On uniquely 3-colorable graphs

Chong-Yun Chao and Zhibo Chen

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

Received 24 January 1989
Revised 28 November 1990

Abstract

We show the following. (1) For each integer $n \geq 12$, there exists a uniquely 3-colorable graph with n vertices and without any triangles. (2) There exist infinitely many uniquely 3-colorable regular graphs without any triangles. It follows that there exist infinitely many uniquely k-colorable regular graphs having no subgraph isomorphic to the complete graph K_k with k vertices for any integer $k \geq 3$.

1. Introduction

Let G be a graph, $V(G)$ its vertex-set and $E(G)$ its edge-set. An assignment of colors to the vertices of G in such a way that adjacent vertices are assigned different colors is called a proper coloring of G. Here, we shall use a coloring to mean a proper coloring. A coloring of G in which λ colors are used is called a λ-coloring of G. Given λ colors, we let $P(G, \lambda)$ denote the number of ways of λ-coloring of G. $P(G, \lambda)$ is called the chromatic polynomial of G. The minimum number of colors used to color G is called the chromatic number of G and is denoted by $\chi(G)$. Thus, a λ-coloring of G is a partition of $V(G)$ into λ color classes such that the vertices in the same color class are not adjacent. If every $\chi(G)$-coloring of G gives the same partition of $V(G)$, then G is said to be a uniquely $\chi(G)$-coloring graph, or a uniquely $\chi(G)$-colorable graph.

On p. 139 in [2] and on p. 269 in [1], the two uniquely 3-colorable graphs without any triangles do not seem to be correct. However, motivated by these graphs, we shall prove the following theorems.

Theorem 1. For each integer $n \geq 12$, there exists a uniquely 3-colorable graph with n vertices and without any triangles.

Correspondence to: Chong-Yun Chao, Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA.

0012-365X/93/$06.00 \copyright$ 1993—Elsevier Science Publishers B.V. All rights reserved
Theorem 2. There exist infinitely many uniquely 3-colorable regular graphs without any triangles.

Corollary. There exist infinitely many uniquely k-colorable regular graphs having no subgraph isomorphic to the complete graph K_k with k vertices for any integer $k \geq 3$.

2. A proof of Theorem 1

In order to prove Theorem 1, we need the following lemmas.

Lemma 1. Let $\chi(G) = k$. Then $P(G, k) = k! \cdot t$ for some positive integer t, and t is the number of ways of coloring G in exactly k colors with color indifference. Furthermore, $t = 1$ if and only if G is a uniquely k-colorable graph.

Proof. Since $\chi(G) = k$, $P(G, x) = 0$ for $x = 0, 1, \ldots, k - 1$, and $P(G, k) = k(k - 1) \cdots (k - k + 1)q(k)$ for some polynomial $q(k)$. Let $q(k) = t$. Then $P(G, k) = k! \cdot t$. By Theorem 15 in [3], we know that t is the number of ways of coloring G in exactly k colors with color indifference. It follows that $t = 1$, if and only if, G is a uniquely k-colorable graph. □

Lemma 2. The graph G_{12} depicted in Fig. 1 with $V(G_{12}) = \{1, 2, \ldots, 12\}$ is a uniquely 3-colorable graph with 12 vertices and without any triangles.

Proof. Let a, b and c denote 3 colors. We shall use the following notations: $i(a)$ means the vertex i is colored with the color a, and $\rightarrow i(a)$ means the vertex i is forced to be colored with the color a.

We first consider a 5-cycle subgraph C_5, see Fig. 2.

We know that $P(C_5, k) = (k - 1)^5 - (k - 1)$ and $\chi(C_5) = 3$. Then $P(C_5, 3) = (3 - 1)^5 - (3 - 1) = 3! \cdot 5$, and, by Lemma 1, there are 5 ways to color C_5 in exactly 3 colors with color indifference, i.e., there are 5 ways to partition $V(C_5)$. Namely,

I $\{1, 4\}, \{2, 5\}, \{3\}$
II $\{1, 4\}, \{3, 5\}, \{2\}$
III $\{1, 3\}, \{2, 5\}, \{4\}$
IV $\{1, 3\}, \{2, 4\}, \{5\}$
V $\{2, 4\}, \{3, 5\}, \{1\}$

For the partition I, we have $1(a), 4(a), 2(b), 5(b)$ and $3(c)$. Then $\rightarrow 10(b) \rightarrow 11(c) \rightarrow 6(a) \rightarrow 7(b) \rightarrow 8(c) \rightarrow 9(a) \rightarrow 12(c)$. Thus, we have a 3-coloring of G_{12}.

