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Abstract

We study the existence of natural and projectively equivariant quantizations for differential operators
acting between order 1 vector bundles over a smooth manifold M . To that aim, we make use of the Thomas–
Whitehead approach of projective structures and construct a Casimir operator depending on a projective
Cartan connection. We attach a scalar parameter to every space of differential operators, and prove the
existence of a quantization except when this parameter belongs to a discrete set of resonant values.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The term quantization carries several meanings in mathematics. It seems to be an appropriate
starting point for this introduction to define what will be meant by quantization throughout this
paper. Given two natural vector bundles E1 and E2 over a smooth manifold M , one can consider
the space D(E1,E2) of differential operators acting between smooth sections of E1 and E2. This
space is filtered by the order of differentiation:

D(E1,E2) =
⋃
k∈N

Dk(E1,E2).
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The space S(E1,E2) of principal symbols associated to D(E1,E2) is the graded space associated
to this filtration:

S(E1,E2) =
⊕
k∈N

Sk(E1,E2),

where Sk(E1,E2) = Dk(E1,E2)/Dk−1(E1,E2).
It is immediate to see that D(E1,E2) and S(E1,E2) are isomorphic as vector spaces. More-

over, each of these spaces is a representation of the group of local diffeomorphisms. One could
thus wonder if they remain isomorphic once endowed with this representation structure. If we
call quantization a linear bijection

Q :S(E1,E2) → D(E1,E2),

satisfying a normalization condition, then the latter question is equivalent to asking for the ex-
istence of a natural quantization, namely commuting with the action of local diffeomorphisms.
An infinitesimal version of naturality is the commutation of the quantization with Lie derivatives
in the direction of any element of the algebra Vect(M) of smooth vector fields over M .

It is not difficult to see that such quantizations do not exist. Though, some intermediate results
have been obtained in the Euclidean case M = Rm (see [9–11,18,19,21]).

In [18], P. Lecomte showed the existence and unicity of an slm+1-invariant quantization for
the space Dλμ of differential operators acting between λ and μ-densities, when the difference
δ = μ − λ does not belong to a discrete set of so-called resonant values. An slm+1-invariant
quantization is a quantization Q which satisfies

LX ◦ Q = Q ◦ LX, ∀X ∈ slm+1,

where slm+1 is the projective subalgebra of Vect(Rm). It is the embedding of sl(m + 1,R) gen-
erated by the vector fields

∂i, xj ∂i, and xjxi∂i .

Thus, though Dλμ is not isomorphic to its space of symbols as a representation of Vect(Rm), it
is isomorphic to it as a representation of slm+1. This result is in a sense optimal since slm+1 is a
maximal subalgebra of the Lie algebra Vect∗(Rm) of polynomial vector fields over Rm.

Similar results have been obtained on Rm for the spaces Dλμ: C. Duval, P. Lecomte and
V. Ovsienko showed in [11] the existence and unicity of an sop+1,q+1-invariant quantization
(with p + q = m), where sop+1,q+1 is the conformal algebra of Vect(Rm), also maximal in
Vect∗(Rm). More generally, F. Boniver and P. Mathonet have determined all the maximal subal-
gebras g of Vect∗(Rm) and settled an existence criterion for g-invariant quantizations [1].

Given the abundance of results obtained over Rm, the question of whether or not they can be
extended to an arbitrary manifold M naturally arises. In this case, one cannot ask for slm+1-
invariance of a quantization since slm+1 is not well defined anymore: there is no canonical
embedding of sl(m + 1,R) in Vect(M) in general. P. Lecomte proposed a generalization of
slm+1-invariant quantizations in [20] which will be explained further down using the notion of
projective structure. A projective structure (or projective class) over a manifold M is an equiv-
alence class of linear torsion-free connections on M defining the same germs of geodesics over
M up to reparametrization.
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Let Co(M) denote the space of linear torsion free connections over M . A natural and projec-
tively equivariant quantization corresponding to a space D(E1,E2) of differential operators is a
map

Q : Co(M) × S(E1,E2) → D(E1,E2),

such that

• Q is natural, i.e. commutes with the action of local diffeomorphisms;
• Q is projectively equivariant: Q∇ = Q∇′ if ∇ and ∇′ are projectively equivalent;
• Q∇ :S(E1,E2) → D(E1,E2) is a quantization for all ∇ ∈ Co(M).

Defined this way, natural and projectively equivariant quantizations are a generalization of the
notion of slm+1-invariant quantizations over Rm in the following sense: if ∇0 denotes the canon-
ical flat connection over Rm and Q is such as above, then Q∇0 is a slm+1-invariant quantization.

In this paper, we settle an existence criterion for natural and projectively equivariant quanti-
zations when E1 and E2 are vector bundles associated to the fiber bundle P 1M of linear frames
of M .

Our method relies on M. Bordemann’s proof of the existence of natural and projectively
equivariant quantizations for differential operators acting between densities [4]. The method
consists in translating the problem from the original manifold M to a manifold M̃ , which is a
principal bundle over M with one additional dimension. The choice of the bundle M̃ is justified
by the existence of a natural map associating a connection ∇̃ to any projective class [∇] of linear
connections over M . This construction corresponds to the approach undertaken by T.Y. Thomas
and J.H.C. Whitehead in the 20’s to the geometry of paths, which is the study of projective
structures (see [28,29,31]).

The quantization problem is easily solved on M̃ by means of the so-called standard quantiza-
tion τ̃ , a natural map providing a quantization for any linear connection over M̃ . In addition, it is
projectively equivariant when considered as depending on a linear connection ∇ over M via ∇̃ .

Using this method, the difficulty lies in the translation of the problem from M to M̃ . The first
step consists in transforming a symbol over M into a symbol over M̃ by a natural and projectively
equivariant map R. After applying the standard quantization to the lifted symbol, one has to
bring down the differential operator obtained over M̃ on a differential operator over M , again
via a natural and projectively equivariant map D. The situation is summarized by the following
diagram:

S̃(E1,E2)
τ̃∇̃

D̃(E1,E2)

D∇

S(E1,E2)

R∇

D(E1,E2).

(1)

The searched quantization is given by Q∇ = D∇ ◦ τ̃∇̃ ◦ R∇ for every ∇ in Co(M).
A first attempt to adapt M. Bordemann’s results to differential operators acting between

p-forms and smooth functions showed that the lift of symbols is a very critical step in this con-
struction [15]. In the case of differential operators acting between densities, the lifted symbols
were solutions of a partial differential equation. Long and tedious computations were necessary
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to find the equivalent of this equation for differential operators acting on forms. Moreover, there
was no clue for a systematic construction of such an equation for arbitrary differential operators.

The first problem we encounter in the search of a general lift of symbols is the determination
of the space S̃(E1,E2) of symbols over M̃ in which the lift is valued. To solve this problem,
we use the assumption made on the vector bundles we consider: since they are associated to
P 1M , symbols are in bijection to equivariant functions from P 1M to V , where V is a represen-
tation of GL(m,R). In Section 4, we show how it is possible to associate a representation Ṽ of
GL(m + 1,R) to any representation V of GL(m,R). The lift of symbols, which are functions
from P 1M to V , is defined as valued in functions from P 1M̃ to Ṽ .

To tackle the lift problem, we use the theory of Cartan bundles and Cartan connections. Its
relevance to our problem hinges on the fact that a Cartan connection ω∇ on a Cartan bundle over
M is naturally associated to any projective structure [∇] over M . Moreover, we define a Casimir
operator over any Cartan bundle, whose definition and properties are similar to the properties of
the classical Casimir operator acting on a representation of a semi-simple Lie algebra, but which
depends on a Cartan connection. This operator plays a key role in our construction of the lift of
symbols. To perform it, we no longer make use of a partial differential equation but rather define
the lift of a symbol P to be the unique eigenvector of the Casimir operator depending on ω∇
which projects on P .

A scalar parameter δ is attached to every space of differential operators in a way described
in Section 4. When it belongs to a discrete set of resonant values, it is not possible to lift the
symbols by means of the Casimir operator. We explicitly compute the set of these values for
every space of differential operators, and in the case of Dλμ recover the set of resonant values
for δ = μ − λ obtained over Rm in [18]. On the other hand, the descent of differential operators
is quite straightforward to perform for any value of δ.

Altogether, we obtain the existence of a natural and projectively equivariant quantization for
differential operators acting between sections of order 1 vector bundles whenever δ is not res-
onant. Note that this result is not optimal: P. Mathonet and F. Radoux showed in the case of
differential operators acting between densities that there are resonant values for which the quan-
tization still exists [23]. These values are the ones for which the slm+1-quantization exists over
Rm but is not unique.

There are still open questions related to the existence of natural quantizations. First, slm+1-
invariant quantizations are unique for non-resonant values. One could wonder if it is still the
case for natural and projectively equivariant quantizations; F. Radoux showed in [25] that unicity
is not preserved. Thus, one could classify these quantizations for example by a cohomology
approach, initiated in [16].

Second, other invariances than the projective one could be generalized over an arbitrary
manifold. In particular one could study the existence of natural and conformally equivariant
quantizations, namely natural quantizations depending on a metric in a conformally equivariant
way. We have the hope that an existence result could be obtained via a method similar to the one
presented in this paper, but using the bundle described by Ch. Fefferman and C.R. Graham in
[12] rather than M̃ .

