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A characterization of existence of Descartes systems in Haar subspaces is given. 
Moreover, it is shown that the functions in such systems can be represented as 
products of piecewise strictly monotone functions. 0 1989 Academic Press, Inc. 

INTRODUCTION 

Let M be a subset of R which contains at least n points and let 
F(M)= {f: M+ R}. M oreover, let U denote an n-dimensional subspace of 
F(M). A Descartes basis in U is a basis (u,, . . . . u,} of U such that, for any 
l<i,<... <i,<n and any points t,<..+<t,,, in AI, 

D = det (u&tJ)im, 1 r=, # 0, 

1 <m<n. Such a basis {ul, . . . . u,} is also called a Descartes system in U on 
M. A system {ul, . . . . u,} in U is called a Markoff system if, for any points 
t, < .‘. < t, in A4, 

D 
u1 “‘U, 

( > t, ... t, 
z 0, 

1 <m <n. Moreover, a system {ul, . . . . u,} in U is called a sign-regular 
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Descartes system if, for any 1 6 i, < . . . < i, 6 n, there exists an E E { - 1, 1 } 
such that, for any t, < ... < t, in A4, 

ED 
ui, . . . ui 

( ) t, . ..t. 
m z-0, 

1 d m d n. Analogously we define sign-regular Markoff systems in U. 
A Markoff system (ui, . . . . u,} in U is called normed if u1 = 1 on M. 
(Obviously, if M is an interval, then every Descartes (resp. Markoff) 
system is a sign-regular Descartes (resp. Markoff) system.) 

It is well known that U is called a Huar subspace of F(M), if there exists 
a basis {ul, . . . . un} in U such that for any points t i < . . . < t, in M, 

D 
Ul “‘U, 

( ) 
# 0. 

t, . ..t. 

In the following we are interested in such Haar spaces which admit 
Descartes systems. We give a sufficient condition ensuring the existence of 
Descartes systems. Under some weak additional hypotheses we are able to 
prove the more difficult converse result. In particular it follows that if A4 
is a closed interval, then there exists a Descartes system in a subspace U 
of C(M) if and only if for every interval fi 3 M there exists a Haar sub- 
space 0 of C(fi) such that 0 I,,,, = U. We give an example of a Haar sub- 
space U of C(M) where M= [a, b] such that U does not admit a Descartes 
system on (a, b) which implies that U cannot be extended to a Haar space 
on (a-d, b) or on (a, b + d) for any d> 0. Moreover, we show that the 
functions in a Descartes system can be represented as products of piecewise 
strictly monotone functions. Finally, from the above results we derive a 
characterization of those normed sign-regular Markoff systems which 
admit sign-regular Descartes systems using integral representations. 

Independently and simultaneously Zalik and Zwick [S] have also 
studied the problem of existence of Descartes systems in Haar spaces and 
have obtained the statement of Corollary 2.4 and a statement similar to 
Theorem 2.2. 

1. REPRESENTATION OF DESCARTES SYSTEMS 

In this section we give a representation of Descartes systems. 

THEOREM 1.1. Let (u,, . . . . u,,> t F(M) be a Descartes system. Then 

(1) there exist functions wi E F(M), 1~ i< n - 1, such that 

ui+l = #1 Wl . . . wi, lbidn-1, 
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where wi is strictly monotone on every connected component of A4 and 
wi(x)#OforeveryxEM, 16idn-1; 

(2) tf ui has constant sign on A4, 1 < iQ n, and tf for each 1 < i< 
n- 1, D (y; F;+’ ) has constant sign for any points t, < t2 in M, the functions 
w, are even strictly monotone on M, 1 < i =$ n - 1; 

(3) tfui>OonM, l~i<n,andzfforalZi,j~{l,...,n}, i#j,D(;; z) 
has constant sign for any points t, < t, in M, the system {u,, . . . . u,} can be 
rearranged to the system (u,, , . . . . ur,} such that there exist strictly increasing 
functions tij E F(M), 1 Q i < n - 1 with 

U$+, =u,,ic1 . ..G.!, l<j<n-1; 

(4) ifuirzC(M), l<i<n, then wi,Gi~C(M), l<i<n-1. 