\{1, 4, 6, 9\}, \{2, 5, 10, 7\}, \{3, 11, 8, 12\}.

(1)

For the partition II, we have $1(a), 4(a), 3(b), 5(b)$, and $2(c)$. Then $\rightarrow 6(a) \rightarrow 7(c) \rightarrow 8(b) \rightarrow 9(a)$. Since the neighborhood of vertex 12 denoted by $N(12)$ is $\{9(a), 7(c), 5(b)\}$, this case is impossible.
For the partition III, we have $1(a), 3(a), 2(b), 5(b)$ and $4(c)$. Then $\rightarrow 8(b) \rightarrow 7(c) \rightarrow 6(a) \rightarrow 11(b) \rightarrow 10(c) \rightarrow 9(a)$. Since $N(12) = \{5(b), 7(c), 9(a)\}$, this case is impossible.

For the partition IV, we have $1(a), 3(a), 2(b), 4(b)$ and $5(c)$. Then $\rightarrow 8(c) \rightarrow 7(b) \rightarrow 9(a)$. Since $N(12) = \{5(c), 7(b), 9(a)\}$, this case is impossible.

For the partition V, we have $2(u), 4(u), 3(b), 5(b)$ and $1(c)$. Then $\rightarrow 6(c) \rightarrow 7(a) \rightarrow 8(b) \rightarrow 9(c)$. Since $N(12) = \{5(b), 7(a), 9(c)\}$, this case is impossible.

Thus, G_{12} is a uniquely 3-colorable graph with 12 vertices and without any triangles. The unique partition of $V(G_{12})$ is (1).

The proof of Theorem 1 goes as follows. We use the mathematical induction on the number of vertices n. For $n = 12$, the graph G_{12} in Lemma 2 is a uniquely 3-colorable graph with 12 vertices and without any triangles. Assume that Theorem 1 holds for $n > 12$, i.e., we assume that there exists a uniquely 3-colorable graph G_n, $n > 12$, with n vertices and without any triangles which contains G_{12} as a subgraph.

We shall construct a graph G_{n+1} from G_n. Let $V(G_{n+1}) = V(G_n) \cup \{w\}$ and $E(G_{n+1}) = E(G_n) \cup \{\{w, u\}, \{w, v\}\}$ where $u, v \in V(G_n)$, u and v are not adjacent, and u and v are colored with different colors. Thus, G_{n+1} contains G_n and G_{12} as subgraphs. We color w by the third color which is different from the colors of u and v. Clearly, G_{n+1} is 3-colorable. Since G_n is uniquely 3-colorable and the color of vertex w is uniquely determined by the colors of vertices u and v, G_{n+1} is a uniquely 3-colorable graph, and there exists a uniquely 3-colorable graph with m vertices and without any triangles for any integer $m \geq 12$.

Remark. A theorem in [1] states that for any integer $k \geq 3$, there is a uniquely k-colorable graph which contains no subgraph isomorphic to the complete graph K_k.

![Fig. 1.](image1)

![Fig. 2.](image2)
with \(k \) vertices. We may use Lemma 2 and the mathematical induction to prove it. Following the proof of Theorem 2, we shall give a similar result, i.e., the Corollary of Theorem 2.

3. A proof of Theorem 2

In order to prove Theorem 2, we need the following lemmas.

Lemma 3. There exists a uniquely 3-colorable regular graph of degree 5 with 24 vertices and without any triangles.

