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a b s t r a c t

The shallow cylindrical structure is suitable to develop broadband vibration energy harvesters due to
the property of the inherent mechanical bistability. In this letter, the optimum design of the bistable
cylindrical shell for broadband energy harvesting application is investigated from the structural point
of view. The output power is evaluated by the concept of the harvestable power, which balances the
frequency of snap through and the referred output energy associated with each snap through. The non-
dimensional harvestable power is analytically expressed as the function of the non-dimensional curvature
parameter and one constructed parameter. The universal dependence of the optimal curvature parameter
and the associated optimal harvestable power on the constructed parameter is derived, which can bewell
approximated by the linear relation in double logarithmic coordinate.

© 2015 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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Vibration energy harvesting technique has received extensive
attention due to its important significance in different fields of
technology such aswireless sensors, data transmitters andmedical
implants [1–3]. Conventional linear harvesters utilize the princi-
ple of linear resonance and thus operate well only when the exter-
nal excitation frequency matches to the fundamental frequency of
the device. The time-varying, multi-frequency and random char-
acteristics of the ambient vibration, however, render the typi-
cal linear harvesters unsuitable for most practical applications [4,
5]. To address this issue, energy harvesting technique exploiting
stiffness nonlinearity has been proposed for broadband transduc-
tion [6,7]. Compared to the nonlinear monostable harvesters, the
bistable harvesters exhibit broader effective frequency bandwidth
and larger output power relying on the fantastic dynamic phenom-
ena [7,8]. It is even more important that the bistable harvesters
exhibit the highest robustness to the changing excitation environ-
ment and the uncertainty of design parameters compared to the
linear and nonlinear monostable harvesters [8,9]. The advantages
mentioned above verify the applicability of the bistable harvesters
on the broadband energy harvesting.

According to the aufbau principle of bistable potential shape,
the bistable harvesters can be classified as three categories, i.e., the
magnetic attraction, magnetic repulsion and mechanical bistabil-
ity [8]. The bistable harvesters with magnetic components re-
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quire the obtrusive arrangement of magnets and inevitably gener-
ate unwanted electromagnetic field, which dramatically limits the
miniaturization anddegrades theperformance. The typical bistable
harvesters with mechanical bistability are achieved through buck-
led mechanism, such as the clamped or hinged beam buckled
by an axial force beyond the critical buckling force [10–12] and
the inverted clamped beam buckled by the gravity of an elabo-
rately selected tip mass [13]. Recently, a novel bistable harvester
utilizing composite laminates with an asymmetric lay-up has
been suggested [14–16]. The inherent mechanical bistability
means asymmetric composite laminates occupy smaller space
and induces that this type bistable harvester is potentially more
suitable for miniaturization than the bistable harvesters with
magnet-induced bistability. Furthermore, the structures with in-
herent mechanical bistability can be easily fabricated through
strain mismatch, which is a mature technique in the micro elec-
tronics industry [17].

The broadband response of the bistable harvester comes down
to the solution of a set of essentially electromechanical coupling
equations. The broadband response and parameter optimization
have been investigated through some established techniques, such
as Monte Carlo simulation, moment method, Galerkin procedure,
finite element method and equivalent linearization technique
[6,8,18–21]. All above mentioned are numerical or semi-analytical
techniques, and so far not any analytical technique has been es-
tablished unless confining the large ratio between the period of
the mechanical subsystem and the time constant of the harvesting
circuit [7]. Besides, most works contribute to the optimum design
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Fig. 1. Shallow cylindrical structure integrated with piezoelectric patches.

of the mathematical system, not the practical physical system. As
an exclusive work toward the optimum design of the bistable har-
vester with inherent mechanical bistability, the authors discover
the optimal configuration based on the statics of the device, not
the practical broadband response [16].