2. Basic notions and notations

Throughout this paper, we will denote by M a smooth, Hausdorff, connected, countable man-
ifold. Moreover, we will assume that the dimension m of M is strictly greater than 1.
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2.1. Differential operators and associated symbols

Let E1(M), E2(M) (or simply E1, E2 when no confusion is possible) be two finite rank
vector bundles over M , and D(E1,E2) the space of differential operators acting between the sets
Γ ∞(E1) and Γ ∞(E2) of smooth sections of E1 and E2, respectively. This space is filtered by
the order of differentiation:

D(E1,E2) =
⋃
k∈N

Dk(E1,E2),

where Dk(E1,E2) is the space of differential operators of order at most k. Locally, such operators
are of the form

D =
∑

|α|�k

Cα∂
α1
1 · · · ∂αm

m ,

where the coefficients Cα belong to Hom(E1,E2).

Definition 2.1. The principal symbol map, denoted by σ , is the map defined (in local coordinates)
on D(E1,E2) by

σ :
∑

|α|�k

Cα∂
α1
1 · · · ∂αm

m 
→
∑
|α|=k

Cαξ
α1
1 · · · ξαm

m .

We will denote by S(E1,E2) the space of principal symbols (or simply symbols) of the ele-
ments of D(E1,E2). This space is nothing else but the graded space associated with the filtration
of the latter:

S(E1,E2) =
⊕
k∈N

Sk(E1,E2),

where each Sk(E1,E2) is isomorphic to Γ ∞(Hom(E1,E2) ⊗ SkT M).

Definition 2.2. A quantization for D(E1,E2) is a linear bijection

Q :S(E1,E2) →D(E1,E2)

satisfying σ ◦Q= Id.

Such maps are easy to find. The standard quantization, or Lichnerowicz quantization, is a map

τ : Co(M) × S(E1,E2) →D(E1,E2),

where Co(M) denotes the space of torsion free linear connections over M (see [22]). This map
provides a quantization for every connection ∇ and is natural: for every local diffeomorphism φ

over M , one has

φ∗(τ∇(P )
) = τ(φ∗∇)

(
φ∗P

)
, ∀∇ ∈ Co(M), P ∈ S(E1,E2).
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The existence of quantizations implies that every space of differential operators is isomorphic
as a vector space to its space of symbols. Though, they do not remain isomorphic once endowed
with their canonical structure of representation of local diffeomorphisms. In other words, among
all the quantizations between S(E1,E2) and D(E1,E2), none is natural, i.e. satisfies for every
local diffeomorphism φ over M and every symbol P : φ∗(Q(P )) = Q(φ∗P).

2.2. Order 1 bundles

In this paper, we do not consider arbitrary vector bundles over M . Recall that if G is a Lie
group, P is a G-principal bundle over M and F is a manifold on which G acts on the left, then the
associated bundle to P and F , denoted by P ×G F is the quotient of P × F by the equivalence
relation ∼ defined by

(p,f ) ∼ (p′, f ′) if there exists g in G such that (p′, f ′) = (
p · g,g−1 · f )

.

It is a classical result that sections of these bundles are in canonical correspondence with G-
equivariant functions h :P → F , namely functions satisfying

h(x · g) = g−1 · h(x) ∀g ∈ G.

Definition 2.3. Let P 1M be the GL(m,R)-principal bundle of linear frames of M :

P 1M = {frames vx of TxM: x ∈ M}.
A vector bundle E over M is said to be of order 1 if it is associated to P 1M :

E = P 1M ×GL(m,R) V

for some (left) representation (V ,ρ) of GL(m,R).

In this paper, we always assume E1 and E2 to be of order 1, covering tensor and densities
bundles as a particular case. We systematically identify sections of these bundles with their as-
sociated equivariant functions over P 1M . Given a representation (V ,ρ) of GL(m,R), the space
of these functions is denoted by

C∞(
P 1M,V

)
ρ
.

As a consequence of this choice, symbols of differential operators are also sections of an order 1
bundle. Indeed, if E1 and E2 are associated to P 1M and respectively V1 and V2, then homomor-
phisms from E1 to E2 correspond to equivariant functions from P 1M to V ∗

1 ⊗ V2. Thus, any
symbol of order k is assimilated to an element of

C∞(
P 1M,V ∗

1 ⊗ V2 ⊗ SkRm
)
ρ
.

Remark 2.4. An important feature of vector bundles belonging to this family is their naturality:
any local diffeomorphism φ :M → N can be lifted to a local diffeomorphism φ∗ :P 1M ×GL(m,R)

V → P 1N ×GL(m,R) V . Therefore, it makes sense to talk about the naturality of the maps we shall
consider in the sequel.
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2.3. The question

Definition 2.5. Two connections ∇ and ∇′ in Co(M) are said to be projectively equivalent if
there exists α ∈ Ω1(M) such that

∇′
XY = ∇XY + 1

m + 1

(
α(X)Y + α(Y )X

)
, ∀X,Y ∈ Vect(M),

where Vect(M) is the Lie algebra of smooth vector fields over M . Alternatively, H. Weyl proved
that two connections are projectively equivalent if and only if they define the same germs of
geodesics on M up to reparametrization [30]. Equivalence classes of this relation are called
projective structures, or projective classes, and the projective class of a given connection ∇ is
denoted [∇].

Definition 2.6. A natural and projectively equivariant quantization for D(E1,E2) is an operator
associating to every manifold M a map

QM : Co(M) × S
(
E1(M),E2(M)

) → D
(
E1(M),E2(M)

)
,

such that:

• QM is natural: for every local diffeomorphism φ : M → N one has

QM
(φ∗∇)

(
φ∗P

) = φ∗(QN∇ (P )
)
,

for all ∇ ∈ Co(N) and P ∈ S(E1(N),E2(N));
• QM is projectively equivariant (or projectively invariant): QM∇ = QM

∇′ if ∇ and ∇′ are pro-
jectively equivalent;

• QM∇ :S(E1(M),E2(M)) → D(E1(M),E2(M)) is a quantization for all ∇ ∈ Co(M).

In the sequel, to avoid uselessly heavy notations, we will simply denote by Q the map QM .
The aim of this paper is to give an existence criterion for natural and projectively equivariant

quantizations when E1 and E2 are order 1 vector bundles.

3. Two approaches to projective structures

In the 20’s, several authors beared interest in the so-called projective geometry of path, namely
the study of projective structures. While one approach, developed among others by O. Veblen,
T.Y. Thomas and J.H.C. Whitehead, is formulated in terms of symmetric linear connections,
E. Cartan independently established at almost the same time the theory of Cartan connections to
study projective structures. These theories are of course linked, but depending on the context, it
can be more convenient to choose one over the other. As both theories are useful to solve our
problem, we briefly present each of them in this section.

3.1. Thomas–Whitehead’s approach

At the time the original papers of T.Y. Thomas [28,29] and J.H.C. Whitehead [31] were
written, the theory of principal bundles and Ehresmann connections was not yet established.
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C. Roberts formulated their work in terms of this more modern setting in [26]. The idea be-
hind this approach consists in associating a unique linear connection on a (m + 1)-dimensional
principal bundle over M to a projective structure on a m-dimensional manifold M .

We denote by R0 the set R \ {0}, R+
0 the set {x ∈ R: x > 0} and M̃

π→ M the bundle
P 1M ×GL(m,R) R+

0 , where the action of GL(m,R) over R+
0 is given by

A · λ = |detA|−1λ.

It is the fiber bundle of positive 1-densities over M . Remark that it is also a R+
0 -principal bundle

for the action

ν : M̃ × R+
0 → M̃; ([v, r], s) 
→ [v, rs].

Therefore, we can consider on M̃ the Euler vector field E , which is the fundamental vector field
associated to 1: Ey = Dt (y · et )|t=0 for all y ∈ M̃ .

Definition 3.1. A Thomas–Whitehead projective connection, or T–W connection is a torsion-free
linear connection ∇̂ over M̃ satisfying:

• ∇̂E = 1
m+1 Id;

• νs∗(∇̂XY) = ∇̂νs∗(X)νs∗(Y ), ∀X,Y ∈ Vect(M̃).

A particular family of T–W connections consists in the normal T–W connections, whose cur-
vature satisfies a normalization condition (see [26] for a complete definition).

Any T–W connection canonically induces a projective structure on M in a way described in
[26]. Thomas and Whitehead’s approach of projective structures lies on the following fundamen-
tal theorem, proved in [26].

Theorem 3.2. Given a projective structure [∇] on a manifold M , there exists a unique normal
T–W connection ∇̃ on M̃ inducing [∇]. Moreover, the map ∇ 
→ ∇̃ is natural.

3.2. Cartan’s approach

While Thomas and Whitehead associate to a projective structure a unique normal T–W con-
nection on the bundle M̃ , Cartan associates to a projective structure a normal projective Cartan
connection on another principal bundle over M , called Cartan bundle. We only outline the theory
of Cartan connections; a more detailed presentation can be found in [17] or [27] for example.