Proof. Let \(M \) and \(N \) be graphs such that each of them is isomorphic to \(G_{12} \) in Lemma 2, \(V(M) = \{1, 2, \ldots, 12\} \) and \(V(N) = \{1', 2', \ldots, 12'\} \). Then each of \(M \) and \(N \) is uniquely 3-colorable, and each can be colored the same as \(G_{12} \) with the same colors \(a, b, \) and \(c \). Since \(M \) is uniquely 3-colorable, \(V(M) \) is uniquely partitioned into 3 subsets:

\[
A_1 = \{1, 4, 6, 9\}, \quad B_1 = \{2, 5, 7, 10\}, \quad C_1 = \{3, 8, 11, 12\}.
\]

Similarly, \(V(N) \) is uniquely partitioned into 3 subsets:

\[
A_1' = \{1', 4', 6', 9'\}, \quad B_1' = \{2', 5', 7', 10'\}, \quad C_1' = \{3', 8', 11', 12'\}.
\]

Let \(G_{24} \) be a graph with \(V(G_{24}) = V(M) \cup V(N) \), and \(E(G_{24}) = E(M) \cup E(N) \cup \{(1, 3'), (2, 8'), (3, 1'), (4, 12'), (5, 11'), (6, 12'), (7, 11'), (8, 2'), (9, 10'), (10, 9'), (11, 5'), (11, 7'), (12, 4'), (12, 6')\} \). Then \(G_{24} \) is a regular graph of degree 5 with 24 vertices. The edges \((5, 11'), (7, 11'), (4, 12'), \) and \((6, 12')\) belonging to \(E(G_{24}) \) imply that the vertices in \(C_1 \) have to be colored differently from the vertices in \(A_1 \) and \(B_1 \). Since \((10, 9')\) belongs to \(E(G_{24}) \), the vertices in \(A_1 \) can only be colored the same as in \(A_1 \). Since \((9, 10')\) belongs to \(E(G_{24}) \), the vertices of \(B_1 \) can only be colored the same as \(B_1 \). Thus, \(G_{24} \) is a uniquely 3-colorable graph with the unique partition of \(V(G_{24}) \) as

\[
A_1 \cup A_1' = \{1, 4, 6, 9, 1', 4', 6', 9'\},
\]

\[
B_1 \cup B_1' = \{2, 5, 7, 10, 2', 5', 7', 10'\},
\]

\[
C_1 \cup C_1' = \{3, 8, 11, 12, 3', 8', 11', 12'\}.
\] (2)

Hence, we have constructed a uniquely 3-colorable regular graph of degree 5 with 24 vertices and without any triangles. \(\Box \)

Lemma 4. There exists a uniquely 3-colorable regular graph of degree 6 with 48 vertices and without any triangles.

Proof. Let \(P_1 \) and \(Q_1 \) be graphs such that each of them is isomorphic to \(G_{24} \) in the proof of Lemma 3, \(V(P_1) = \{1, 2, \ldots, 12, 1', 2', \ldots, 12'\} \) and \(V(Q_1) = \{1, 2, \ldots, 12, 1', 2', \ldots, 12'\} \). Then, by Lemma 3, each of \(P_1 \) and \(Q_1 \) is uniquely 3-colorable regular
On uniquely 3-colorable graphs

Let $G_{2.24}$ be a graph with $V(G_{2.24}) = V(P_1) \cup V(Q_1)$ and $E(G_{2.24}) = E(P_1) \cup E(Q_1) \cup E_{P_1, Q_1}$, where E_{P_1, Q_1} is the set

$$E_{P_1, Q_1} = \{[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 1],$$

$$[9, 12'], [10, 11'], [11, 10'], [12, 9'],$$

$$[1', 2'], [2, 3'], [3, 4'], [4, 5'], [5, 6'], [6, 7'], [7, 8'], [8, 1']$$

(3)

where $[i, j]$ is an edge in $G_{2.24}$ with $i \in V(P_1)$ and $j \in V(Q_1)$. (We use $[i, j]$ to emphasize $i \in V(P_1)$ and $j \in V(Q_1)$.) Then $G_{2.24}$ is a regular graph of degree 6 with 48 vertices.