The isotropic cylindrical structure, as a common structure with
inherent mechanical bistability, is more easily fabricated through
microelectronic process than the asymmetric composite lami-
nates. Similar to the bistable harvester with asymmetric compos-
ite laminates, the isotropic cylindrical shell integratedwith a group
of piezoelectric patches constitutes a simple and reliable bistable
harvester, as shown in Fig. 1. The host structure vibrates under
the stimulation of the external excitation, and the piezoelectric
patches deform and generate electric output through piezoelectric
mechanism. This letter concentrates on the optimum design of the
cylindrical shell-type bistable harvester, and tries to analytically
establish the universal design curves. Due to the randomness of
broadband excitation and the complexity of the electromechanical
coupling, it is almost impossible to analytically optimize the actual
output power. Based on the above consideration, we neglect the
influence of the piezoelectric components and the harvesting cir-
cuit on structural responses and establish the optimumdesign only
from the structural point of view.

Consider a shallow cylindrical shell of thickness h, curva-
ture radius R, and span b with two opposite edges hinged sup-
port. The uniformly distributed pressure ξ (t) acting radially
inwards is broadband excitation and approximately described by
Gaussian white noise with the intensity 2D. With the assumption
that the shell is sufficiently flat, the transverse deflection is repre-
sented by the fundamental mode, i.e., w (y, t) = hq (t) sin (πy/b),
in which q (t) denotes the non-dimensional amplitude of the
transverse deflection [22]. The in-plane displacement v (y, t) can
be expressed through the amplitude q (t) by integrating the in-
plane equilibrium equation and applying the boundary conditions
v (0, t) = v (b, t) = 0, i.e., v = hq{−πhq sin(2πy/b)/(8b) +

b[1 − cos(πy/b)]/(πR) − 2y/(πR)}, and then the strain energy
per unit length is calculated by U = E ′h5


2k2/π2

+ π4/48


q2 − πkq3/2 + π4q4/32

/b3, in which E ′

= E/

1 − υ2


, E and υ

denote the plane-strain modulus, Young’s modulus and Poisson’s
ratio, respectively. k = b2/(Rh) is a non-dimensional curvature pa-
rameter which can measure the value of curvature radius. The ki-
netic energy per unit length is T = bmh2q̇2/4 and the dissipation
function is Df = bh2εq̇2/2, in which, m denotes the mass per unit
mid-surface area and ε represents the coefficient of viscous damp-
ing. The generalized force associated with the time-dependent
randomexcitation is expressed as,Q = 2bhξ (t) /π. Then, the non-
linear stochastic differential equation which describes the random
responses of the shallow cylindrical structure is derived through
the Lagrange procedure [23,24]

q̈ +
2ε
m

q̇ +
2E ′h3

b4m


4k2

π2
+

π4

24
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3π
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kq2 +
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4

πmh
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The equilibrium configuration of the shallow cylindrical struc-
ture free from external excitation should be first investigated. Re-
moving the acceleration, velocity and the external excitation terms
from Eq. (1) yields the following algebraic equation,

4k2

π2
+

π4

24


q −

3π
2

kq2 +
π4

8
q3 = 0. (2)

The solutions of the above equation q1 = 0, q2,3 =

6k ±

4k2 − π6/3

/π3 represent the possible equilibrium positions of

the shallow cylindrical structure. In the case of k < π3
√
3/6, q2,3

are the imaginary roots and those imply that the cylindrical shell
have only one equilibrium position q1 = 0. In the case of k >

π3
√
3/6, however, q2,3 are the positive real roots. The cylindri-

cal structure possesses three equilibrium positions, in which q1, q3
are stable equilibrium positions while q2 is the unstable equilib-
rium position. The critical value k = π3

√
3/6 corresponds to the

transition from mono-stable case to bistable case. The strain en-
ergy per unit length associated with the mono-stable, bi-stable
and the switch status are shown in Fig. 2. It is worth pointing out
that the potential energy function is asymmetrical, and the bistable
harvesters with asymmetrical potential are relatively complex
compared to those with symmetrical potential [18–21,25]. The
investigation in this letter is concentrated on the case of k >