Definition 3.3. Let M be a m-dimensional manifold, G be a Lie group with Lie algebra G, G0
be a closed subgroup of G such that dimG/G0 = m and P be a G0-principal bundle over M .
A Cartan connection ω over P is a G-valued 1-form over P satisfying:

• ω(h∗) = h for all h in the Lie algebra G0 of G0;
• R∗

gω = Ad(g−1) ◦ ω for all g ∈ G0;
• ωy is a bijection between TyP and G for all y ∈ P ,

where R denotes the (right) action of G0 over P .
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Definition 3.4. The curvature of a Cartan connection is the G-valued 2-form Ω over P defined
by

Ω = dω + [ω,ω],

where d is the De Rham differential and

[ω,ω](X,Y ) = [
ω(X),ω(Y )

]
, ∀X,Y ∈ T P.

As it is the case with T–W connections, there is a notion of normality for Cartan connections.
Normal Cartan connections are defined by means of a normalization condition that their curvature
satisfies (see [17, pp. 135–136]).

Definition 3.5. A Cartan connection is said to be projective if

G = PGL(m,R) = GL(m + 1,R)/R0,

and

G0 = Hm+1 = {(
A 0
α a

)
: A ∈ GL(m,R), a ∈ R0, α ∈ Rm∗}/R0

= {[
A 0
α 1

]
: A ∈ GL(m,R), α ∈ Rm∗}.

Lie algebras of G and G0 are respectively given by

G = gl(m + 1,R)/R = sl(m + 1,R),

and

G0 = Hm+1 = {(
A 0
α − trA

)
: A ∈ GL(m,R), α ∈ Rm∗}.

Note that the Lie algebra G is 3-graded:

G = g−1 ⊕ g0 ⊕ g1,

where g−1 = {( 0 u
0 0

)
: u ∈ Rm} is isomorphic to Rm, g0 = {( A 0

0 − trA

)
: A ∈ gl(m,R)} is isomorphic

to gl(m,R) and g1 = {( 0 0
α 0

)
: α ∈ Rm∗} is isomorphic to Rm∗.

3.3. A particular Cartan bundle

A projective Cartan bundle is simply a principal bundle admitting a projective Cartan connec-
tion. The latter condition does not fix an explicit form for such a bundle but rather prescribes how
it behaves under a change of coordinates (see [27]). An explicit model of a Cartan bundle is for
example given in [17] but we here describe another Cartan bundle, proposed by D. Saunders and
M. Crampin in [8], which is closer to the original idea of Cartan of “attaching a projective space
of the same dimension as the manifold to each of its points” [7].
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Definition 3.6. For every X ∈ T M̃ , let [X] denote the class of X for the equivalence relation
induced by the action ν∗ of R+

0 on T M̃ :

[X] = [Y ] if there exists s ∈ R+
0 such that X = ν∗sY.

The bundle T M over M is the space of all these equivalence classes:

T M = {[X]: X ∈ T M̃}.

It is a vector bundle whose typical fiber is (m + 1)-dimensional. Thus, by taking the quotient
of each fiber minus its origin by the multiplicative action of R0 we obtain over each point of M a
projective space of dimension m. Moreover, T M admits a global non-vanishing section e, given
by

ex = [Ey],

for any y in the fiber π−1(x) of x.
Consider the frame bundle associated to T M . It is a GL(m+ 1,R)-principal bundle on which

R0 acts canonically by multiplication. Taking the quotient PM of the latter by this action, we
obtain a PGL(m,R)-principal bundle over M . The Cartan bundle we use in our proof of the
existence of quantizations is a subbundle of the latter.

Definition 3.7. The bundle CM is the Hm+1-principal subbundle of PM containing the points
whose last element is a (nonzero) multiple of e:

CM = {([X1]x, . . . , [Xm]x,αex

)
basis of TxM: x ∈ M, α ∈ R0

}
/R0.

This bundle can also be viewed as

{([X1]x, . . . , [Xm]x, ex

)
basis of TxM: x ∈ M

}
.

Notation 3.8. In order to avoid lengthy notations, points of CM will be denoted by ([w], e),
where w = (X1, . . . ,Xm) and [w] = ([X1], . . . , [Xm]).

The following result is proved in [8].

Theorem 3.9. To every projective class [∇] on M is associated a unique normal Cartan connec-
tion ω∇ over CM . Moreover, the correspondence ∇ 
→ ω∇ is natural.

Remark 3.10. The two described approaches of projective structures are linked to each other by
the theory of tractor calculus (see [5,6]). This general theory extends beyond the purpose of this
paper but we have implicitly used it in the above developments: the bundle T M actually belongs
to the family of tractor bundles.
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4. From a representation of GL(m,R)GL(m,R)GL(m,R) to a representation of GL(m + 1,R)GL(m + 1,R)GL(m + 1,R)

Following the general proof strategy explained in the introduction and summarized in dia-
gram (1), we have to lift elements of S(E1,E2) to a corresponding space S̃(E1,E2) over M̃ .
But the intuitive notion of corresponding space of symbols S̃(E1,E2) over M̃ to a given
space of symbols S(E1,E2) over M is not well defined. As an example, it may seem ob-
vious to lift elements of S(C∞(M),C∞(M)) to S(C∞(M̃),C∞(M̃)), but one could wonder
whether the elements of S(

∧m
(T ∗M),C∞(M)) should be lifted to S(

∧m
(T ∗M̃),C∞(M̃)) or

to S(
∧m+1

(T ∗M̃),C∞(M̃)).
To answer this question and obtain a formal definition of the space of symbols over M̃ in

which the original symbols are lifted, we associate to every representation V of GL(m,R) a
representation Ṽ of GL(m+1,R). This is sufficient to tackle the above problem since we are only
considering vector bundles associated to P 1M , which implies that each element of Sk(E1,E2)

is identified with a GL(m,R)-equivariant function

P 1M → V ∗
1 ⊗ V2 ⊗ SkRm.

We define its lift as valued in the space of GL(m + 1,R)-equivariant functions

P 1M̃ → (
V ∗

1 ⊗ V2 ⊗ SkRm
)∼

.

This section is dedicated to the definition of Ṽ given V , and to the study of some properties
of representations of type Ṽ . This is performed using the theory of representations of GL(m,R),
that we here outline following [13,14,24]. We only consider finite-dimensional and continuous
representations of GL(m,R), i.e. representations (V ,ρ) such that ρ(A) is continuous in the com-
ponents (A)ij of A for every A ∈ GL(m,R).

4.1. Young diagrams and irreducible representations

Definition 4.1. A Young diagram, or Ferrer diagram of size d ∈ N and depth p ∈ N is an element
D = (d1, . . . , dp) of Np satisfying

d1 � · · · � dp, and
p∑

i=1

di = d.

A Young diagram D = (d1, . . . , dp) is commonly represented by an array of p lines, the ith
line containing di boxes. The following picture represents the Young diagram (3,2,2):

Young diagrams are of particular relevance to representation theory since they allow a handy
classification of irreducible representations of GL(m,R) (see [24]).
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On the one hand, every (D,n, δ), where D is a Young diagram of depth at most m − 1, n ∈ Z
and δ ∈ C, canonically gives rise to an irreducible representation S(D,n,δ) of GL(m,R). It is
included in

⊗d Rm if D = (d1, . . . , dm−1) is of size d , and given by

S(D,n,δ) = {|detA|δ(detA)nρc(A)vD: A ∈ GL(m,R)
}
,

where ρc denotes the canonical action of GL(m,R) over
⊗d Rm, and vD is an element of

⊗d Rm

uniquely determined by D. If (e1, . . . , em) denotes the canonical basis of Rm, ∧ the exterior
product and Xk the kth symmetric product of any X in Rm, then vD is given by

vD = e
d1−d2
1 ⊗ (e1 ∧ e2)

d2−d3 ⊗ · · · ⊗ (e1 ∧ · · · ∧ em−1)
dm−1 .

On the other hand, each irreducible representation of GL(m,R) is characterized up to isomor-
phism by a Young diagram of depth at most m − 1, an integer and a complex number, i.e. is
isomorphic to some S(D,n,δ).

Notation 4.2. In the sequel, unless otherwise stated, (V ,ρ) denotes an irreducible representation
characterized by (D,n,0). A representation characterized by (D,n, δ) is denoted by (V ,ρδ).

We of course deal with non irreducible representations of GL(m,R) but we always assume
them to be finite direct sums of irreducible representations of GL(m,R). Moreover, the above
classification allows us to consider without loss of generality that irreducible representations of
GL(m,R) are always embedded in

⊗d Rm for some d ∈ N.
Throughout this section we shall illustrate the presented notions with two simple irreducible

representations of GL(m,R), i.e. the space SkRm of symmetric contravariant tensors of order k,
and the space

∧p Rm∗ of antisymmetric covariant tensors of order p; ρ represents the canonical
action of GL(m,R) on these spaces.

