Note

On a problem of Hendry

M.R. Hart
Department of Mathematics, University of Nottingham, Nottingham, NG7 2RD, UK

Xingxing Yu
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Received 12 June 1990
Revised 18 December 1991

A graph G is homogeneously traceable if for every vertex v there is a Hamiltonian path beginning at that vertex. Clearly every Hamiltonian graph is homogeneously traceable. Given a homogeneously traceable graph G, we can construct a new graph $H(G)$ with the same vertex set $V(G)$, called the Hamiltonian path graph of G in [1], in which two vertices are adjacent if and only if they are connected by a Hamiltonian path in G. Hendry [2] asked whether there are any homogeneously traceable graphs for which $|E(G)| > |E(H(G))|$. The following two theorems partially answer this question.

Theorem 1. If G is Hamiltonian then $H(G)$ has a subgraph isomorphic to G and so $|E(G)| \leq |E(H(G))|$.

Proof. Let the vertices around the Hamiltonian circuit be labelled v_1, \ldots, v_n, v_1 where all suffices will be reduced modulo n. Since clearly v_i and v_{i+1} are connected by a Hamiltonian path in G then v_1, \ldots, v_n, v_1 is a Hamiltonian circuit in $H(G)$ as well. Also, if v_i is adjacent to v_j in G then it is easy to see that v_{i-1} and v_{j-1} are connected by a Hamiltonian path in G so that $v_{i-1}v_{j-1} \in E(H(G))$. This gives us our result.

Theorem 2. If G is a regular homogeneously traceable graph, then $|E(G)| \leq |E(H(G))|$.

Proof. Let r be the valency of G, and let v_1 be an arbitrary vertex of G. Further, let v_1, \ldots, v_n be a Hamiltonian path of G. For any vertex v_i of G which is
adjacent to v_n, we can construct a new Hamiltonian path starting at v_1: $v_1, \ldots, v_i, v_n, v_{n-1}, \ldots, v_{i+1}$. Therefore, G has at least r Hamiltonian paths starting at v_1. Thus every vertex of $H(G)$ has degree at least r, giving us our result. □

However, we now show that this result cannot be extended to all homogeneously traceable graphs.

Suppose G' is a non-Hamiltonian graph that contains an edge e such that for every vertex v in G' there is a Hamiltonian path starting at v and using the edge e. The Petersen graph is such a graph where any edge will suffice for e. Now if we form a new graph G from the disjoint union $G' \cup K_n$ by joining the two end vertices of e by edges to every vertex in K_n, then G is non-Hamiltonian but homogeneously traceable. Since G is non-Hamiltonian then $H(G) \subseteq G$. Clearly if n is large enough $|E(G)| > |E(G')|$ and so $|E(G)| > |E(H(G))|$. If we take G to be the Petersen graph then $n \geq 16$ will suffice.

In fact, we can see that for these graphs we have

$$\frac{|E(H(G))|}{|E(G)|} \to 0 \quad \text{as } n \to \infty.$$

In conclusion we have the following conjecture.

Conjecture. If G is a homogeneously traceable graph then $H(G)$ is connected.

Acknowledgement

The first author would like to thank Douglas Woodall for his many helpful comments on the construction of this note.

Reference