π3
√
3/6, i.e., the bi-stable configuration of the shallow cylindrical

structure.
Some representative response samples of the shallow cylindri-

cal shell are calculated through the Monte Carlo simulation and
shown in Fig. 3. It is obvious that the random responses of the
cylindrical shell represent the bistable property. The random re-
sponse consists of the intra-wellmicro-vibration around one of the
stable equilibrium positions and the snap through behavior cross-
ing the unstable equilibrium position [7,8]. Compared to the intra-
well micro-vibration, each snap through corresponds to a larger
strain variation, which means the much higher output energy of
piezoelectric patches attached. To assess the output power of the
cylindrical shell-type bistable harvester, it is reasonable to ignore
the contribution of the intra-well micro-vibration and only calcu-
late the output power associated with the snap-through process.
Consequently, the frequency of snap through and the output en-
ergy associated with each snap through are two crucial parame-
ters. The large values of these two parameters correspond to the
high efficiency of the bistable harvester. The non-dimensional cur-
vature parameter k is inversely proportional to the curvature ra-
dius R. With the increase of curvature parameter k, the potential
barrier ascends and the frequency of snap through decreases, vice
versa, as shown in Fig. 3. On the contrary, the structure strain and
then the output energy associatedwith each snap through increase
with the curvature parameter k. Thus, the frequency of snap through
competes with the output energy associated with each snap through
with the variation of curvature parameter k, and the optimal config-
uration can be derived by balancing these two crucial parameters.

Essentially, the frequency of snap through, i.e., the rate of
crossing, is a random process. From the view of statistics, the
stationary rate of expectation crossing, i.e., the expectation of
the rate of crossing for the stationary stage is appropriate to
assess the frequency of the snap through [26,27]. The stationary
joint probability density function of mechanical states can be
analytically expressed as

ps (q, q̇) = C · exp

−

π2εmh2

16D
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Fig. 2. Asymmetrical potential shapes for representative values of curvature
parameter k.

Fig. 3. Response samples of the shallow cylindrical structure excited by the
Gaussian white noise. System parameters are set as ε/m = 0.15, D = 0.05,
mh = 1/3, 2E ′h3/


b4m


= 0.01, and k = 22, 30, 35. Dashed lines represent the

stable equilibrium positions.

in which C is a positive constant and can be determined by the
normalization condition


∞

−∞


∞

−∞
ps (q, q̇) dqdq̇ = 1. Suppose that

once the shallow cylindrical shell reaches the plane defined by two
straight edges the snap through behavior occurs. In other words,
the snap through threshold is set as q0 =


R −


R2 − b2/4


/h ≈

k/8. Through the formula νa =


∞

−∞
|q̇| ps (q0, q̇) dq̇, the stationary

ratio of expectation crossing are derived as [26,27]

νa =


16D
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·
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−A


2k2/π2

+ π4/48
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dq

, (4)

in which A = επ2E ′h5/

4Db4


is a non-dimensional constructed

parameter. For a given constructed parameter value A = 10−4, the
dependence of the stationary ratio of expectation crossing on the
curvature parameter k is shown in Fig. 4. The stationary ratio of
expectation crossing decreases with the increase of the curvature
parameter. Particularly, as the curvature parameter is too large,
the stationary ratio of expectation crossing approaches zero, which
means that snap through behavior almost does not happen. The
consistency of the analytical results and the results from Monte
Carlo simulation verifies the precision of the analytical expression
in Eq. (4).