Using the explicit form of vD , it is easily seen that (SkRm,ρ), which corresponds to n = 0
and δ = 0, is represented by a Young diagram consisting in a single row of length k:

k

To find the Young diagram representing (
∧p Rm∗, ρ), which corresponds to n = −1 and δ = 0,

we note that the latter is canonically isomorphic to
∧m−p Rm as a vector space. More precisely,

the isomorphism between
∧p Rm∗ and

∧m−p Rm maps any ω1 ∧ · · · ∧ ωp to X1 ∧ · · · ∧ Xm−p

if and only if

(ω1 ∧ · · · ∧ ωp)(Y1 ∧ · · · ∧ Yp) = det(X1, . . . ,Xm−p,Y1, . . . , Yp),

for all Y1, . . . , Yp in Rm. Thus, according to the definition of vD ,
∧p Rm∗ is characterized by the

Young diagram consisting in a single column of depth m − p:

m − p
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4.2. Adding one dimension

Definition 4.3. Let (V ,ρδ) be an irreducible representation of GL(m,R) characterized by
(D,n, δ). Then the irreducible representation (Ṽ , ρ̃) of GL(m + 1,R) induced by V is the one
characterized by (D,n,0).

According to this definition, the irreducible representations ((SkRm)∼, ρ̃) and ((
∧pRm∗)∼, ρ̃)

of GL(m + 1,R) are respectively isomorphic to (SkRm+1, ρ̃) and (
∧p+1 Rm+1∗, ρ̃).

If V is not irreducible but admits the decomposition V = V1 ⊕ · · · ⊕ Vp , the above definition
is extended via

Ṽ = Ṽ1 ⊕ · · · ⊕ Ṽp.

It will be of further relevance to study the behavior of the correspondence V → Ṽ relatively to
the correspondence V → V ∗ between a representation and its dual. Once more, Young diagrams
are a convenient tool to study this behaviour. If V is characterized by (D,n, δ), then V ∗ is
characterized by (D∗,−n − d1,−δ), where d1 is the length of the first line of D and D∗ is
obtained by taking the complement of D in a diagram consisting in m lines of d1 boxes.

This implies that the representation V ∗∼∗ is not isomorphic to Ṽ : it is characterized by the
diagram D∗∼∗ obtained by adding above D a line of the same length as the first line of D, as
illustrated in the figure below. This is due to the fact that D∗ is complementary to D according
to a diagram of depth m, while D∗∼∗ is complementary to D∗ according to a diagram of depth
m + 1:

���
�
���
�

���
�
���
�

���
�
���
�

m
m + 1

V ∗∼V ∗ V ∗∼∗
V

This time, according to the definition of vD , the representation ((SkRm)∗∼∗, ρ∗∼∗) is isomorphic
to (Sk(

∧2 Rm+1), ρ̃) since it corresponds to the Young diagram

k

(SkRm)∗∼∗ ∼= Sk(
∧2 Rm+1)

The interpretation of the correspondence V 
→ V ∗∼∗ is clearer in the case of (
∧p Rm∗, ρ).

Indeed, ((
∧p Rm∗)∗∼∗, ρ∗∼∗) is characterized by a Young diagram which consists in a single

column of depth m + 1 − p, and is therefore isomorphic to (
∧p Rm+1∗, ρ̃):
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m + 1 − p

(
∧p Rm∗)∗∼∗ ∼= ∧p Rm+1∗

4.3. Branching law

Whenever (V ,ρ) is an irreducible representation of GL(m,R), (Ṽ , ρ̃) is, by definition, an
irreducible representation of GL(m + 1,R). But it is also a representation of GL(m,R) for

r(A) = ρ̃
(

A 0
0 1

)
.

Endowed with the latter structure, Ṽ is not irreducible in general but admits a well-known de-
composition described by the following proposition, known as branching law (see [14]).

Proposition 4.4. Let (W, ρ̃) be an irreducible representation of GL(m + 1,R), characterized by
(D = (d1, . . . , dm),n, δ). Then its irreducible components under GL(m,R) are exactly the ones
characterized by (E = (e1, . . . , em−1), n, δ), where

d1 � e1 � · · · � dm−1 � em−1 � dm.

Each of these components is of multiplicity 1 in the decomposition.

Graphically, the branching law states that the Young diagrams that describe the irreducible
components of a representation are obtained by removing boxes from the original diagram, re-
specting the rule that a line in a new diagram cannot be shorter than the line below it in the
original diagram, as shown in Fig. 1.

Notation 4.5. We adopt the notation used in Fig. 1: every irreducible component of Ṽ is be
labelled by some q ∈ Nm−1 and noted Vq . The ith component qi of q represents the number of

V(0,0,2) V(1,0,2)V(1,0,1)

V(1,0,0) V(0,0,1)V(0,0,0)
∼= V

Fig. 1. Young diagrams appearing in the decomposition of Ṽ when V corresponds to the diagram (3,2,2).
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boxes removed from the original diagram at line i to obtain the diagram describing Vq . The set
of all possible labels of the irreducible components under GL(m,R) of Ṽ is denoted Q instead
of Q

Ṽ
when no confusion is possible.

In terms of Young diagrams, SkRm+1 decomposes the following way under GL(m,R):

SkRm+1
(k−1,0,...,0)

∼= RmSkRm+1
(0,...,0)

∼= SkRm

· · ·⊕⊕ ⊕ ⊕
SkRm+1

(k,0,...,0)
∼= RSkRm+1

(1,0,...,0)
∼= Sk−1Rm

and we have

QSkRm+1 = {
(�,0, . . . ,0): � ∈ {0, . . . , k}}.

The decomposition of
∧p+1 Rm+1∗ is given by

∧p+1 Rm+1∗
(0,...,0)

∼= ∧p Rm∗ ∧p+1 Rm+1∗
(0,...,1,...,0)

∼= ∧p+1 Rm∗

⊕

and we have

Q∧p+1
Rm+1∗ = {

(0, . . . ,0︸ ︷︷ ︸
p−m−1

, �,0, . . . ,0): � ∈ {0,1}}.
The branching law admits the following interpretation: as a representation of GL(m + 1,R),

Rm+1 is characterized by the diagram consisting in a single box. It decomposes into Rm ⊕ R as
shown below:

=
Rm+1 Rm R

⊕

This corresponds to the decomposition (
X
x

) = (
X
0

) + ( 0
x

)
of any point in Rm+1. The decomposition described by the branching law is simply the extension
of the latter decomposition to

⊗d Rm+1. In a given subrepresentation of Ṽ , every removed box
from the original diagram corresponds to a term of the form

( 0
x

)
while the remaining boxes

correspond to terms of the form
(

X
0

)
.

This interpretation is obvious in the two basic examples that we here consider. We know that
SkRm+1 is generated by elements of the form

(
X
x

)k
, where X belongs to Rm, x to R and

(
X
x

)k

represents the kth symmetric tensor product of
(

X
x

)
with itself. Its decomposition above depicted

corresponds to the decomposition in(
X
)k + (k − 1)x

(
X
)k−1( 0) + · · · + (k − 1)xk−1(X

)( 0)k−1 + xk
( 0)k
0 0 1 0 1 1
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V ∗∼∗
(0,1,0,1)

V ∗∼∗
(0,0,0,2)

V ∗∼∗
(0,0,0,0)

V ∗∼∗
(0,1,0,0)

V ∗∼∗
(0,0,1,0)

V ∗∼∗
(0,1,0,2)

∼= V

Fig. 2. Young diagrams appearing in the decomposition of V ∗∼∗ when V corresponds to the diagram (3,2,2).

of any
(

X
x

)k , where of course
(

X
0

)j ( 0
1

)i represents the symmetric tensor product of
(

X
0

)j

and
( 0

1

)i
.

As for
∧p+1 Rm+1∗, its decomposition under GL(m,R) corresponds to the decomposition in

(
X1
0

) ∧ · · · ∧ (Xm−p

0

) +
m−p∑
i=1

(
X1
0

) ∧ · · · ∧ ( 0
xi

) ∧ · · · ∧ (Xm−p

0

)
of any covariant tensor in

∧p+1 Rm+1∗ identified with the element
( X1

x1

) ∧ · · · ∧ ( Xm−p

xm−p

)
of∧(m+1)−(p+1) Rm+1.

Remark 4.6. As illustrated in Fig. 1 and can be confirmed in the examples as well, a repre-
sentation V of GL(m,R) is always isomorphic to a subrepresentation of Ṽ : it corresponds to the
diagram where no boxes have been removed, namely to the irreducible component V0 of Ṽ . With
the above interpretation, V0 is the component whose elements do not contain terms of the form( 0

x

)
. Of course, the projection (SkRm)∼ → (SkRm)∼0 is defined by(

X
x

)k 
→ (
X
0

)k
,

and the projection (
∧p Rm∗)∼ → (

∧p Rm∗)∼0 is defined by(X1
x1

) ∧ · · · ∧ (Xm−p

xm−p

) 
→ (
X1
0

) ∧ · · · ∧ (Xm−p

0

)
.

A similar phenomenon occurs when considering V ∗∼∗. By removing as many boxes as possible
according to the branching law to the diagram characterizing V ∗∼∗, one always recovers the
diagram describing V , as illustrated in Fig. 2.