Proof: (1) Since by hypothesis span {u,, u,} is a Haar subspace of 
F(M), and ui(x) #O for every XE M, i= 1,2, span { 1, q/u,} is also a Haar 
space on M. This implies that u&i is strictly monotone on every connec- 
ted component of M. Hence u2 = ui wi where w i has the desired property. 

Repeated application of this argument to the Haar spaces 
span {u2, u,}, . . . . span {un- i, u,} yields functions wi = ui+ i/ui, 2 < id 
n - 1, such that wi is strictly monotone on every connected component of 
M. Hence 

ui+l 
CUiWiZ . . . =ulwl’ ... ‘Wi, l<i<n-1. 

(2) Assume that w1 is not strictly monotone on M. We only consider 
the case when w,(ti)< w,(t,)> wI(t3) for some points t, < t,< t, in M. 
Then the proof of (1) implies that uZ(tl)/uI(tl) < u,(t,)/u,(t,) > u2(t3)/u,(t3). 

Since u1 and u2 have constant sign on M, it follows that 

a contradiction. 
Using the proof of (1) and the above arguments we can show that also 

the function wi is strictly monotone on M for 2 < i 6 n - 1. 

(3) Since by hypothesis span {ui, u,} is a Haar subspace of F(M) for 
any i,jE { 1, . . . . n}, i # j, and ui has constant sign on M, 1 d id n, it follows 
from (1 ), (2) that ui/uj is strictly monotone on M. 

If ui+ i/ui is strictly increasing on M for every 1 < i < n - 1, then setting 
Ei = ui+ Jui we obtain 

ui+1 =u,$, . . . . .Gi, lbi<n-I, 

and the statement follows. 
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In the other case we rearrange the system { ui, . . . . u,} as follows: Assume 
that the rearrangement {ui,, ui,, . . . . ni,} is given. Moreover assume that for 
some integer ij E { 1, . . . . n - 1 }, ui,+Jui, is strictly decreasing on M. Then we 
define a new arrangement by 

It is easily verified that the same arrangement cannot occur twice. There- 
fore, since there are only a finite number of distinct arrangements, we 
arrive after a finite number of steps at a system {u,,, . . . . u,,} such that 
Mb+, /uI, is strictly increasing on M, 1 <j 6 n - 1. 

Then setting Gj = ull+ ,/u,, we obtain 

U$+, =u,,ib,~ ... .G,;, l<j<n-1. 

(4) The statement follows directly from the proof of (1 k(3). 

COROLLARY 1.2. If {ui, . . . . u,} is a Descartes system in C[a, b] where 
[a, b] is a real compact interval, then there exist functions wi E C[a, b], 
1 < i 6 n - 1, which are strictly monotone on [a, b] such that 

ui+l =u1w,. ... ‘Wi, l<iQn-1. 

If in particular u, > 0 on [a, b], 1 < i < n, then { uI, . . . . u,} can be rearranged 
to a system (u,,, . . . . u,,} such that 

Ul,+, =u,,$,. . . . .Gj, l<j<n-1, 

where iGi is a strictly increasing function in C[a, b], 1 < i < n - 1. 

The converse of Theorem 1.1 is not true for n 3 3 in general as the 
following example shows. 

EXAMPLE 1.3. Let the functions {ui, u2, u3} c C[O, rr] be defined by 
u,(x) = 1, q(x) = w,(x), u3(x) = w,(x) wZ(x) for every x E [0, n] where 
wi(x) = l/(cos x + 2) and wz(x) = x + 1. Obviously, w, and w2 are strictly 
increasing and positive on [O, ~1. 

But van {ul, u2, uj} is not a Haar space on [0, rc], since the function 
u(x) = (cos x + (2/7c) x - l)/(cos x + 2) has the zeros 0,7c/2, X. 

2. MAIN RESULTS 

We begin by giving a sufficient condition ensuring the existence of 
Descartes systems. 



108 SOMMJZRANDSTRAUSS 

THEOREM 2.1. Let U denote an n-dimensional Haar subspace of F(M). 
Assume that there exist distinct points z,, . . . . z, in IW\M such that there exists 
an n-dimensional Haar subspace 8 of F(fi) where fi= Mu {z,, . . . . z,} 
satisfying 81M = U. Then there exists a Descartes system {u,, ..,, u,} in U 
on M. 