Since $[9, 12']$ and $[10, 11']$ belong to $E(G_{2.24})$, the vertices in $C_1 \cup C_1'$ of Q_1 in (2) (i.e., the vertices $3, 8, 11, 12, 3', 8', 11', 12'$ in Q_1) have to be colored differently from $A_1 \cup A_1'$ of P_1 in (2) (i.e., the vertices $1, 4, 6, 9, 1', 4', 6', 9'$ of P_1) and $B_1 \cup B_1'$ of P_1 in (2) (i.e., the vertices $2, 5, 7, 10, 2', 5', 7', 10'$ in P_1). Since $[1, 2]$ belongs to $E(G_{2.24})$, the vertices in $B_1 \cup B_1'$ of Q_1 in (2) have to be colored differently from the vertices in $A_1 \cup A_1$ of P_1 in (2). Thus, the $V(G_{2.24})$ is uniquely partitioned into 3 subsets

$$\{A_1 \cup A_1' of P_1 in (2) \} \cup \{A_1 \cup A_1' of Q_1 in (2)\},$$

$$\{B_1 \cup B_1' of P_1 in (2) \} \cup \{B_1 \cup B_1' of Q_1 in (2)\},$$

$$\{C_1 \cup C_1' of P_1 in (2) \} \cup \{C_1 \cup C_1' of Q_1 in (2)\}.$$ (4)

Hence, $G_{2.24}$ is a uniquely 3-colorable regular graph of degree 6 with 48 vertices and without any triangles. \(\square\)

The proof of Theorem 2 goes as follows. We construct a family of graphs $G_{2n.24}$ for $k = 1, 2, \ldots$.

For $k = 1$, $G_{2.24}$ is constructed as the one in the proof of Lemma 4, i.e., $V(G_{2.24}) = V(P_1) \cup V(P_2)$ where $P_1 \simeq P_2 \simeq G_{24}$, $E(G_{2.24}) = E(P_1) \cup E(P_2) \cup E_{P_1, P_2}$ where E_{P_1, P_2} is defined in (3).

For $k = 2$, let H and H' be graphs such that $H \simeq H' \simeq G_{2.24}$, $V(H) = \bigcup_{i=1}^{2} V(P_i)$ and $V(H') = \bigcup_{i=1}^{2} V(Q_i)$ where $Q_i \simeq P_i \simeq G_{24}$ for $i = 1, 2$. $G_{22.24}$ is the graph whose $V(G_{22.24}) = V(H) \cup V(H')$, and $E(G_{22.24}) = E(H) \cup E(H') \cup E_{P_1, Q_1} \cup E_{P_2, Q_2}$. (Thus, $E(G_{22.24}) = (E(P_1) \cup E(P_2) \cup E_{P_1, P_2}) \cup (E(Q_1) \cup E(Q_2) \cup E_{Q_1, Q_2}) \cup E_{P_1, Q_1} \cup E_{P_2, Q_2}$.)

We define $G_{2n+1.24}$ inductively. Let K and K' be graphs such that $K \simeq K' \simeq G_{2n.24}$,

$$V(K) = \bigcup_{i=1}^{2n} V(P_i), \quad V(K') = \bigcup_{i=1}^{2n} V(Q_i).$$
where \(P_i \cong Q_i \cong G_{24} \) for \(i = 1, 2, \ldots, 2^n \). Let \(G_{2n+1,24} \) be the graph whose \(V(G_{2n+1,24}) = V(K) \cup V(K') \), and

\[
E(G_{2n+1,24}) = E(K) \cup E(K') \cup \left(\bigcup_{i=1}^{2^n} E_{P_i,Q_i} \right).
\]

We shall use the mathematical induction to show that each of the graph \(G_{2n,24} \), for \(k = 1, 2, \ldots \), is a uniquely 3-colorable regular graph of degree \(n + 5 \) with \(2^k \cdot 24 \) vertices and without any triangles.

For \(k = 1 \), we know that, by Lemma 4, \(G_{2,24} \) is such a graph.

Assume that \(G_{2n,24} \) is such a graph. Consider \(G_{2n+1,24} \). Since \(K \cong K' \cong G_{2n,24} \), each of \(K \) and \(K' \) is a uniquely 3-colorable regular graph of degree \(n + 5 \) with \(2^n \cdot 24 \) vertices and without triangles. From the construction, we know that \(G_{2n+1,24} \) have \(2^{n+1} \cdot 24 \) vertices, \(G_{2n+1,24} \) is a regular graph of degree \(n + 6 \), and \(G_{2n+1,24} \) does not contain any triangles.