Thus, the original representation V is nested in V ∗∼∗, but this time it is isomorphic to the
irreducible component containing the maximum number of terms of the form

( 0
x

)
. Now, SkRm

is isomorphic to the following subrepresentation of (SkRm)∗∼∗:
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(SkRm)∗∼∗
(k,0,...,0)

∼= SkRm

The projection (SkRm)∗∼∗ → (SkRm)∗∼∗
(k,0,...,0) is given by

[(
X
x

) ∧ ( Y
y

)]k 
→ [(
yX−xY

0

) ∧ ( 0
1

)]k
.

The subrepresentation of (
∧p Rm∗)∗∼∗ which is isomorphic to

∧p Rm∗ is

(
∧p Rm∗)∗∼∗

(0,...,1,...,0)

and the projection (
∧p Rm∗)∗∼∗ → (

∧p Rm∗)∗∼∗
(0,...,1,...,0) is defined by

(X1
x1

) ∧ · · · ∧ (Xp+1
xp+1

) 
→
m−p+1∑

i=1

(
X1
0

) ∧ · · · ∧ ( 0
xi

) ∧ · · · ∧ (Xm−p+1

0

)
.

Notation 4.7. If E denotes an order 1 vector bundle corresponding to a representation V of
GL(m,R), then we denote Ẽ and E∗∼∗ the vector bundles associated to P 1M̃ and to Ṽ and
V ∗∼∗, respectively.

4.4. Resonant values

In the discussion of the existence of an slm+1-invariant quantization for differential operators
acting between λ and μ-densities over Rm [18], several values of the shift μ−λ, called resonant
values, naturally arise, for which the quantization is not unique or does not exist. Since the
existence of natural and projectively equivariant quantizations as considered in this paper implies
the existence of slm+1-invariant quantization over Rm, these values also appear over an arbitrary
manifold. The phenomenon of resonant values is not specific to the case of differential operators
acting between densities. We describe thereafter how every irreducible representation (V ,ρ) of
GL(m,R) carries a finite set of resonant values.

Recall that the Casimir operator on a representation (W, r) of a semi-simple p-dimensional
Lie algebra g acts on W by

C =
∑

i

r(ui) ◦ r
(
u+

i

)
,

where (u1, . . . , up) and (u+, . . . , u+
p ) are two Killing-dual basis of g.
1
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The semi-simple Lie algebra we consider here is the embedding slm+1 of sl(m + 1,R) in the
Lie algebra Vect(Rm) of smooth vector fields over Rm. It is the maximal subalgebra of the Lie
algebra of polynomial vector fields over Rm spanned by

∂i, xi∂j and
m∑

k=1

xixk∂k.

Every representation V of GL(m,R) induces a structure of slm+1-representation on the sec-
tions of P 1Rm ×GL(m,R) V , via the Lie derivative

LXs = X · s − ρ∗(DX) ◦ s, ∀X ∈ slm+1,

where DX denotes the differential of the vector field X. Thus, a Casimir operator can be defined
on this space of sections. Such Casimir operators have been computed in [2], where one can find
the following result.

Proposition 4.8. Let V be an irreducible representation of GL(m,R) characterized by (D,n, δ).
Then the Casimir operator of slm+1 on Γ ∞(P 1M ×GL(m,R) V ) is equal to a multiple of the
identity. If D is equal to (d1, . . . , dm−1) and is of size d , then this multiple is equal to

α = (m(n − δ) + d)(m(n + 1 − δ) + d)

2m

+ 1

2m(m + 1)

m−1∑
i,j=1

didj (mδij − 1) + 2di(m − j)(mδij − 1). (2)

We will call eigenvalue associated to (V ,ρδ) the number α above defined. For any δ in C, the
eigenvalue associated to (SkRm,ρδ) is equal to

2k2 + 2k(m − δ(m + 1)) + m(m + 1)δ(δ − 1)

2(m + 1)
, (3)

and the eigenvalue associated to (
∧p Rm∗, ρδ) is equal to

δ(2p + m(δ − 1))

2
.

Definition 4.9. Let (V ,ρε) be an irreducible representation of GL(m,R). A complex number δ is
resonant for V if, given that (Ṽ , ρ̃δ+ε) decomposes into

⊕
q∈Q Vq , there exists q ∈ Q \ {0} such

that αq = α0, where αq denotes the eigenvalue associated to Vq and α0 the eigenvalue associated
to V0.

If V is not irreducible, δ is said to be resonant for V if it is resonant for at least one of its
irreducible components.

Given the explicit form of the eigenvalues given in (2), it is straightforward to compute the set
of resonant values for irreducible representations of GL(m,R).
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Proposition 4.10. The set of resonant values for a representation characterized by (D,n,0) is

{ |q|(2(m + 1)(n + 1) + 2d − |q|) + ∑m
i=1 2diqi − q2

i − 2iqi

2|q|(m + 1)
: q ∈ Q \ {0}

}
,

where |q| = ∑
i qi and D = (d1, . . . , dm−1) is of size d . In particular, there exists only a finite

number of resonant values for any representation (V ,ρ) of GL(m,R), and 0 is never resonant
whenever n � 0.

The set of resonant values for SkRm is given by

{
m + 2k − �

m + 1
: � ∈ {1, . . . , k}

}
, (4)

whereas the only resonant value for
∧p Rm∗ is 0 for any p. This exemplifies the fact that 0 cannot

be excluded a priori from the set of resonant values of a representation of GL(m,R) when this
one corresponds to n < 0.

5. Construction of the quantization

As explained in the introduction, the main obstacle to adapt M. Bordemann’s proof of the
existence of natural and projectively equivariant quantizations lies in the lift of symbols. With
the tools described in the previous section at hand, it is possible for every representation V of
GL(m,R) to lift in a natural and projectively equivariant way elements of C∞(P 1M,V )ρδ into
elements of C∞(P 1M̃, Ṽ )ρ̃ . Since we are working with order 1 fiber bundles, lift of symbols is
a particular case of this construction. Applying the standard quantization τ̃∇̃ to the lifted sym-
bols, we still have to bring the resulting differential operators from M̃ to M to find the required
quantization. This last step appears surprisingly straightforward.

5.1. Casimir operator depending on a Cartan connection

In the proof of the existence of the slm+1-invariant quantization over Rm, a key role is played
by the Casimir operator relative to slm+1, which acts both on symbols and on differential op-
erators. But this operator cannot be defined on an arbitrary manifold, because slm+1 is not
canonically nested anymore in Vect(M).

On the other hand, every projective Cartan connection ω on CM gives rise to an embedding
of sl(m + 1,R) in Vect(M), via ω−1. In a broader context, every G-valued Cartan connection
over a bundle P allows to embed G in Vect(P ). We can therefore define the Casimir operator
depending on a Cartan connection, so called since its definition is similar to the definition of the
classical Casimir operator on representations of semi-simple Lie algebras.

Definition 5.1. Let G0 be a closed subgroup of a Lie group G, ω be a Cartan connection over
a G0-principal bundle P → M such that G is a p-dimensional semi-simple Lie algebra, and
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(u1, . . . , up), (u+
1 , . . . , u+

p ) be two Killing-dual basis of G. Then the Casimir operator relative to
ω is defined by

Cω =
p∑

i=1

Lω−1(ui )
◦ Lω−1(u+

i ).

This definition is independent on the choice of any particular basis (u1, . . . , up) of G.

Proposition 5.2. The Casimir operator above defined is natural with respect to morphisms of
principal G0-bundles over local diffeomorphisms.

Proof. We have to prove that for any morphism φ of P over a local diffeomorphism on M , every
Cartan connection ω over P and every smooth function f over P , one has

φ∗(Cωf
) = Cφ∗ωφ∗f.

Indeed, it is sufficient to remark that for all k ∈ G the vector fields (φ∗ω)−1(k) and ω−1(k)

are φ-related. Therefore

φ∗(Lω−1(k)f ) = L((φ∗ω)−1k)

(
φ∗f

)
,

and in turn

φ∗(Cωf
) = φ∗

(
p∑

i=1

Lω−1(ui )
◦ Lω−1(u+

i )f

)

=
p∑

i=1

L(φ∗ω)−1(ui )
◦ L(φ∗ω)−1(u+

i )

(
φ∗f

)
= Cφ∗ω(

φ∗f
)
. �

Remark 5.3. The classical Casimir operator on a representation of G has the property to commute
with the action of the elements of G. It is not longer the case with the Casimir operator depending
on a Cartan connection, though their Ad-invariance imply the following weaker property: if ω is
a Cartan connection, then for every h ∈ G0, one has

Lω−1(h) ◦ Cω = Cω ◦ Lω−1(h).

The Casimir operator above defined can be computed explicitly on two families of smooth
functions over the projective Cartan bundle CM . The first one is the following.

Consider a representation (V ,ρ) of GL(m,R). It is endowed with a structure (V , t) of repre-
sentation of Hm+1 defined by

t
([

A 0]) = ρ(A).

α 1
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We first consider the set

C∞(CM,V )tδ

of smooth functions from CM to V satisfying f (u · [
A 0
α 1

]
) = |detA|δt ([ A 0

α 1

]−1
)f (u) for all[

A 0
α 1

]
in Hm+1 and u in CM . Using the symmetries of these functions and properties of Cartan

connections, a direct computation leads to the following result.