Proof: Since 8 is a Haar space on &, there exist (unique) functions 
ii; E 0 defined by 

&(Zi) = 6,, 1 <i,j,<n. 

Set ui= iiilM, 1 < i < n, and let (u,, , . . . . u,~} be a subsystem of {ur, . . . . u,]. 
Then u&z,) =0 for every r E (1, . . . . n}\{i,, . . . . i,}. Hence every nontrivial 
function UE span {u,,, . . . . ui,} has at most m - 1 zeros in M. This implies 
that span {u;,, . . . . uj,} is a Haar subspace of F(M). 

Thus we have shown that { ul, . . . . u,} is a Descartes system in U on M. 

Remark. Let U denote an n-dimensional Haar subspace of C[a, b] 
where [a, b] is a compact real interval and let 0 < E < b - a be given. Then 
U = U 1 ra + E, h3 contains a sign-regular Descartes system. 

Under some weak additional hypotheses we now prove the more difficult 
converse of Theorem 2.1. 

THEOREM 2.2. Let inf M$ M, sup M$ M, inf ME [w, and for any points 
x, REM with x<y there exists a point ZEM with x<z < y. Set 
A= { inf M} u M. Assume that U is an n-dimensional subspace of F(fi) 
which contains a sign-regular Descartes system (u,, . . . . u,} on fi. Then 
for every d > 0 there exists a space U, = span {ii1 , . . . . ii,,} on (inf M- d, 
inf M) v fi such that 

UJ$j= u; (2.1) 

every function u E U, is continuous on (inf M - d, inf M]; (2.2) 

foranypoints t,<...<t, in (infM-d,infM)u@, 

where E E { - 1, 1); i.e. U, is a Haar space. (2.3) 

If in particular 1 E U, then there exists a normed sign-regular 
Markoff system in Ud. (2.4) 

The proof of the above theorem is based on the following result. 
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LEMMA 2.3. Let A4 and @ be defined as in Theorem 2.2. Moreover, let U 
denote an n-dimensional subspace of F(a) such that there exist 
lim r+supM,,GM u(t)for every UE U and a system {uI, . . . . u,} in U with u, = 1 
on &? and 

ED UI u,, “‘Ui, 
> 

>o 
tlt2.~.t,+l 

for any 2 <i, < ... <i, <n and any points t, < ..’ < t,,,+, in fi where 
E = E( i, , . . . . i,)E{-l,l}, l<m<n-1. Then there exists a sign-regular 
Descartes system {II,, . . . . v,} in U on a. 

Proof Define a system {v,, . . . . v,} in U by 

v,3 1 

vi=Ui-(,+l~~MUi(t))l 2<iQn. 
f-5 R 

Since by assumption lim, _ sUp M,, E M ui(t) is a real number, every vi is well 
defined on fi, 2 < i < n. 

We show that this system has the desired property. To do this let 
{vj,, ...* v,,} be a subsystem where 1 <j, < . <jm < n. If j, = 1, then span 
{vj,, ...) vi,} = span {u,, uj2, . . . . ui,} and the statement follows immediately. 

Therefore let j, > 1. Assume that the statement is false. Then by 
Lemma 3.1 in [2] there exists a function GE span (v,,, . . . . vi,} and points 
x,<...<x,+r in A satisfying 

( - 1 )i C(xJ > 0, l<i<m+l. 

Since j, > 1, it follows from the definition of v2, . . . . v, that 
lim I _ sug M,rE ,,,, v"(t) = 0. Therefore and by the properties of M there exist 
points y,<...<y,+, in @such that 

(-l)j(~(Y,+l)-~(Yi))~O, l<i<m+l. 

This contradicts Theorem 8.8 in [2], because 17 E span {u,, u,, , . . . . uj,} and 
by hypothesis this system is a normed sign-regular Markoff system on fi. 

Proof of Theorem 2.2. We may assume that ui > 0 on i@, 1 < i < n. Let 
d > 0 be given. We proceed by induction on n. For n = 1 the statement is 
easily verified. Assuming the result holds for n - 1, we now prove it for n. 

