 bases in the mRNA coding for

the b chain, whereas mRNAs coding for the C3a portion and

the a chain were of correct size (Figure 3Fi). Importantly, CD4+

T cells from all three patients contained normal amounts of

C3a protein (Figure 3F), indicating ‘‘successful’’ generation of

an intracellular protein form of C3 that can generate functional

C3a in T cells and PBMCs in these individuals. Thus, our

data suggest a potential disconnection between plasma C3

(which is chiefly derived from liver cells) and intracellular C3

presence in cases of genetically-based C3 protein deficiency.

We speculate that cells from serum C3-deficient patients do

not secrete C3 or C3 fragments but can generate sufficient

intracellular C3a for cell survival and that, thus, combined

extra- and intracellular C3 deficiency might possibly not exist

in humans.
Imm
Surface Engagement of C3aR and CD46 Drives Effector
Function in Human CD4+ T Cells
For the induction of proinflammatory T cell effector function,

TCR activation and extracellular or cell surface generation of

C3a and C3b by CTSL is required. If we activated T cells in the

presence of a CTSL inhibitor concentration that did not affect

cell viability and mTOR phosphorylation (Figure 4A) but reduced

cell surface C3a (data not shown), IFN-g secretion was

decreased by at least 50% and could be restored to about

75% by concurrent addition of C3a to the media and CD46

engagement (which mimics C3b generation) (Figures 4B and

S4A). Similarly, addition of the antibody to CTSL that blocks

extracellular C3a cleavage reduced IFN-g production signifi-

cantly but had no effect on cell viability (Figure S4B), whereas

addition of the antibody that did not inhibit CTSL-mediated

cleavage of C3 to cultures had no effect on IFN-g (Figure 4C).

As expected, C4a addition during T cell activation failed to

rescue the CTSL inhibitor-mediated reduction in IFN-g secretion

(Figure S4C).

These data support a revised model for induction of T cell

effector function. That is, TCR activation induces translocation

of intracellular stores of C3aR to the cell surface, amplifies

intracellular CTSL-mediated generation of C3a and C3b, and

induces cell surface CTSL-mediated C3 activation. Extracellular

C3aR and CD46 engagement by C3a and C3b subsequently

supports induction of T cell effector function (Figures 2A–2C).

This model is consistent with the lack of Th1 cell responses

observed previously in CD46- and C3-deficient patients (Le Friec

et al., 2012). Furthermore, inhibition of autocrine CTSL-mediated

C3 activation not only decreased secretion of the Th1 cell-

associated cytokines IFN-g and TNF but also reduced IL-17

production by activated T cells, whereas Th2 cell-associated

cytokines IL-4 and IL-5 were less affected (Figure 4D). Although

IL-10 was initially classified as Th2 cell-specific cytokine, IL-10

production from CD4+ T cells in humans is now more strongly

connected with Th1 (and Th17) cell contraction, which is marked

by the cosecretion of immunosuppressive IL-10 (Cardone et al.,

2010; Trinchieri, 2007). However, our data here are generated

in vitro, and to firmly exclude a role for CTSL-mediated C3 acti-

vation in Th2 cell biology requires more extensive studies.

CTSL-mediated intrinsic C3 activation is sufficient to provide

the autocrine complement receptor signals required for

human effector cytokine induction because IFN-g production

is unaltered in serum-free media or in the presence of the

C3 convertase inhibitor Compstatin (which readily prevents

C3 convertase assembly on guinea pig red blood cells) (Figures

S4D–S4F).

In mice, we found that resting CD4+ T cells also expressed C3

and CTSL and that mouse CTSL also processed mouse C3 into

C3a and C3b (Figures S4G and S4H). As expected, CD4+ T cells

from C3–/– mice exhibited diminished Th1 cell-mediated re-

sponses under in vitro Th1 cell-skewing conditions (Figure S4I).