Since each of \(K \) and \(K' \) is uniquely 3-colorable, each of \(K \) and \(K' \) can be colored the same as \(G_{2n,24} \) with the same colors \(a, b \) and \(c \), i.e., \(V(K) \) is uniquely partitioned into three subsets:

\[
V_1 = \bigcup_{i=1}^{2^n} \{1, 4, 6, 9, 1', 4', 6', 9' \text{ of } P_i\},
\]

\[
V_2 = \bigcup_{i=1}^{2^n} \{2, 5, 7, 10, 2', 5', 7', 10' \text{ of } P_i\}, \quad \text{and}
\]

\[
V_3 = \bigcup_{i=1}^{2^n} \{3, 8, 11, 12, 3', 8', 11', 12' \text{ of } P_i\},
\]

and \(V(K') \) is also uniquely partitioned into three subsets:

\[
U_1 = \bigcup_{i=1}^{2^n} \{1, 4, 6, 9, 1', 4', 6', 9' \text{ of } Q_i\},
\]

\[
U_2 = \bigcup_{i=1}^{2^n} \{2, 5, 7, 10, 2', 5', 7', 10' \text{ of } Q_i\}, \quad \text{and}
\]

\[
U_3 = \bigcup_{i=1}^{2^n} \{3, 8, 11, 12, 3', 8', 11', 12' \text{ of } Q_i\}.
\]

Since \([9, 12'] \) and \([10, 11'] \) belong to \(E_{P_i,Q_i} \subseteq E(G_{2n+1,24}) \), the vertices in \(U_1 \) have to be colored differently from \(V_1 \) and \(V_2 \). Since \([1, 2] \) belongs to \(E_{P_i,Q_i} \subseteq E(G_{2n+1,24}) \), the vertices in \(U_2 \) have to be colored differently from \(V_1 \). Consequently, \(V(G_{2n+1,24}) \) can be uniquely partitioned into 3 subsets: \(V_1 \cup U_1 \), \(V_2 \cup U_2 \) and \(V_3 \cup U_3 \).

Hence, there exist infinitely many uniquely 3-colorable regular graphs without any triangles, and the proof is completed.

The proof of the Corollary goes as follows. We shall use the mathematical induction on \(k \). For \(k = 3 \), it follows from Theorem 2.
Assume that it holds for \(k \geq 3 \), and consider for the case of \(k+1 \). That is, we assume that there exist infinitely many uniquely \(k \)-colorable regular graphs having no subgraph isomorphic to \(K_3 \). Let \(G_k \) be anyone of these graphs with \(V(G_k) = n \) and degree \(r \). We construct a graph \(G_{k+1} \) as follows. Let \(N_{n-r} \) be the null graph with \(n-r \) vertices, \(V(G_{k+1}) = V(G_k) \cup V(N_{n-r}) \), and \(E(G_{k+1}) = E(G_k) \cup \{(u, v) : u \in V(G_k) \text{ and } v \in V(N_{n-r})\} \), i.e., \(E(G_{k+1}) \) consists of all of the edges in \(G_k \) and all possible edges with one vertex in \(G_k \) and the other vertex in \(N_{n-r} \). Thus, \(|V(G_{k+1})| = 2n-r \) and \(G_{k+1} \) is a regular graph of degree \(n \). Since \(G_k \) is uniquely \(k \)-colorable, \(G_{k+1} \) is uniquely \((k+1)\)-colorable. Since \(G_k \) has no subgraph isomorphic to \(K_3 \), \(G_{k+1} \) has no subgraph isomorphic to \(K_{k+1} \). Since we have constructed \(G_{k+1} \) for each \(G_k \) and non-isomorphic \(G_k \) graphs produce non-isomorphic \(G_{k+1} \) graphs, we have infinitely many uniquely \((k+1)\)-colorable regular graphs having no subgraph isomorphic to \(K_{k+1} \).

References