At first it follows from Theorem 1.1 that there exists a rearrangement 
{u,,, . . . . u,,} of {u,, . . . . u,} such that 

Ur,+, = u,,w, . . . . wi, Ibj<n-1, 
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where wi is strictly increasing and positive on fi, 1 < i < n - 1. Without loss 
of generality we may assume that Ii =j, 1 <j 6 n, and u1 - 1. Then 

u ,+l=wl. ..’ ‘W,, 16j<n-1. 

Since U, is strictly increasing on fi, there exists the function u;’ and 
therefore the functions 

-I u~=u,~u, ) 
-I - 

Uj+I=Uj+IoUn =wl "' 'wiy 
l<j<n-1, 

where Gi= wiou;‘, 1 < i6n- 1. Then obviously u;EF(B) where B= 
u,(a), 1 d i< 12, and G, is strictly increasing and positive on d, 
1~ i < n - 1. Moreover it follows that u, = 1 and u,(x) = x for every x E 6. 

Set D = u,(M), a = inf D, b = sup D. It is easily verified (see Lemma 14.2 
in [2]) that inf D&D, sup D 4 D, inf D E R, and for any points x, y E b 
with x < y there exists a point z E b with x < z < y. Moreover Lemma 14.2 
in [2] implies that {u,, . . . . u,} is a sign-regular Descartes system on b. 

Let V = span { ul, . . . . u,}. Then the space V and the set b have the same 
properties as the space U and the set &f. In addition, V contains the 
functions vi E 1 and u,(x) = x (x E 8) which will be necessary for our later 
considerations. 

Now using Theorem 11.3 in [2] there exists, for any u E V and any x E D, 

u(t) - u(x) 
D+“(x)=tg+ u,(t)-UJX) 

This implies that D, u, = 0 and D, u, = 1. Moreover, since u2, . . . . u,, and 
WI 3 ..., ic n-1 are strictly increasing and positive on 6, for any XE D and 
2<i<n, 

06D+ui(x)= lim 
(Gl. . . . .Gjsl)(t)-(a,. ... .Gi-,)(x) 

t-X+ 
[ED 

(6,. . . .s,-,)(t)-(G,~ ... .Gn-l)(x) 

1 1 
“($. ... .iG~I)(x)~(iq. ..’ .@,,-I)(a)=K’ 

where K E Ft. 
Since by hypothesis {u,, . . . . u,} is a sign-regular Descartes system on 13 

and vi E 1 on b, it follows from Theorem 11.3 in [2] that 

ED 
D+u, D+Uj,...D+Ujm 

11 i2 . ..i.+, > 
>O (2.5) 
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for any 2<j,<...<j,<n-l and any points i,<...<T*+r in D where 
E = E( j,, . . . . j,) E { - 1, 1 }, 0 < m < n - 2. In particular, D + ui is strictly 
monotone on D, 2 6 i d n - 1. Hence there exist lim, _ U,XE D D + u;(x) and 
lim x+b,xEDD+~i(~), 26idn-1. Set D+u,(~)=lim,,,,,.,D+~~(x), 
2<idn- 1, and D, V=span {D+v,,, D+u,, . . . . D+v,-1}. Then by 
Lemma 12.1 and Lemma 12.2 in [2] and the above definition of D, v,(a), 
D, VcC+(b)= {f~F(B):fis continuous from the right}. 

Then as in the proof of Proposition 2.7 we can show that 

D+un D+Vj,...D+uj, 
i, i, . . im, 1 

,o 

for any 2 <j, < ... <j,,<n-1 and any points i,<...<i,,,+l in b where 
E=.E(jl , . . ..j.) E (- 1, 11. 

Now by Lemma 2.3 there exists a sign-regular Descartes system 
{h I, ..., h,-,)inD+VonDwhereh,-lon8. 