However, T cells from Ctsl–/– mice in which CTSL expression

was only maintained in the thymic epithelium (to ensure normal

T cell selection because CTSL is required for major histocompat-

ibility complex class II molecule [MHC II] processing [Reiser

et al., 2010]) unexpectedly had a normal, rather than reduced,

Th1 cell phenotype (Figure S4J), indicating that murine CD4+

T cells process C3 into C3a in a CTSL-independent manner.
unity 39, 1143–1157, December 12, 2013 ª2013 Elsevier Inc. 1147



(legend on next page)

Immunity

Evidence for Intracellular Complement Activation

1148 Immunity 39, 1143–1157, December 12, 2013 ª2013 Elsevier Inc.



Immunity

Evidence for Intracellular Complement Activation
In Vivo Generated Auto-Reactive T Cells Can Be
‘‘Normalized’’ by CTSL Inhibition
Autoreactive effector T cells producing increased amounts of

IFN-g in the inflamed synovial fluid of juvenile idiopathic arthritis

(JA) patients have protein kinase B (PKB) hyperactivation

rendering these cells resistant to suppression by regulatory

T cells (Tregs) (Wehrens et al., 2011). Because C3aR induces

PKB activation (Strainic et al., 2008) and PKB activation is

required for mTOR function (Verbist et al., 2012), we explored

whether the uncontrolled T cell induction at the inflamed sites

of these patients is due to deregulation of CTSL-mediated C3

activation. Indeed, synovial fluid CD4+ T cells from a JA patient

had increased intracellular C3a and heightenedmTOR activation

compared to peripheral blood T cells of this patient or a healthy

donor (Figure 5A). The increased production of IFN-g (as well as

the CD46-mediated coinduction of IL-10 in Th1 cells [Cardone

et al., 2010]) and TNF by synovial fluid T cells (compared to

T cells from the blood, Figure 5B) could be ‘‘normalized’’ in a

dose-dependent manner by addition of the CTSL inhibitor to

the cultures (Figure 5C). Furthermore, CTSL inhibition was

accompanied by dose-dependent reduction in intracellular C3a

and mTOR activity (Figure 5D). Comparable data were obtained

with peripheral blood T cells of four different patients with rheu-

matoid arthritis (RA) (Figures S5A and S5B).

These data demonstrate that CTSL inhibition ‘‘normalizes’’

the increased production of proinflammatory cytokines by

T cells from patients with autoimmune arthritis. Our finding that

this is accompanied by a CTSL inhibitor dose-dependent reduc-

tion in intracellular C3a and mTOR activity suggests that the

effect is, at least in part, mediated by decreased intracellular

C3 activation.

Natural Regulatory T Cells Engage Distinct Complement
Receptor Pathways
By using T cells isolated from arthritis patients, we demonstrated

that increased CTSL-mediated activation of C3 is connected

with uncontrolled pathological effector T cell function. We next

explored the reverse situation and assessed the ‘‘CTSL-C3

system’’ in natural regulatory T (Treg) cells (Kitagawa et al.,

2013) as local complement activation strongly impacts on the

generation of these cells (Yamaguchi et al., 2011)—notably,

blockage of C3aR and C5aR signaling on mouse and human

naive CD4+ T cells leads to default induction of suppressive

TGF-b-producing FOXP3+ T cells (Strainic et al., 2013). Corre-

spondingly, C3aR and C5aR engagement on mouse CD4+

CD25hiFoxp3+ natural Treg cells diminishes their suppressive
Figure 3. CD4+ T Cell Survival Is Dependent on CTSL-Mediated C3 Pro

(A and B) Viability (A) andmTOR activation (B) in resting T cells with increasing amo

12 hr postaddition of reagents.

(C) Effect of C3aR-specific siRNA (left panel) on viability (middle panel) and mTO

(D) Effect of GPCR inhibition with pertussis toxin on viability (left panel) and mTO

derived from three independently performed experiments (n = 3).

(E) Confocal microscopy analysis for C3aR, mTOR, and RagC expression and co

(F) C3 mRNA and intracellular C3a protein in cells from serum C3-deficient patie

serum C3-deficient patients (P1, P2 and P3) and a healthy donor (HD). (Fii) Compa

pairs gave similar results (data not shown). (Fiii) Activated C3 (intracellular C3a) in

Patient 1 were also assessed for C3a presence by confocal microscopy (two pan

(n = 3) in (A)–(D). (E) 3100 magnification and (Fiii, lower panels) 360 magnifica

transfected. *p < 0.05; **p < 0.005. See also Figure S3.
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activity (Kwan et al., 2013). We reasoned that human Treg cell

induction or function could involve differences in intracellular

complement activation or receptor signaling pathways. Initial

assessment of CTSL, C3aR, C3a, and CD46 revealed no

substantial differences in the profiles of these molecules be-

tween effector T cells and Treg cells in the resting or activated

states (Figure 6A). Treg cells demonstrated comparable CD46

downregulation, which is observed upon CD46 crosslinking (Le

Friec et al., 2012), at 2 hr postactivation (data not shown). How-

ever, Treg cells failed to increase expression of CD46 isoforms

bearing the cytoplasmic tail 1 (CYT-1) upon activation (Fig-

ure 6B). CD46 is commonly expressed in four distinct isoforms.