Proposition 5.4. Let f be an element of C∞(CM,V )tδ , and let α be the eigenvalue associated
to V . Then for any Cartan connection ω on CM ,

Cωf = αf.

Similarly, if (Ṽ , ρ̃) is a representation of GL(m + 1,R), it is also endowed with a structure
(Ṽ , t̃) of representation of Hm+1:

t̃
([

A 0
α 1

]) = ρ̃
((

A 0
α 1

))
.

As above, we denote

C∞(CM, Ṽ )t̃δ

the set of smooth functions from CM to Ṽ satisfying g(u · [ A 0
α 1

]
) = |detA|δ t̃([ A 0

α 1

]−1
)g(u) for

all
[

A 0
α 1

]
in Hm+1 and u in CM . As a prolongation to Notation 4.5, we denote by gq the projection

of g on the irreducible component Vq of Ṽ for every q ∈ Q.
It is also possible to compute explicitly the Casimir operator on these functions.

Proposition 5.5. Let g ∈ C∞(CM, Ṽ )t̃δ . Then

Cωg =
∑
q∈Q

αqgq − 2
∑
q∈Q

m∑
i=1

i
(
εi

) ◦ Lω−1(vi )
gq,

where αq is the eigenvalue associated to Vq for every q ∈ Q, vi is equal to 2
m+1

( 0 ei

0 0

)
and i(εi)

is defined on
⊗d Rm+1 by

i
(
εi

)((X1
x1

) ⊗ . . . ⊗ (Xd

xd

)) =
d∑

j=1

Xi
j

(X1
x1

) ⊗ · · · ⊗ ( 0
xj

) ⊗ · · · ⊗ (Xd

xd

)
.

Lie derivatives of any gq are valued in Vq ⊕ ⊕
|q ′|=|q|+1 Vq ′ . Thus, once restricted to any irre-

ducible component Vq , the Casimir operator on C∞(CM, Ṽ )t̃δ is the sum of a multiple of the
identity and of a term valued in every Vq ′ such that |q ′| = |q|+1 or |q ′| = |q|+2, namely whose
elements have one or two more terms of the form

( 0)
than the elements of Vq .
x
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5.2. Lift of symbols

The symbols we are considering in this paper are always elements of C∞(P 1M,V )ρδ for
some representation (V ,ρδ) of GL(m,R), which will represent throughout this section either
V ∗

1 ⊗ V2 ⊗ SkRm or one of its irreducible components. In order to obtain an easy push down of
differential operators, we ask their lift to be valued in C∞(P 1M̃, Ṽ )−δ

ρ̃
. The latter is the subspace

of C∞(P 1M̃, Ṽ )ρ̃ whose elements satisfy

g(νs∗v) = s−δg(v), ∀s ∈ R+
0 .

Such functions are referred as (−δ)-equivariant functions.
The Casimir operator shall reveal in the sequel to be a convenient tool, but it is only defined

on CM ; we therefore transform the original lift problem into an equivalent lift problem over CM .
Following the diagram depicted further down, the new lift problem consists in finding a natural
map R depending on a Cartan connection.

C∞(P 1M̃, Ṽ )−δ
ρ̃ C∞(CM, Ṽ )t̃δũ

C∞(P 1M,V )ρδ

u
C∞(CM,V )tδ

Rω (5)

Altogether, the searched lift is given by

R∇ = ũ ◦Rω∇ ◦ u.

Lemma 5.6. There exists a natural bijection

u :C∞(
P 1M,V

)
ρδ

→ C∞(CM,V )tδ .

Proof. The map u can be defined using the explicit form of the Cartan bundle we are working
with. Using Notation 3.8, if ([w], e) is a point of CM , then π∗w is a frame of M . Thus, we can
set

u(f )
([w], e) = f (π∗w), ∀f ∈ C∞(

P 1M,V
)
ρδ

.

The map u(f ) is well defined due to the ρδ-equivariance of f . The bijectivity and naturality of
u are immediate to check. �
Lemma 5.7. There exists a natural bijection

ũ :C∞(CM, Ṽ )t̃δ → C∞(
P 1M̃, Ṽ

)−δ

ρ̃
.
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Proof. This time, we have to use the fact that M̃ is associated to P 1M . It implies that for any
([w], e) in CM and any y in M̃ , there exists a unique r ∈ R+

0 such that y = [π∗w, r]. It allows us
to define ũ by

ũ(g)(w,E)[π∗w,r] = r−δg
([w], e), ∀g ∈ C∞(CM, Ṽ )t̃δ .

The above only defines ũ(g) on frames of M̃ of the form (w,E), but the ρ̃-equivariance of g

allows extension of ũ(g) on the whole P 1M̃ . The term r−δ makes ũ valued in (−δ)-equivariant
functions. Again, the bijectivity and naturality of this map are easy to check. �

These two lemmas ensure us that the lift problem will be solved if we can find a natural
map depending on a Cartan connection from C∞(CM,V )tδ to C∞(CM, Ṽ )t̃δ . Note that every

t̃δ-equivariant function g valued in Ṽ canonically gives rise to a tδ-equivariant function valued
in V , which is nothing else than its projection g0 on the component V0 of Ṽ . However, this
correspondence is not injective: there are several ways of prolongating a t̃δ-equivariant function
whose projection on V0 is known. A natural and projectively equivariant one is given by the
following proposition whose proof, quite long, is given at the end of the paper.

Proposition 5.8. Let V be a representation of GL(m,R) and δ ∈ R be non-resonant for V . Given
f ∈ C∞(CM,V )tδ , there exists a unique function Rω(f ) ∈ C∞(CM, Ṽ )t̃δ such that:

• Rω(f ) is an eigenvector of Cω;
• (Rω(f ))0 = f .

Moreover, the map R is natural.

As announced, the existence of the lift is a direct corollary of the three above results.

Theorem 5.9. If V is a representation of GL(m,R) and δ ∈ R is not resonant for V , then there
exists a natural and projectively equivariant map

R : Co(M) × C∞(
P 1M,V

)
ρδ

→ C∞(
P 1M̃, Ṽ

)−δ

ρ̃
.

It is given by R∇ = ũ ◦Rω∇ ◦ u.

5.3. Descent of differential operators

When working with symbols of differential operators in D(E1,E2), one could expect their
lifts to be symbols of differentials operators in D(Ẽ1, Ẽ2). This is not the case however. We
know that any symbol of order k over M , which is valued in V ∗

1 ⊗ V2 ⊗ SkRm, is lifted
to a function valued in (V ∗

1 ⊗ V2 ⊗ SkRm)∼. It is a consequence of Littlewood–Richardson

rule, whose exact statement is beyond the purpose of this paper, that Ṽ ⊗ V ′ ⊂ Ṽ ⊗ Ṽ ′ for
any representations V and Ṽ ′ of GL(m,R). It follows that the lifted symbols are valued in
V ∗∼

1 ⊗ Ṽ2 ⊗ SkRm+1, which means they are symbols of differential operators in D(E∗∼∗
1 , Ẽ2),

acting from C∞(P 1M̃,V ∗∼∗)−λ to C∞(P 1M̃, Ṽ2)
−μ.
1 ρ̃1 ρ̃2
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This observation makes our task easier: due to the way representations V are embedded in
V ∗∼∗, functions in C∞(P 1M,V )ρδ are actually in one-to-one correspondence with functions in
C∞(P 1M̃, Ṽ )−δ

ρ̃
. Throughout this section, V will represent V ∗

1 ⊗V2 or an irreducible component
of the latter under GL(m,R).

Lemma 5.10. For every representation (V ,ρδ) of GL(m,R), there exists a natural bijection

u∗∼∗ :C∞(
P 1M,V

)
ρδ

→ C∞(
P 1M̃,V ∗∼∗)−δ

ρ̃
.

Proof. We consider the case where (V ,ρ) is an irreducible representation of GL(m,R), u∗∼∗
being defined component wise in the general case.

Remark 4.6 tells us that V is always isomorphic to an irreducible component V ∗∼∗
p of V ∗∼∗.

Thus, any V -valued function over P 1M can be viewed as a V ∗∼∗-valued map. We define u∗∼∗
by

u∗∼∗(f )(w,E)[π∗w,r] = r−δf (π∗w), ∀f ∈ C∞(
P 1M,V

)
ρδ

.

This definition implies that every function u∗∼∗(f ) has the same values on two frames (w,E)

and (w′,E) satisfying π∗w = π∗w′, in other words such that (w′,E) = (w,E) · (
I 0
α 1

)
for some

α ∈ Rm∗. We have to check that the latter is compatible with the ρ̃-equivariance of u∗∼∗(f ),
which implies

u∗∼∗(f )(w′,E) = ρ̃
((

I 0
α 1

))−1
u∗∼∗(f )(w,E).

Due to the way GL(m+1,R) acts on
⊗d Rm+1, the right-hand side of this equality is equal to the

sum of u∗∼∗(f )(w,E) and of other tensors containing at least one more term of the form
( 0

x

)
than

the latter, which belongs by definition to V ∗∼∗
p . Since we have seen that V ∗∼∗

p is the component
of V ∗∼∗ whose elements contain the maximum number of such terms, these additional tensors
have to vanish.