Now let 2 > 0 be given. Then by the induction hypothesis there exists a 
space D, V,= span {gr, . . . . E,- ,} on (a--J,a)ub satisfying (2.1)-(2.3). 
Since 1 ED, V, by the induction hypothesis we may assume that 
@ 1, . . . . K, _ r } is a normed sign-regular Markoff system in D + VJ. By 
Lemma 14.3 in [2] there exists an n-dimensional weak Chebyshev 
subspace 7 of C(Z) where Z= (a, 6) (i.e., if (e,, . . . . e,) is a basis of r, then 
for any points t, < . . . < t, in (a, b), ED( 4:‘.‘.‘.::) z 0 where E E { - 1, 1 }) such 
that 

Plo= K (2.6) 

for every V E V and every x E Z, there exists 

D + U(x) = lim 
u(t)-V(X). 

r--t-k-+ t-x ’ 

D + F is an (n - 1)-dimensional weak Chebyshev space with 
D, v’I,=D+ V; 

D+VEC+(Z) for every V E I? 

Hence there exists a basis {h,, . . . . h,_ ,} of D, p such 
l<i<n-1. Weset D+~~=span{g,,...,g,-,} where 

(2.8) 

(2.9) 

that hi 1 D = K,, 

g,(x) = !itx) if XE(U--;5,u] 

hi(x) if XEZ, 

(2.7) 

l<i<n--1. This implies that D+r~l~=D+p and D, v~acC+(l) where 
7=(u-;2,b). Since {E ,,..., E,-,} is a normed sign-regular Markoff system 
in D, VJ, it is obvious that span (g,, . . . . gi} is an i-dimensional weak 
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Chebyshev space, 1 < id n - 1. Otherwise for some iE { 1, . . . . n - 1 } there 
would exist a function g E span {g,, . . . . gi} and points x, < . < xi in 7 with 
(- l)‘g(x,) > 0, 1 <j< i. Then using the construction of B in the proof of 
Lemma 14.3 in [2] we obtain a function g E span {zi, . . . . hi} and i points 
y, < ..’ < yi in (a - 2, a) u fi with ( - 1 )jg( y,) > 0, 1 <j < i, a contradiction. 
Now for every i E ( 1, . . . . n - 1 } we define 

IV,= w~C(7,:w(~)=~*g(t)rlt+~,g~span{g,,...,g,},c~?,x~?. 
i c I 

Since every g E C, (T), the set W, is well defined. (This was the reason for 
transforming the given space U to the space V.) Moreover, it follows from 
Lemma 13.2 in [2] that Wi is an (i + 1)-dimensional weak Chebyshev 
subspace of C(?). 

Now we show that there exists a basis {f,, . . ..j.} of Wi, 16 i<n- 1, 
such that f0 3 1 on ? and 

ED fo ‘..fi > o 
( > t,...t, 

(2.10) 

for any points t, < . . . < ti in 6 where fi = (a - 2, a) u fi and E E { - 1, 1 }. 
Assume that there exist points t, < ... < ti+ i in b and a function 
f E W,\ (0) such that 

(-l)‘(f(tj+I)-f(fj))~o, O<j<i. 

By definition of W, there is a function g E span {g,, . . . . gi} with 

Assume that for some j, ( - 1)’ g(r) < 0 for every t E 6 n (t,, tj+ ,). Since 
by construction of P (see Lemma 14.3 in [2]) every gE D, VJ is piecewise 
constant on fi6, it follows that ( - 1)’ g(t) < 0 for every t E (t,, tj+ i). Then 
g E C, (7) implies that 

(-l)‘J11”’ g(t) dt < 0, a contradiction. 

Thus we have shown that for every Jo (0, . . . . i} there exists a point 
zj E ( tj, tj+ i) n 6 such that ( - 1 )jg(z,) 2 0. However, this contradicts 
Lemma 3.1 in [a]. Then (2.10) follows from Lemma 8.2 in [2]. 

It follows from Lemma 14.5 in [2] that WI6 = V where W= W,-,. 
Now using the extension W of V we can easily obtain the desired extension 
of U. To do this define ii,(x) = u,(x) for every x E fi, ii,(inf M- d)= 
a - 2, ii, continuous and strictly increasing on [inf M- d, inf M]. Set 
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U,=span {fOoi&, . . . . -fn-,oiin }. Then by the construction of V and by 
Lemma 14.2 in [2] Ud has the desired properties (2.1)-(2.3). This proves 
Theorem 2.2. 