These arise from alternative mRNA splicing of regions coding

for differently glycosylated extracellular domains (‘‘BC’’ and

‘‘C’’) and two distinct cytoplasmic tails, CYT-1 and CYT-2,

generating BC1, C1, BC2, and C2 isoforms (Liszewski et al.,

1991; 2005). We have previously shown that CYT-1 is required

for IFN-g production in CD4+ T cells (Cardone et al., 2010),

whereas CYT-2 mediates contraction of IFN-g production (Ni

Choileain et al., 2011). The notion that Treg cells might have

‘‘disabled’’ the CD46-CYT-1 pathway required for Th1 cell induc-

tion is supported by our observation that CD46 activation did not

abrogate suppressive capacity of Treg cells (Figure 6C; note that

the apparent reduced suppression observed in the presence of

CD46 antibodies is due to substantially increased Teff prolifera-

tion after CD46 stimulation [Kemper et al., 2003]) and does not

induce IFN-g or IL-10 in these cells (Grossman et al., 2004). Addi-

tionally, CD4+ T cells from a rare CD46-deficient patient that

lacks productive Th1 cell-mediated responses (Le Friec et al.,

2012) contained normal numbers of Treg cells (total or subpop-

ulations I, II, and III [Miyara et al., 2009]), and these cells retained

suppressive capacity (Figure 6D). These data suggest that,

although Treg cells express all complement components

required for proinflammatory cytokine production and generate

intracellular C3a, it is the CD46 CYT-1 signaling that is particu-

larly disengaged in Treg cells, enabling this T cell population to

remain in an ‘‘anti-inflammatory state’’ (Figure S6).

Intracellular C3 Activation Is Ubiquitous in Human Cells
To determine whether intracellular C3 activation is T cell-specific

or not, we analyzed cells of myeloid (monocytes and neutro-

phils), of lymphoid (CD8+ T cells and B cells), and of nonmyeloid,

nonlymphoid (epithelial cells, endothelial cells, and fibroblasts)

origin and found that all of these cells not only contain stores

of C3 in the resting state (Figure 7, two left panel columns) but

also generate ‘‘tonic’’ intracellular C3a (Figure 7, two right panel
cessing and Intracellular C3aR Signaling

unts of CTSL inhibitor with or without concurrent addition of C3a (100 ng/ml) at

R activity (right panel) in nonactivated T cells 24 hr after transfection.

R activation (right panel) with and without C3a addition. Data ± SD shown are

localization in resting CD4+ T cells (n = 2). Scale bar represents 5 mM.

nts. (Fi) C3 mRNA in peripheral blood mononuclear cells (PBMCs) from three

rison of C3mRNA between PBMCs and CD4+ T cells from P1. Other C3 primer

purified CD4+ T cells from C3-deficient Patients 1, 2, and 3. CD4+ T cells from

els below). Scale bar represents 25 mM. Data (±SD) are from three experiments

tion. Conc., concentration; Ctrl. siRNA, control siRNA; Mock-transf., mock-

unity 39, 1143–1157, December 12, 2013 ª2013 Elsevier Inc. 1149



Figure 4. Th1 and Th17 Cell Induction Requires Cell Surface Activation of CD46 and C3aR by CTSL-Generated C3 Activation Fragments

(A and B) C3a supplementation rescues CTSL inhibitor (CTSLi)-mediated diminution of Th1 cell induction. CD4+ T cells were stimulated as shown in media with

5 nM CTSLi with or without addition of C3a (100 ng/ml).

(A) 5 nM CTSL inhibitor leaves cell viability (see Figure S4B) and mTOR activity (right panel) unaffected.