The output energy associated with each snap through can
be evaluated by a referred deformation energy. The referred
Fig. 4. Dependence of the stationary ratio of expectation crossing νa , referred
deformation energy Uref and harvestable power P on the curvature parameter k.
Disperse markers denote the results from Monte Carlo simulation.

deformation energy is defined by the strain energy as the shallow
cylindrical shell located in the plane specified by two straight
edges, i.e.,

Uref = U
q=k/8

=
E ′h5

b3


2k2
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+
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48
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8
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−
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2
k
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8
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+
π4

32


k
8

4


. (5)

The referred deformation energy increases with the curvature
parameter k, as shown in Fig. 4. To balance the stationary ratio
of expectation crossing and the referred deformation energy, the
concept of the harvestable power is introduced as

P = Uref · νa. (6)

The curvature parameter k is then optimized by maximizing the
harvestable power. By substituting Eqs. (4) and (5) into Eq. (6), the
harvestable power is explicitly expressed as
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(7)

with I =


∞

−∞
exp{−A[(2k2/π2

+ π4/48)q2 − π/2kq3 + π4/

32q4]}dq.
Careful observation shows that the non-dimensional har-

vestable power P/


4E ′h4/b3


D/

π3mε


on the left hand

of Eq. (7) depends on the non-dimensional curvature parame-
ter k = b2/(Rh) and one non-dimensional constructed parame-
ter A = επ2E ′h5/


4Db4


. For a given value of constructed pa-

rameter A = επ2E ′h5/

4Db4


, the optimal curvature parame-

ter k∗
= b2/ (R∗h) and the associated optimal harvestable power

P∗/


4E ′h4/b3


D/

π3mε


can be easily calculated through

Eq. (7). The relations of the optimal curvature parameter and the
associated optimal harvestable power to the constructed parame-
ter are shown in Fig. 5. Due to the dependence of the constructed
parameter on the geometric configuration, material property and
noise intensity, the logarithm coordinates are adopted to describe
the large variation range of parameter values. Fig. 5 depicts the re-
lations between the non-dimensional quantities and exhibits the
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Fig. 5. Dependence of the optimal curvature parameter b2/ (R∗h) and the

associated optimal harvestable power P∗/


4E ′h4/b3


D/

π3mε


on the

constructed parameter επ2E ′h5/

4Db4


. Dashed lines denote the results of linear

fitting.

universal design curves which are invariant with any change of the
geometric, material and excitation parameters.

In the double logarithmic coordinate, the optimal curvature
parameter k∗

= b2/ (R∗h) and the associated optimal har-

vestable power P∗/


4E ′h4/b3


D/

π3mε


almost linearly de-

crease with the increase of the constructed parameter A =

επ2E ′h5/

4Db4


. The linear fittings on the function relations be-

tween the optimal curvature parameter, the optimal harvestable
power and the constructed parameter give the semi-analytical for-
mulas

lg

b2/


R∗h


=̇ − 0.26 lg


επ2E ′h5/


4Db4


+ 0.75, (8a)

lg

P∗


4E ′h4


b3


D/

π3mε


= −0.72 · lg


επ2E ′h5/


4Db4


− 0.42, (8b)

in which the values of slope and intercept are universal constants
although they are derived by linear fitting. Once the geometric pa-
rameters h and b, material properties E ′ and ε, and noise intensity
2D are assigned, the optimal curvature radius R∗ can be directly
derived through Eq. (8a). The optimal harvestable power P∗ asso-
ciated with the optimal curvature radius R∗, which is determined
by Eq. (8b), can be used to evaluate the upper bound of the mean
output power by piezoelectric patches attached.

In summary, this letter investigated the optimum design of
the cylindrical shell-type bistable harvester with the goal of
maximizing the performance. By introducing the concept of
harvestable power to balance the frequency of snap through and
the referred output energy associated with each snap through,
the universal dependence of the optimal curvature parameter
and the associated optimal harvestable power on one constructed
parameter is analytically established. The universal relations can
be directly used to design the curvature radius of the cylindrical
shell under arbitrarily given geometric, material and excitation
parameters. It is worth pointing out that the optimum design was
established based on the structural point of view and neglecting
the influence of piezoelectric patches and the harvesting circuit.
As a result, the optimal design parameter provided by the universal
relations is only a sub-optimal result.
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