Remark. Under the assumptions sup ME IR and fi = (sup M} v M, 
the space U can be extended to a subspace U, defined on 
fi u (sup M, sup M + d) satisfying the properties (2.1))( 2.3) (d > 0). 

For the most important case when M is an interval the following equiv- 
alent statements are an immediate consequence of Theorem 2.1 and 
Theorem 2.2. 

COROLLARY 2.4. Let M= [a, b), a real subinterval, and let U denote an 
n-dimensional subspace of C(M). Then the following conditions are equiu- 
alent: 

There exists a Descartes system in U on M; (2.11) 

For every d > 0 there exists an n-dimensional Haar subspace 
U, of C( (a - d, b)) such that Udj M = U. (2.12) 

Analogously the Haar space U can be extended on the subinterval 
(a, b + d) (resp. on [a, b + d)), if b E M (for every d > 0) and on the subin- 
terval (a - d, b + a;), if M= [a, b] (for every d > 0 and every ;I> 0). 

It follows directly from the definitions that every Descartes system 
b 1, . . . . u,} is a Markoff system and that U= span (u,, . . . . u,} is a Haar 
space. Now we show that the converse is not true in general. Let [a, b] be 
a real subinterval and let U denote an n-dimensional Haar space on (a, b). 
Then by Theorem 7.7 in [2] there exists a Markoff system in U on (a, b). 
However, if CT is a Haar space on [a, b) or on (a, b] or on [a, b], then the 
above result is not true in general (see Sect. 10 in [2 1). In particular this 
implies that there exist Haar subspaces U which do not admit Descartes 
systems. 

Although every Haar space U on [a, b] contains a Markoff system on 
(a, b), U does not admit a Descartes system on (a, b) in general. Then 
Corollary 2.4 implies that U cannot be extended to a Haar space on 
(a - d, b] or on [a, b + d) for any d > 0. 

EXAMPLE 2.5. Let M= C-1, l] and let U=span{u,,u,,u,} where 
u,(x)= 1, &)=x(1-x), and Q(X) = (1 - x”)( 1 - x) for every 
XE [I-l, 11. 

CLAIM. II has no Descartes basis on (- 1, 1). 

ProoJ In [2, Sect. lo] it was verified that U is a Haar space on 
[ - 1, 11. Moreover it was shown that U does not contain a two-dimen- 
sional Haar subspace. Hence U has no Descartes basis on [ - 1, 11. 
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Now assume that there exists a Descartes basis {vr, u2, v3} of U on 
( - 1, 1). At first we show that ui(x) # 0 for every x E [ - 1, l] and some 
in {1,2, 3). Suppose that for i= 1,2, 3, ui(-1)=0 or ui(l)=O. Since 
u,( - 1) = 0 for every i E { 1,2, 3 } contradicts the Haar property of U on 
C-1, 11, we may assume that u,(-l)#O and ul(l)=O. Since span {u,} is 
a Haar space on (-1, l), it follows that u,(x)#O for every XE (-1, 1). 
Hence ur = cu3 where c is a nonzero real number. This implies that 
u, ( - 1) = 0, a contradiction. 

Thus we have shown that for some ig { 1,2,3}, vi(x) #O for every 
XE [ - 1, 11. Without loss of generality we may assume that u,(x) #O for 
every XE C-1, 11. Since {ul, u2, v3} is a Descartes basis of U on ( - 1, 1 ), 
it follows that span {u,, uZ} satisfies the Haar property there. As mentioned 
above U contains no two-dimensional Haar subspace. Hence there exists a 
nontrivial function w = c1 u1 + c2u2 with at most one zero in ( - 1, 1) and 
at least two zeros in [ - 1, I]. Then the function w+ du, where d is 
a sufficiently small real number has at least two zeros in ( - 1, l), a 
contradiction. 