(B) IFN-g production by cells activated under these conditions was measured 36 hr after activation with IFN-g production by CD3- (left panel) or CD3+CD46-

activated cells (right panel) set at 100%.

(C) Effect of anti-CTSL function-blocking or function-non-blocking antibodies on Th1 cell induction.

(D) Effects of CTSL inhibition on Th2 and Th17 cell-mediated responses. Experiments were performed as described under (A) and (B) and production of indicated

cytokines measured 36 hr after activation. Data ± SD are from five independent experiments (n = 5) in (A)–(C) and from three independent experiments in (D) with

results shown as mean values of conditions performed in duplicate (n = 3). See also Figure S4.
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Figure 5. Enhanced Cytokine Production by T Cells in the Synovial Fluid from a Patient with Juvenile Arthritis Is Normalized by CTSL

Inhibition

(A) CD4+ T cells from blood of a healthy donor (HD) or blood and synovial fluid (Syn. fluid) of a patient with juvenile arthritis (JA) were assessed for intracellular C3a

and mTOR immediately after purification.

(B) Cytokine production of the stimulated HD and JA P1 peripheral blood T cells were assessed at 18 hr postactivation.

(C) Intracellular C3a and activated mTOR amounts and (D) cytokine production of stimulated T cells from synovial fluid of JA P1 in presence of shown CTSL

inhibitor (CTSLi) concentrations assessed at 18 hr. The addition of 5 nM CTSLi had no effect on cell viability. Supplementation of media with 20 nM CTSLi had no

effect on nonactivated and CD3-activated cells and reduced cell viability by 5% (±2.7%) in CD3 + CD28 and CD3 + CD46-activated cells (not shown). Data

represent mean values of conditions performed in duplicate. See also Figure S5.
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Figure 6. Effector and Regulatory T Cells Engage Distinct Complement Receptor Pathways

(A) CTSL and complement protein expression in regulatory (Treg) and effector (Teff) T cells in resting and activated (1 hr) states.

(B) CD46 mRNA (i) and protein expression (ii) in resting and activated (12 hr) Treg and Teff cells.

(C) Effect of CD46 activation on Treg cell suppressive activity at a 1:1 Treg:Teff cell ratio. Results shown in (A)–(C) are derived from three independent experiments

(n = 3) with the mean ± SD (C). BC1, C1, BC2, and C2 refer to the proteins forms and differently spliced mRNAs coding for the four protein isoforms of CD46. The

mRNAs for C1 and C2 in (Bi) and the g-secretase-processed CYT-1 of CD46 in (Bii) give weak signals at this exposure time but are clearly visible upon over-

exposure (data not shown).

(legend continued on next page)
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columns). Thus, it appears that intracellular C3 activation might

be a general phenomenon and not a T cell-restricted occurrence.

Overall, our results indicate an intracellular pathway of C3

activation that in T cells is catalyzed by CTSL and occupies a

central niche in basal cellular homeostasis and in immunological

T cell effector function during infection.

DISCUSSION

An emerging paradigm is that immune cell-derived complement

activation fragments, as opposed to serum-circulating com-

plement components, are the key players in initiating and

regulating effector and regulatory T cell responses (Heeger and

Kemper, 2012). The exact mechanisms by which CD4+ T cells

generate C3a and C3b rapidly upon TCR stimulation are ill-

defined. Studies performed in mice suggest that TCR activation

induces gene transcription and protein secretion of C3 and

factors required for C3 convertase assembly (factors B and D)

by T cells and antigen-presenting cells (APC). This process

subsequently leads to local C3 activation in the vicinity or the

surface of these cells and engagement of complement receptors

on T cells (Lalli et al., 2008; Liu et al., 2005; Strainic et al., 2008).

Here, we present results suggesting that local complement

activation by human CD4+ T cells follows a distinct mechanism

and is, at least initially, C3 convertase-independent and occurs

within the cell.

We demonstrate here that T cell-expressed CTSL cleaves C3

into active C3a and C3b fragments and thereby mediates the

rapid local production of these fragments observed upon TCR

activation. Unexpectedly, we found that TCR activation does

not lead to induction of these proteins but that resting T cells

contain intracellular pools of CTSL and C3. Furthermore, C3

activation by CTSL occurs continuously in the cell’s interior.