This point being checked, every u∗∼∗(f ) is extended over the whole P 1M̃ by t̃δ-equivariance,
the term r−δ making this function (−δ)-equivariant.

Bijectivity and naturality of u∗∼∗ are straightforward to perform. �
On the other hand, every function in C∞(P 1M̃, Ṽ )−δ

ρ̃
can be projected over M on a function

in C∞(P 1M,V )ρδ .

Lemma 5.11. For every representation (V ,ρδ) of GL(m,R) there exists a natural map

d˜ :C∞(
P 1M̃, Ṽ

)−δ

ρ̃
→ C∞(

P 1M,V
)
ρδ

.

Proof. Again, it is sufficient to prove the result when V is irreducible. The map d˜ is given by

d(g)(π∗w) = rδ(π0 ◦ g)(w,E)[π∗w,r], ∀g ∈ C∞(
P 1M̃, Ṽ

)−δ

ρ̃
,
˜
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where π0 denotes the projection from Ṽ to V0. The term rδ and the t̃δ-equivariance of its argu-
ments ensure that d

˜
is well defined, and its naturality is easy to check. �

Theorem 5.12. There exists a natural map

D :D
(
E∗∼∗

1 , Ẽ2
) →D(E1,E2).

Proof. Let D be a differential operator acting between (−λ)-equivariant sections of E∗∼∗
1 and

(−μ)-equivariant sections of Ẽ2. Since the two vertical arrows in the following diagram are
natural

C∞(P 1M̃,V ∗∼∗
1 )−λ

ρ̃1

D
C∞(P 1M̃, Ṽ2)

−μ

ρ̃2

d˜
C∞(P 1M,V1)ρ1λ

u∗∼∗

C∞(P 1M,V2)ρ2μ

the map D defined by

D(D) = d˜ ◦D ◦ u∗∼∗

is also natural. �
Theorem 5.13. Let δ = μ−λ be non-resonant for V ∗

1 ⊗V2 ⊗ SkRm given any k ∈ N. Then there
exists a natural and projectively equivariant quantization

Q : Co(M) × S(E1,E2) →D(E1,E2).

Proof. We claim that the map Q∇ defined by

Q∇ = D ◦ τ̃∇̃ ◦ R∇ , ∀∇ ∈ Co(M),

has the required properties.
If the complex numbers characterizing V1 end V2 are respectively given by λ and μ, then for

any k ∈ N the complex number characterizing V ∗
1 ⊗ V2 ⊗ SkRm is δ = μ − λ. Since it is not

resonant for this representation by hypothesis, R is well defined and in turn Q is well defined. It
is also obviously natural and projectively equivariant since it is the composition of natural and
projectively equivariant maps.

The fact that Q∇ preserves the principal symbol is a consequence of the fact that

σ
(
D(τ̃∇̃g)

) = σ
(
τ∇(g0)

)
, ∀g ∈ C∞(

P 1M̃, Ṽ
)
t̃δ
,

and

(R∇f )0 = f, ∀f ∈ C∞(
P 1M,V

)
.

ρδ
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Both are direct consequences of the way we constructed D and R. We thus get for every f ∈
C∞(P 1M,V )ρδ ,

σ(Q∇f ) = σ
(
D

(
τ̃∇̃(R∇f )

))
= σ

(
τ∇(R∇f )0

)
= σ(τ∇f )

= f. �
Remark 5.14. Since for any k in N, the set of resonant values for V ∗

1 ⊗ V2 ⊗ SkRm is finite, the
set of values of δ for which the quantization does not exist is at most countable.

5.4. Proof of Proposition 5.8

We begin with a lemma allowing to check Hm+1-equivariance of a function by means of its
invariance relatively to the Lie algebra Hm+1.

Lemma 5.15. Let g ∈ C∞(CM, Ṽ ) be a function satisfying

Lh∗g = −t̃δ∗(h)g, ∀h ∈Hm+1, (6)

and

g
(
u · [ J 0

0 1

]) = t̃δ
[

J 0
0 1

]−1
g(u), (7)

where J ∈ GL(m,R) is equal to diag(−1,1, . . . ,1). Then g ∈ C∞(CM, Ṽ )t̃δ , i.e. it satisfies

g(u · H) = t̃δ
(
H−1)g(u), ∀H ∈ Hm+1. (8)

Proof. Since Eq. (6) is the derivative at t = 0 of

g
(
u · exp(th)

) = t̃δ
(
exp(th)−1)g(u), ∀h ∈ Hm+1,

it implies that (8) is satisfied for the elements or Hm+1 that belong to the connected component
of the identity. Since GL(m,R) has two connected components corresponding to the sign of the
determinant and Hm+1 is the image of the injective map GL(m,R) × Rm∗ → PGL(m,R)

(A,α) 
→ [
A 0
α 1

]
,

Hm+1 has two connected components. Every point in the connected component of Hm+1 which
does not contain the identity can be decomposed into H

[
J 0
0 1

]
, where H belongs to the connected

component of the identity. Consequently, conditions (6) and (7) imply

g
(
u · H [

J 0
0 1

]) = t̃δ
[

J 0
0 1

]−1
g(u · H)

= t̃δ
[

J 0
0 1

]−1
t̃δ

(
H−1)g(u)

= t̃δ
(
H

[
J 0])−1

g(u). �

0 1
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It is sufficient to prove Proposition 5.8 when V is an irreducible representation of GL(m,R).
Indeed any V can be decomposed into a finite direct sum of irreducible components, and the lift
of symbols can be defined component wise.

Suppose that g is a t̃δ-equivariant function. From Proposition 5.5, it is an eigenvector of Cω

(of eigenvalue κ) if it satisfies

κg =
∑
q∈Q

αqgq − 2
∑
q∈Q

m∑
i=1

i
(
εi

)
Lω−1(vi )

gq .

By projecting this equation on each irreducible component Vq of Ṽ , we get

κg0 = α0g0;

κgq = αqgg − 2
|q|−1∑

|q ′|=|q|−2

πq ◦ i
(
εi

)
Lω−1(vi )

gq ′ , ∀q ∈ Q, q �= 0.

Since δ is not resonant for V , we know that αq �= α0 for q �= 0. Thus these equations are equiva-
lent to

gq = − 2

(α0 − αq)

|q|−1∑
|q ′|=|q|−2

πq ◦ i
(
εi

)
Lω−1(vi )

gq ′ , ∀q �= 0, (9)

g0 being left arbitrary. In particular, if g ∈ C∞(CM, Ṽ )t̃δ is an eigenvector of Cω, then it is
uniquely determined by its projection g0 over V0. This leads us to set

Rω :C∞(CM,V )tδ → C∞(CM, Ṽ )

as associating to any tδ-equivariant V valued function f the unique Ṽ valued function satisfying

• (Rω(f ))0 = f ;
• (Rω(f ))q = − 2

(α0−αq)

∑|q|−1
|q ′|=|q|−2 πq ◦ i(εi)Lω−1(vi )

(Rω(f ))q ′ , ∀q �= 0.

As it is defined, Rω could be valued in arbitrary functions in C∞(CM, Ṽ ). We check there-
after that it is actually valued in t̃δ-equivariant function, as announced in the statement of
Proposition 5.8. More precisely, we prove that any function from g ∈ C∞(CM, Ṽ ) satisfying
(9) and for which g0 is tδ-equivariant is necessarily t̃δ-equivariant.

To that aim, let us set

Cω
0 (g) =

∑
q∈Q

αqgq − 2
∑

i

i
(
εi

)
Lω−1(vi )

g.

This operator coincides exactly with Cω on t̃δ-equivariant functions, and functions satisfying (9)
are eigenvectors of Cω

0 . A quite long but straightforward computation shows that(
t̃δ∗(h) + Lh∗

) ◦ Cω
0 = Cω

0 ◦ (
t̃δ∗(h) + Lh∗

)
, ∀h ∈ Hm+1. (10)
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Together with the fact that g is an eigenvector of Cω
0 , it implies that (t̃δ∗(h) + Lh∗)g is also an

eigenvector of Cω
0 , thus determined by its projection on V0. We are going to show that the latter

vanishes for any h ∈Hm+1, implying that (t̃δ∗(h) + Lh∗)g = 0 and hence condition (6).
If h ∈ g0, then the tδ-equivariance of g0 implies that

[(
t̃δ∗(h) + Lh∗

)
g
]

0 = tδ∗(h)g0 + Lh∗g0

= 0.

If h ∈ g1, then t̃δ∗(h)g is valued in
⊕

q �=0 Vq and due to the tδ-equivariance of g0, we get
Lh∗g0 = 0. Thus, [(

t̃δ∗(h) + Lh∗
)
g
]

0 = 0.

Moreover, it is easily verified that

g
(∗ · [ J 0

0 1

]) = t̃δ
[

J 0
0 1

]−1
g(∗), (11)

by projecting this identity on every Vq and using the explicit form of each gq given in (9). We
can thus apply Lemma 5.15, and conclude that Rω is valued in C∞(CM, Ṽ )t̃δ .