Now we study the class of those spaces which contain normed sign- 
regular Markoff systems. To do this let M and I$? be defined as in 
Theorem 2.2. Moreover, let U denote an n-dimensional subspace of F(M) 
which contains a normed sign-regular Markoff system on M. Then it 
follows from [3, Theorem 31: 

There exist a basis {g,, . . . . g,} of U, a strictly increasing function 
h E F(M), continuous strictly increasing functions w, , . . . . w, _ r defined on 
the interval J= (inf h(M), sup h(M)), and c E J such that for every x E M, 

g,(x) = 1 

g*(x) = j”‘*) dw,(f,) 
c 

(2.13) 

g,(x)= jn(‘)li,~~.~'n-2dw,,~,(t,~I)...dw,(fl). 
‘ < c 

THEOREM 2.6. The following conditions are equivalent: 

There exists an n-dimensional subspace 8 of F(M) such that 
1 E D, 0 contains a sign-regular Descartes system on I@, and 
81w= u; (2.14) 

there exists a representation of the type (2.13) such that 
inf h(M)E R! and lim wi(x) exists as x tends to inf h(M), 
l<i<n-1. (2.15) 
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Proof: We first show that (2.15) implies (2.14). Let d < inf M and 
a< inf h(M) be some real numbers, We extend the functions h and 
Wl 3 . ..> w, _ i as follows: Let K(x) = h(x) for every x E M and let i; be strictly 
increasing on (d, inf M] u M. Let ci(x) = wi(x) for every x E J and let G’i be 
strictly increasing and continuous on (a, inf h(M)] u J. Now we define for 
c E J and every x E (d, inf M] u M, 

i!,(x) = 1 

g*(x) = j’(=) dG,(t,) 
< 

d,(~)=S~‘.~‘l~‘...j”-~d~,,-,(t,,-,)...d~,(t,). 
(’ (’ ‘ 

Then it follows from [ 1 ] that span {g,, . . . . g, > is a sign-regular Markoff 
system on (d, inf M] u M. Moreover it is obvious that gi(x) =g,(x) for 
every xEM, 1 <i<n. 

Set zi= span { g,I fi, . . . . g,, ( w}. Then the statement (2.14) follows directly 
from Theorem 2.1. 

Now we show that (2.14) implies (2.15). Let d>O be given. Then by 
Theorem 2.2 there exists a space 0, on A = (inf M- d, inf M) u fi such 
that 8,I ,Q = 8 and fild contains a normed sign-regular Markoff system on 
&. By [ 3, Theorem 31 there exists a representation of the type (2.13) for 
0, on Zf. 

This implies the statements in (2.15). 

Finally we give a result concerning the extension of normed sign-regular 
Markoff systems. 

PROPOSITION 2.7. Let inf M $ M, inf ME R. Assume that for any points 
x, HEM with x< y there exists a point ZEM with x <Z-C y. Set 
i@ = { inf M} u M. Let U denote an n-dimensional subspace of F(n) such 
that u( inf M) = lim, _ ,nf M,x E M u(x) for every u E U. Moreover assume that U 
contains a normed sign-regular Markoff system { ul, . . . . u”} on M. Then this 
system is even a normed sign-regular Markoff system on I@. 

Proof: Let the system (u,, . . . . q} be given. Assume that there exists a 
function ii~span{u,,...,~i}\{O} and points x~-c...-cx~+~ in fi with 
(- 1)’ ii > 0, 1 <j< i+ 1. By hypothesis, x1 = inf M. If there exists a 
pointzE(x1,x2)nMwithH(z)~O,thensettingy,=z,y,=x,,2~j~i+1, 
we have 

(-l)‘ii(y,)80, l<j<i+l, 

a contradiction to Theorem 8.8 in [2] 
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Therefore assume that z?(x) > 0 for every x E (x1, x2) A M. Then it follows 
from ii( inf M) = lim, _ inl M,J E M C(x) that there exist two points y <z in 
(x,,x,)nM with B(y)<h(z). Then setting y,=y,yz=z, and yj=xj, 
3<j<i+ 1, we have 

( - l)’ lii(Y, + I) - ii( G O, 1 <j<i, 

a contradiction. 

COROLLARY 2.8. Let M= (a, 6) (resp. M= (a, b] and M= [a, b)) be a 
real subinterval, and let U denote an n-dimensional subspace of C[a, b] such 
that U has a normed Markoff system on (a, 6). Then U has a normed 
Markoff system on [a, b]. 

This result follows directly from Proposition 2.7. 
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