We propose that this ‘‘tonic’’ intracellular C3a generation en-

gages the C3aR, which, in resting cells, is expressed in large

parts on lysosomes, but not on the cell surface, and by this

mechanism sustains basal mTOR activation, required for ho-

meostatic cell survival (André and Cota, 2012). Upon danger

sensing (TCR activation), this ‘‘loaded’’ intracellular complement

activation and receptor system is shuttled to the cell surface in

effector cells to promote protective Th1 cell-mediated

responses via C3aR and CD46-CYT-1-mediated signals (Le

Friec et al., 2012). We suggest that C3aR-mediated signals

induced from the cell surface differ from those triggered by intra-

cellular C3aR activation, as has recently been shown in GPCR

signaling (Irannejad et al., 2013). Interestingly, this C3aR and

CD46-driven pathway is not operative in Treg cells because

these cells are unable to upregulate CD46-CYT-1 expression.

The lack of CD46 expression on somatic cells in mice (Tsujimura

et al., 1998) indicates substantial differences between mice and

humans in the signaling pathways used by their cells to integrate

local complement activation. This notion is supported by results

we obtained when we examined mouse T cells for this ‘‘CTSL-

C3’’ axis: mouse cells also required processing of intracellular
(D) Phenotype of Treg cells from a CD46-deficient (CD46-def.) patient and age

CD4+CD25hiCD127lo Treg cells, FOXP3 expression and percentages of

CD25hiCD127loCD45RA�), and II (CD4+CD25brightCD127loCD45RA+), (ii) suppres

coculture, and (iii) calculated percentage suppression with mean values ± SD. *p

Imm
C3 for Th1 cell-mediated responses, but its cleavage was

independent of CTSL. Of note, human CTSL is distinct from

mouse CTSL in phylogeny, biochemical properties, and expres-

sion patterns (Reiser et al., 2010). Thus, although mouse CTSL

processes mouse C3 in vitro, mouse CD4+ T cells seem to

generate sufficient local C3a and C3b for Th1 cell induction in

a CTSL-independent fashion, in line with the requirement for

local extracellular C3 convertase assembly in this species

(Strainic et al., 2008).

The most unexpected but likely most noteworthy outcome

of our studies is the discovery of intracellular C3 processing.

This represents a paradigm shift in our thinking about com-

plement biology, demonstrating that complement activation is

not only confined to plasma or hemolymph or the surface of cells

but also occurs within the inside of cells. Importantly, this is not a

T cell-specific phenomenon and, thus, intracellular complement

activation is likely of broad physiological significance. From an

evolutionary perspective, this makes sense because the early

complement system was designed for activation of individual

cells in order to prepare them for battle with injury, stress, or

pathogens; and only later, when organisms began to develop

organs, did complement components become secreted into

the plasma or the hemolymph system (Le Friec and Kemper,

2009). The discovery of ubiquitous intracellular complement

activation now advocates exploring additional roles for comple-

ment in other basic processes of the cell, e.g., gene translation

and cell-cycle progression. Furthermore, crosstalk between

complement and ‘‘classic’’ intracellular danger sensors such

as the nucleotide-binding oligomerization domain (NOD)-like

receptor (Chen et al., 2009) and the retinoic acid inducible

gene-I (RIG-I)-like receptor systems (Thompson and Locarnini,

2007), previously dismissed because of the spatial separation

of these systems, is now imaginable.

Our observations could also have implications for the design

of next generation therapeutics-targeting complement. Interior

pools of complement proteins and distinct modes of intracellular

complement activation will need to be considered. T cells from

patients with autoimmune arthritis displayed hyperactive intra-

cellular complement activation and ‘‘correction’’ of this system

by CTSL inhibition induced normalized Th1 cell-mediated

responses. Thus, this intracellular pathway is amenable to ther-

apeutic intervention with cell-permeable reagents. However,

although our data indicate that the activation of C3 by CTSL

plays a key role in T cell survival and function, CTSL may have

additional, nonidentified substrates (Reiser et al., 2010) in human

CD4+ T cells. We therefore cannot exclude that the CSTL-

mediated induction of effector responses also involves the

cleavage of other mediators or that blockage of these mediators

by CTSL inhibition, in addition to prevention of C3 cleavage, in

patients with arthritis contributes to the observed cytokine

reduction. These possibilities should be explored.