It remains to show the naturality of R. Let φ be a local diffeomorphism over M . The map R
is natural if it satisfies for all Cartan connection ω and all f in C∞(CM,V )tδ

φ∗(Rωf ) = Rφ∗ω(
φ∗f

)
, (12)

which is the case if φ∗(Rωf ) is the (unique) eigenvector of Cφ∗ω whose projection on V0 is
equal to φ∗f . On the one hand, the naturality of the Casimir operator implies

Cφ∗ω(
φ∗(Rωf )

) = φ∗Cω(Rωf )

= α0φ
∗(Rωf ).

On the other hand, we have

(
φ∗Rωf

)
0 = φ∗(Rωf )0

= φ∗f,

which ends the proof of Proposition 5.8.

5.5. Examples

We end this paper with a sketch of the construction of the quantization for two concrete spaces
of differential operators.
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5.5.1. Differential operators acting between densities
We first consider the case of differential operators acting between λ and μ-densities on M ,

for which the existence of a quantization has been proved by M. Bordemann in [4]. In this case
V1 is isomorphic to (R, ρλ), V2 is isomorphic to (R, ρμ), and V ∗

1 ⊗ V2 ⊗ SkRm is isomorphic to
(SkRm,ρδ) for each k in N, where δ is equal to μ − λ.

Using the resonant values explicited in (4), we can state the existence of a natural and projec-
tively equivariant quantization for this space of differential operators whenever δ does not belong
to the countable set ⋃

k∈N\{0}

{
m + 2k − �

m + 1
: � ∈ {1, . . . , k}

}
.

In particular, a quantization exists whenever δ is equal to 0.

Remark 5.16. These values are exactly the ones for which M. Bordemann does not conclude to
the existence of the quantization. It is not very surprising since his approach is very similar to the
one undertaken here when applied to the particular case of differential operators acting between
densities. The two methods only differ only in the way symbols are lifted to M̃ , and a link could
be made between the two lifts using the link between Cartan and Thomas–Whitehead theories.

We denote by CM̃ the sub-bundle of P 1M̃ whose elements are of the form (w,E). Given its
imposed invariances, the lift of a symbol f in C∞(P 1M,SkRm)ρδ is uniquely determined by its
restriction g on CM̃ . The latter can be decomposed in

g =
k∑

�=0

g�,

where each g� is an element of C∞(CM̃,Sk−�Rm)−δ
ρ̃

whose values are imbedded in SkRm+1 via

the map determined by Xk−� 
→ (
X
0

)k−�( 0
1

)�.
Let us see what the lift of symbols and descent of differential operators look like in this

example.

• The lift of a symbol f ∈ C∞(P 1M,SkRm)ρδ is the ρ̃-equivariant prolongation of the only g

such that

g0(w,E)[π∗w,r] = r−δf (π∗w), ∀(w,E) ∈ CM̃,

and

g� = −2C�

(
ũ ◦ πSk−�Rm ◦Dω ◦ ũ−1)(g�−1 + g�−2), ∀� ∈ {1, . . . , k},

where C� is equal to

m + 1

�(2k + m − � − δ(m + 1))
,

and Dω denotes the map
∑m

i=1 i(εi)Lω−1(v ).
i
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• The descent of differential operators is easy, since both V1 and V2 are isomorphic to R and
correspond to an empty Young diagram. Therefore V ∗∼∗

1 and Ṽ2 are also isomorphic to R,
and the push down of any differential operator D obtained by applying τ̃∇̃ to a lifted symbol
is given by(

D(D)f
)
(π∗w) = rμ

(
D

(
u∗∼∗f

))
(w,E)[π∗w,r], ∀f ∈ C∞(

P 1M,R
)
ρλ

, π∗w ∈ P 1M,

where u∗∼∗f (w,E)[π∗w,r] = r−λf (π∗w).

5.5.2. Differential operators between p-forms and densities
Our second example is the space of differential operators acting between p-forms of weight

λ and μ-densities over M , for which the existence of the quantization was proved in [15]. This
time, V1 is isomorphic to (

∧p Rm∗, ρλ), V2 is isomorphic to (R, ρμ) and V ∗
1 ⊗ V2 ⊗ SkRm is

isomorphic to (
∧p Rm ⊗ SkRm,ρδ), where δ = μ − λ. The latter representation of GL(m,R)

is not irreducible: Littlewood–Richardson rule states that it has two irreducible components Ak
p

and Bk
p , described by the following diagrams:

k + 1

p − 1

Ak
p

k

p

Bk
p

For every k in N, the set of resonant values for Ak
p is given by

Ak
p =

{
2k + p + m + 1 − �

m + 1
: � ∈ {1, . . . , k}

}
∪

{
k + m + 1 − �

m + 1
+ �(k + p)

(� + 1)(m + 1)
: � ∈ {1, . . . , k}

}
,

and the set of resonant values for Bk
p is given by

Bk
p =

{
2k + p + m − �

m + 1
: � ∈ {1, . . . , k}

}
∪

{
k + m − �

m + 1
+ �(k + p)

(� + 1)(m + 1)
: � ∈ {1, . . . , k}

}
.

There exists a natural and projectively equivariant quantization for this space of differential op-
erators whenever δ does not belong to ⋃

Ak
p ∪Bk

p.
k∈N\{0}
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In particular, a quantization exists whenever δ is equal to 0.
We only explicit the lift of symbols valued in Ak

p . A similar construction can be applied to

find the lift of symbols valued in Bk
p . According to the branching law, Ãk

p decomposes as follows
under GL(m,R):

� �

k⊕
�=0

k⊕
�=0

⊕

Ak−�
p

Ak−�
p−1

Here again, every function in C∞(P 1M̃, Ãk
p)−δ

ρ̃
is determined by its restriction g on CM̃ . It

always decomposes into

g =
k∑

�=0

g0,� +
k∑

�=0

g1,�,

where each g0,� is an element of C∞(CM̃,
∧p Rm ⊗ Sk−�Rm)−δ

ρ̃
whose values are embedded in

Ãk
p via the map determined by

Y1 ∧ · · · ∧ Yp ⊗ Xk−� 
→ (
Y1
0

) ∧ · · · ∧ ( Yp

0

) ⊗ (
X
0

)k−�( 0
1

)�
,

and each g1,� is an element of C∞(CM̃,
∧p−1 Rm ⊗ Sk−�Rm)−δ

ρ̃
whose values are embedded in

Ãk
p via the map determined by

Y1 ∧ · · · ∧ Yp−1 ⊗ Xk−� 
→ ( 0
1

) ∧ (
Y1
0

) ∧ · · · ∧ ( Yp−1

0

) ⊗ (
X
0

)k−�( 0
1

)�
.

However, the isomorphism between Ãk
p and the direct sum of its irreducible components is

not as straightforward as it is in the previous example. On the one hand, the g0,�’s are valued in
Ak−�

p as expected, i.e. they satisfy

πBk−�
p

◦ g0,� = 0, ∀� ∈ {0, . . . , k}.

On the other hand, the g1,�’s are not valued in Ak−�
p−1. Rather, they satisfy

πBk−�
p−1

◦ g1,� = �(Q� ◦ g0,�+1), ∀� ∈ {0, . . . , k},

where Q� is a linear bijection Ak−�−1
p 
→ Bk−�

p−1, which is the dual map of the so-called Koszul
differential (see e.g. [3] for an explicit description of this map).

• A function g in C∞(CM̃, Ãk
p)−δ

ρ̃
is the lift of a given symbol f in C∞(P 1M,Ak

p)ρδ if and
only if it satisfies
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g0,0(w,E)[π∗w,r] = r−δf (π∗w), ∀(w,E) ∈ CM̃,

g0,� = −2C0,�

(
ũ ◦ πAk−�

p
◦Dω ◦ ũ−1)(g0,�−1 + g0,�−2), ∀� ∈ {1, . . . , k},

πAk−�
p−1

◦ g1,� = − 2C1,�

(
ũ ◦ πAk−�

p−1
◦Dω ◦ ũ−1)(

πAk−�
p−1

◦ g1,�−1 + πAk−�
p−1

◦ (g1,�−2 + g0,� + g0,�−1)
)
, ∀� ∈ {0, . . . , k},

where C0,� is equal to

m + 1

�(p + 2k + 1 − � + m − δ(m + 1))
,

and C1,� is equal to

m + 1

(� + 1)(k − � + 1 + m − δ(m + 1)) + �(p + k)
.

• The descent of differential operators is slightly less straightforward than in the first example.
Now, V2 is still isomorphic to R but V1 is isomorphic to

∧p Rm∗; we have seen in Sec-
tion 4 that V ∗∼∗

1 is isomorphic to
∧p Rm+1∗. The push down of any differential operator D

obtained by applying τ̃∇̃ to a lifted symbol is given by(
D(D)f

)
(π∗w) = rμ

(
D

(
u∗∼∗f

))
(w,E)[π∗w,r], ∀f ∈ C∞(

P 1M,R
)
ρλ

, π∗w ∈ P 1M,

where

u∗∼∗f (w,E)[π∗w,r] = r−λ
( 0

1

) ∧ (
Y1
0

) ∧ · · · ∧ ( Ym−p

0

)
,

if f (π∗w) is in canonical correspondence with the element Y1 ∧ · · · ∧ Ym−p of
∧m−p Rm.
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