Our data indicate that the C3aR is nonredundant for human

Th1 cell effector function, whereas in mice the C5aR can partially

substitute for Th1 cell induction in C3ar–/– animals (Strainic et al.,
- and sex-matched healthy controls (HD). Shown are (i) percentage of bulk

Treg cell subpopulations I (CD4+CD25hiCD127loCD45RA+), III (CD4+

sive function of Treg cells via 3H-thymidine incorporation measurement in 1:1

< 0.05; **p < 0.01; ***p < 0.005. See also Figure S6.
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Figure. 7. Intracellular C3 Stores and ‘‘Tonic’’ Intracellular C3a Generation Occurs inMyeloid, Lymphoid, and Nonmyeloid, Nonlymphoid Cell

Populations

Freshly isolated monocytes, neutrophils, CD8+ T cells, B cells, and cultured epithelial cells, endothelial cells, and fibroblasts were assessed for presence of

intracellular C3b by flow cytometry and confocal microscopy image analyses (first and second column of panels, respectively), as well as for C3a (third and fourth

column of panels, respectively) in the resting state. Results shown are representative of three independently performed experiments (n = 3). Scale bar represents

10 mM. MFI, mean fluorescence intensity.
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2008), suggesting additional species-specific differences in the

contribution(s) of complement to effector T cell induction. These

differences extend also to pathways modulating Treg cell

responses: In mice, lack of C3aR and C5aR engagement on

naive CD4+ T cells, proposed to occur during interaction with

tolerogenic antigen-presenting cells, fosters iTreg cell induction

(Strainic et al., 2013). We suggest a different scenario in humans:

intracellular complement activation and C3aR-engagement

occurs in Treg cells but these cells do not upregulate the

‘‘proinflammatory’’ tail, CYT-1, of CD46 upon stimulation. Inter-

estingly, highly inflammatory settings can alter CD46-mediated

signals on human Treg cells and inhibit their function (Le Buanec

et al., 2011). Thus, delineating what stimuli and pathways regu-

late CD46 isoform expression might have implications for thera-

peutic or environmental manipulation of Treg cell function.

Lastly, potential universal intracellular C3 activation suggests

that a deregulation of this system could contribute to other

diseases beyond Th1 cell-mediated autoimmunity, including

cancer or allergies (Laplante and Sabatini, 2012). The C3-acti-

vating protease, however, is likely cell-specific; although we

found that CTSL also processes C3 in monocytes (data not

shown), C3 activation in lung epithelial cells, for example, is

not mediated by CTSL. Therefore, identifying the C3-activating

proteases within other immune-competent cells and under-

standing how intracellular complement activation is positively

or negatively regulated are among important questions that

now need to be addressed.

EXPERIMENTAL PROCEDURES

Healthy Donors and Patients

Blood samples were obtained with appropriate ethical and institutional

approvals (Wandsworth Research Ethics Committee, REC number 09/

H0803/154). T cells were purified from buffy coats (NHSBT, Tooting, UK) or

blood samples from healthy volunteers after informed consent. C3-deficient

Patient 1 from France is 8 years old, with undetectable serum C3 and recurrent

pyogenic infections from the age of 2 years on (Ghannam et al., 2008).

Genomic sequencing of theC3 gene of Patient 1 demonstrated a single nucle-

otide insertion at position 1648 in the maternal allele and a change from

c.1648T to C (p.Ser550Pro) in the paternal allele. Patients 2 and 3 were 9.5-

and 8-year-old siblings, respectively, with no detectable serum C3 (the C3

gene mutations in these patients have not yet been defined; SM, personal

communication), the elder having severe recurrent infections from an early

age (Pekkarinen et al., 2013). Both patients take prophylactic amoxicillin. All

patients were infection-free at the time of blood sampling; blood collection

and processing was conducted with approval of the respective local ethics

committees. An adult CD46-deficient patient with described defective Th1

cell-mediated responses was recruited in France (Couzi et al., 2008). This

patient has hemolytic uremic syndrome (HUS) and common variable immuno-

deficiency (CVID), receiving monthly intravenous immunoglobulin. The patient

had neither infection nor active HUS at the time of blood sampling. Adult

patients with inflammatory arthritis (including rheumatoid arthritis and juvenile

arthritis) were recruited. All patients had active disease with disease activity

scores for 28 joints (DAS28) > 4.9, representing moderately severe activity,

despite therapy with disease modifying antirheumatic drug methotrexate.

Synovial fluid was obtained during therapeutic knee arthrocentesis.

Antibodies, Proteins, and Inhibitors

Details are included in Supplemental Experimental Procedures.

Enzymatic Reactions and Detection of C3 Cleavage Fragments

Recombinant CTSL was activated according to manufacturer’s protocol. Un-

less otherwise indicated, 150 ng of purified human C3 was incubated with
Imm
250 ng of CTSL in 100 ml PBS for different time points (unless otherwise indi-

cated for 60 min) at 37�C ± addition of CTSL inhibitor (40 nM) or antibodies

to CTSL that block or do not block C3 cleavage. Reaction mixtures were

analyzed for C3 fragments by immunoblotting or using SilverXpress Silver

Staining Kit (Life Technologies). C3 and CTSL cleavage reactions were per-

formed at pH 5.6 (to mimic lysosomal CTSL activity) and pH 7.3 (to mimic

secreted CTSL activity at alkaline pH) and yielded comparable results (data

not shown). Enzymatic reactions for C3 and CTSG and CTSB, for C4 and C5

and CTSL, and for mouse C3 and mouse CTSL were performed similarly as

noted in the text.

T Cell Isolation, Activation, and Assessment of Apoptosis and

Viability

T cell isolation and activation and measurement of viability or apoptosis

were carried out with standard techniques (Supplemental Experimental

Procedures).

Other Cells

ME-180 and HUVEC, an epithelial cell line and endothelial cell line, res-

pectively, from the American Type Tissue Culture Collection (ATCC; Mana-

ssas, VA), were grown in McCoys 5a media (Invitrogen), and EBM-2 (Lonza)

both supplemented with heat-inactivated fetal calf serum (FCS). Human fibro-

blasts (ATCC) were cultured in Fibroblast Basal Medium (ATCC) according to

manufacturer’s protocol. Human CD8+ T cells, monocytes, and B cells were

identified within PBMC preparations by fluorochrome-conjugated antibodies

to CD8, CD14, and CD19, respectively. Neutrophils were prepared from eryth-

rocyte fractions of whole-blood Ficoll separations (Cardone et al., 2010) by

hypotonic lysis.

Confocal Microscopy and Colocalization Analysis

Fixed, permeabilized cells were stained with primary antibodies overnight

at 4�C. Where indicated, staining with secondary antibodies was performed

for 2 hr at room temperature. Cells were mounted with Fluoromount-G

(SouthernBiotech, Birmingham, AL) and images were obtained in the KCL

Nikon Imaging Centre by confocal fluorescence microscopy with either A1R

SI Confocal Microscope (360 objective) or Super Resolution Confocal Micro-

scope (N-SIM) (3100 objective), both from Nikon� (Surrey, UK). Pearson’s

Correlation Coefficient was calculated with NIS Elements software version

4.03 (Nikon). At least ten layers in 3D plane were scanned for each sample

and for all samples a cropped image of a minimum of 12 cells was used to

determine a total of 5 colocalization coefficients. Median values for all layers

and cells were calculated and used to plot Pearson’s Correlation Coefficient.

Experiments were performed at least three times with three different healthy

donors each time.

Cytokine Measurements

Cytokines in cell supernatants were measured using human or mouse Th1 and

Th2 or Th1, Th2 and Th17 Cell Cytometric Bead Arrays (BD), or by intracellular

staining.

RT-PCR and RNA Silencing

Details of all primers used and RNA silencing with siRNA are given in Supple-

mental Experimental Procedures.

Statistical Analysis

Analyses were performed on GraphPad Prism (La Jolla, CA). Data are

presented as mean ± SD or median (interquartile range, IQR) for parametric

and nonparametric data, respectively, and compared with paired t tests with

Bonferroni correction for multiple comparisons, Wilcoxon signed rank tests,

the two-tailed Mann-Whitney test, or one-way ANOVA with a Tukey multiple

comparison post hoc test, as appropriate. p values < 0.05 denoted statistical

significance throughout.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and Supplemental Experimental

Procedures and can be found with this article online at http://dx.doi.org/10.

1016/j.immuni.2013.10.018.
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